Application Note - LTC-1141 in Laser Spectroscopy

Total Page:16

File Type:pdf, Size:1020Kb

Application Note - LTC-1141 in Laser Spectroscopy Application Note - LTC-1141 in Laser Spectroscopy Application note written in highly appreciated collaboration with IPM – Fraunhofer Institut Freiburg, Germany Meerstetter Engineering GmbH Schulhausgasse 12 CH-3113 Rubigen Switzerland Phone: +41 31 712 01 01 Email: [email protected] Meerstetter Engineering GmbH (ME) reserves the right to make changes without further notice to the product described herein. Information furnished by ME is believed to be accurate and reliable. However typical parameters can vary depending on the application and actual performance may vary over time. All operating parameters must be validated by the customer under actual application conditions. Release date: 28 August 2020 Developed, assembled and tested in Switzerland 5240C Meerstetter Engineering GmbH 1 5240C Meerstetter Engineering GmbH 2 Index 1 Abstract ...................................................................................................................... 4 2 Device Overview ........................................................................................................ 5 3 Application .................................................................................................................. 6 3.1 Application Theory ...................................................................................................... 6 3.2 Application Description ............................................................................................... 8 4 Results and Benefits ................................................................................................... 9 A Change History ..........................................................................................................10 5240C Meerstetter Engineering GmbH 3 1 Abstract This application notes describes how Meerstetter’s LTC-1141 Laser Diode driver with inte- grated TEC controller is used in a laser spectroscopic set up for detection and concentration measurement of gases. Laser spectrometers for gas analysis consist of the laser, the sample volume and a detector. For operation a laser driver, signal acquisition and processing is re- quired. These components are combined on the LTC-1141. The LTC-1141 provides a univer- sal and powerful platform for laser spectrometer demonstrator setups. The laser driver is applicable to laser diodes, interband and quantum cascade lasers. The TEC driver stabilizes the heat sink temperature exact and constant. The programmable integrated waveform generator is used to drive current ramps of the laser current. Through the laser current modulation, the laser emission wavelength is swept and the gas absorption line is scanned. The high speed 16-bit ADC is used to sample the voltage output of the preamplifier of the receiving detector. The onboard FPGA is used to process the incoming data stream with an application specific, customized algorithm in real time. The processed measurement values are output via the digital interface. 5240C Meerstetter Engineering GmbH 4 2 Device Overview The LTC family controllers are laser diode drivers with an integrated TEC controller (based on the TEC-1091). The core of the LTC controllers consists of a system-on-chip featuring high performance pro- cessing capabilities in combination with fast ADC, DAC and memory. This allows fast modula- tion, sampling as well as onboard data processing. Object (laser diode, sensor, etc.) cooling is managed by the onboard TEC controller featuring high temperature stability and high measurement precision. Product Highlights: Applications: Low noise laser diode current Spectroscopy High bandwidth (up to 0.5 MHz) Radar High efficiency TEC controller (DC output) Medical diagnostics Very high temperature stability (0.005 °C) Chemical analysis Auto tuning for PID values of TEC controller General measurement systems Fast 16-bit A/D and D/A conversion Integrated signal processing Application data processing: - 11 configurable digital or 5 analog IOs (X3) Main Features: - 1 fast analog input (differential) reserved for Laser Diode Driver (LDD): sampling and measurements (X2) - 0.5 MHz modulation bandwidth - 1 fast analog output (X4) - Integrated signal generator - Custom current waveforms TEC/Peltier controller (TEC): - Synchronous sampling and measuring - Fast and high precision temperature control - Capacity for data processing, sampling, LDD and TEC integrated on one board measurement sequences and oscilloscope LDD and TEC fully digitally controlled functionality Please refer to the User Manual and the Data Sheet for details. 5240C Meerstetter Engineering GmbH 5 3 Application 3.1 Application Theory Figure 1. Scheme of a laser spectrometer and its main components. The LTC-1141 merges all components indicated by the blue boxes. The heart of a laser spectrometer consists of the optical unit: laser, gas cell and detection. The aim is to determine the gas concentration by measuring the absorption by the gas. The sensi- tivity is mainly determined by the absorption coefficient of the gas line, the optical path length through the gas and the potential optical interferences. However, the non-gas-specific perfor- mance is determined by the electronics and digital periphery. In addition to the optics (laser, gas cell and detection), a laser spectrometer consists in principle (Figure 1) of the driver for the thermoelectric cooler (TEC), the current end stage, the modulation unit for the laser current, data acquisition, signal and data processing. These components must be centrally controlled and synchronized. Usually separate bench-top devices controlled by a computer are used for laboratory set-ups of laser spectrometers. Such space-consuming setups are complex and error-prone due to the many degrees of freedom and adjustment possibilities. The LTC-1141 offers the ability to combine all of this in a compact package on a platform that can operate both stand-alone and computer-controlled. Figure 2. The LTC-1141 combines TEC controller, la- ser current driver, current modulation, data acquisition and system controller on one board. Figure 2 shows the technical specifications of the LTC-1141. Laser drivers for TEC and laser current are integrated on the board. The laser current can be modulated by a waveform gen- erator with a sawtooth signal (DAC, Analog out), so that a gas absorption line is scanned with the laser current, for example the tunable laser spectroscopy (Figure 3). If the sawtooth is repeated at 1 kHz, absorption spectra are generated at 1 kHz. In order to average a series of spectra, it is extremely important that the measurement is jitter-free and reproducible. For a reproducible gas measurement, it is very important to keep the laser temperature very stable. 5240C Meerstetter Engineering GmbH 6 The temperature is measured by a thermistor on the cold side of the TEC and kept stable at 0.005 K by a PID loop. In addition, the temperature of the heat sink can also be included in the control loop. The fact that there is a common clock for DAC, ADC and FPGA ensures optimal synchronization of the processes (jitter-free). The current driver is suitable for the use of differ- ent lasers. Laser diodes and interband cascade lasers with a compliance voltage of less than 5 V as well as QCLs up to 14 V can be operated. The intelligent protective circuits prevent damage of the laser chip in case of incorrect laser temperature or laser current values. On the detection side the detector signals are digitized by a fast 16-bit ADC. By means of a corresponding customer-specific firmware, the signal is e.g. averaged or filtered and then passed on to the CPU for an analysis algorithm. The digital interfaces enable the transfer of the measurement results to the user side. Figure 3. The typical tuneable laser spectroscopy method works with a sawtooth laser current modulation, which causes a wavelength scan of the gas spectrum. The detector signals are sampled by an ADC and averaged by the FPGA and used for calculation of the gas concentration on the CPU. A customized firmware can be imple- mented and determines the data analysis method. 5240C Meerstetter Engineering GmbH 7 3.2 Application Description For safety and maintenance, potential gas leaks of a gas pipeline need to be found and ana- lysed. An apparatus was built consisting of an emitting laser with frequency sweep. Stray light was received with a photo diode. The received intensity is aligned with the transmitted fre- quency via a trigger signal. Frequency specific absorption leads to a local decrease in received light intensity. The amount of decrease correlates with the gas concentration of the gas under investigation (Figure 4). Figure 4. The LTC-1141 is used for laser spectrometry for remote gas detection. The LTC-1141 is the central control unit for laser driving, data acquisition and data analysis. 5240C Meerstetter Engineering GmbH 8 4 Results and Benefits The LTC-1141 is the central part of a compact laser spectrometer development designed for remote gas detection. It was important that all components were integrated on a single board for operation and portability. Due to the good laser driver and synchronization, high quality gas spectra are generated. On the FPGA, the signals are averaged, resulting in a low-noise spec- trum. Absorption features smaller than 0.0001 can be resolved. The FPGA allows fast pre- processing of the data so that measured values can be calculated, e.g. at 60 Hz. The firmware for the data analysis was designed by the user. This process was quickly and skillfully sup- ported by
Recommended publications
  • Light Sources and Photodetectors for OBS® Sensors Application Note
    APPLICATION NOTE APPLICATION App. Note Code: 2Q-R Written by John Downing Light Sources and Photo- detectors for OBS® Sensors ® CAMPBELL SCIENTIFIC, INC. WHENW H E N MEASUREMENTSM E A S U R E M E N T S MMATTERA T T E R Copyright (C) April 2008 Campbell Scientifi c, Inc. Light Sources and Photodetectors for OBS® Sensors Sensors that use the OBS® method have narrow- or intermediate-band illumination systems, depending on whether a laser diode (LD) or infrared-emitting diode (IRED) is used in their construction. This application note describes infrared-emitting diodes and laser diodes, as well as photodiodes, daylight fi lters, and operating spectra. Laser Diodes Laser diodes have narrow, multimode emission spectra resembling the one shown in Figure 1. The LD bandwidth is about 2 nm at half power (FWHM). They have built-in photodiodes to monitor the light output of the laser chip so that photocur- rent can be used to control the illumination of the sample. In this way, fluctuations in light power caused by sensor temperature and laser aging are virtually elimi- nated. The drift of our OBS-4 LD-based sensor, for example, is less than 2% per year of continuous operation. The two disadvantages of lasers are that they emit coherent light, which because of interferences can fluctuate in intensity in a sample volume by as much as 50%, and they are less efficient in converting electrical current to light than IREDs. Figure 1. Graph shows the relative power, transmission and responsivity of a laser diode. Laser diodes have narrow, multimode emission spectra.
    [Show full text]
  • Semiconductor Light Sources
    Laser Systems and Applications Couse 2020-2021 Semiconductor light sources Prof. Cristina Masoller Universitat Politècnica de Catalunya [email protected] www.fisica.edu.uy/~cris SCHEDULE OF THE COURSE Small lasers, biomedical Semiconductor light sources lasers and applications . 1 (11/12/2020) Introduction. 7 (19/1/2021) Small lasers. Light-matter interactions. 8 (22/1/2021) Biomedical lasers. 2 (15/12/2020) LEDs and semiconductor optical amplifiers. Laser models . 3 (18/12/2020) Diode lasers. 9 (26/1/2021) Laser turn-on and modulation response. Laser Material Processing . 10 (29/1/2021) Optical injection, . 4 (22/12/2020) High power laser optical feedback, polarization. sources and performance improving novel trends . 11 (2/2/2021) Students’ . 5 (12/1/2021) Laser-based presentations. material macro processing. 12 (5/2/2021) Students’ . 6 (15/1/2020) Laser-based presentations. material micro processing. 9/2/2021: Exam Lecturers: C. Masoller, M. Botey 2 Learning objectives . Understand the physics of semiconductor materials and the electron-hole recombination mechanisms that lead to the emission of light. Learn about the operation principles of light emitting diodes (LEDs) and semiconductor optical amplifiers (SOAs). Become familiar with the operation principles and characteristics of laser diodes (LDs). 3 Outline: Semiconductor light sources . Introduction . Light-matter interactions in semiconductor materials . Light Emitting Diodes (LEDs) . Semiconductor optical amplifiers (SOAs) . Laser diodes (LDs) The start of the laser diode story: the invention of the transistor Nobel Prize in Physics 1956 “For their research on semiconductors and their discovery of the transistor effect”. The invention of the transistor in 1947 lead to the development of the semiconductor industry (microchips, computers and LEDs –initially only green, yellow and red).
    [Show full text]
  • Operating the Pulsed Laser Diode SPL LL90 3 Application Note
    Operating the Pulsed Laser Diode SPL LL90_3 Application Note Introduction Optical peak power The SPL LL90_3 is a hybrid laser module. As shown in figure 2 the peak current and Additional to the laser chip the module therefore optical peak power is adjusted by contains two capacitors and a MOSFET the applied charge voltage. The SPL LL90_3 which act as a driver stage. The two typically delivers 70 W at 18.5 V (30 ns, 1 capacitors are connected in parallel to sum kHz). their individual capacitance of 47 nF. The The maximum rating of peak power is 80 W. emission wavelength is 905 nm. The By increasing of pulse repetition frequency specified optical peak power is 70 W. the peak optical power will be slightly decreased (as shown in fig 2). Principal of operation The capacitors are charged using a constant DC voltage. Each time the gate of the MOSFET is triggered, the capacitors are discharged via the laser chip leading to a short and high-amp current pulse. These high-amp current pulses are required to obtain the high peak power laser emission (at charge voltage of 18.5V a current pulse of up to 30A is possible) The pin configuration of the SPL LL90_3 laser diode is as follows: Pin 1: Trigger signal for the MOSFET gate Pin 2: Charge voltage Pin 3: Ground Figure 1: Hybrid pulsed laser diode SPL Variation of optical peak power LL90_3 with integrated driver stage. Figure 2: with charge voltage (pulse width 30 ns, PRF 1 kHz and 25kHz, gate voltage 15 V) for SPL LL90_3 using the MOSFET driver 3 Elantec EL7104C.
    [Show full text]
  • VCSEL Pulse Driver Designs for Tof Applications
    Vixar Application Note VCSEL Pulse Driver Designs for ToF Applications 1 Introduction ............................................................................................................................. 2 2 Design Theory ......................................................................................................................... 2 2.1 Schematic Components .................................................................................................... 2 2.2 Design Inductance ............................................................................................................ 3 2.3 Rise and Fall Time ........................................................................................................... 5 2.4 Timing Delay.................................................................................................................... 5 3 Low Power Driver Design ...................................................................................................... 5 4 High Power Driver Design...................................................................................................... 7 4.1 GaN FETs ......................................................................................................................... 7 4.2 Gate Drivers ..................................................................................................................... 7 5 VCSEL Performance .............................................................................................................. 8 6 Conclusions
    [Show full text]
  • Speed of Light with Nanosecond Pulsed 650 Nm Diode Laser M
    Speed of Light with Nanosecond Pulsed 650 nm Diode Laser M. Gallant May 23, 2008 The speed of light has been measured many different ways using many ingenious methods. The following note describes a method which is conceptually very easy to understand and fairly easy to implement. The technique is the simple time-of-flight optical pulse delay method using a fairly short (nanosecond) optical pulse and an oscilloscope with bandwidth between 50 - 100 MHz. THE LASER Common low power laser pointers, typically emit at a wavelength of 650 nm and operate from two to four 1.5 V button cells. Many of these lasers can be easily extracted from the pointer assembly and pulse-modulated to several hundred megahertz. The laser used here was removed from a low power (< 5mW) laser pointer assembly from a popular retail outlet. GENERATION OF SHORT OPTICAL PULSES The laser is prebiased below threshold, at 5 - 10 mA current (threshold current for the laser used here is 24 mA) using an inductor as a bias insertion element. A short (< 5 ns) electrical pulse modulates the laser. Since a very low duty cycle is used for pulsing the laser, fairly high current pulses are possible without degrading the laser. The actual forward current and voltage achieved during the drive pulse are dependent on the details of the I-V characteristic of the specific laser used, but are typically in the range of 50 - 100 mA and 6 - 10 V respectively. The short electrical pulse is generated using a simple avalanche transistor circuit. Due to the high frequency content of the short pulse, the actual shape of the current pulse driving the laser will depend on the circuit components (series resistors etc.) and parasitic electrical effects (series inductance of connection wires etc.) The circuit has been described by Jim Williams in a Linear Technology Measurement and Control Circuit Collection and has many other uses.
    [Show full text]
  • PLD-92 Laser Diode Datasheet
    PLD-92 Series: 915-970 nm, 80 W Multi-mode Fiber-coupled Diode Lasers Features Amplifier Pumping Direct Diode Lasers 915, 940, 970 nm Center Wavelength Stabilization Laser Pumping Material Processing Wavelengths and Dichroic Options Graphic Arts / Printing Medical & Dental 80 W Output Power 0.15 NA into 110 μm Fiber Core Diameter Illumination Photovoltaics High Reliability Robust Compact Package IPG Photonics’ PLD-92 fiber-coupled diode lasers provide up to 80 W of output power within 0.15 NA. PLD-92 diode are provided with a 110 μm fiber core and center wavelengths at 915 nm, 940 nm or 970 nm. Wavelength stabilization and dichroic options are also available. IPG’s best-in-class diode technology offers an ideal combination of power, reliability and form factor. We manufacture to rigorous telecom-grade standards in the world’s largest high power diode fab. Each wafer is individually qualified, which sets IPG apart from alternative industrial pump products using short-lived diode bars and bar-stack technologies. PLD-92 diode lasers are preferred for fiber amplifier and laser pumping, material processing, and direct diode applications. PLD-92 Series: 915-970 nm, 80 W Multi-mode Fiber-coupled Diode Lasers Optical and Electrical Characteristics* PLD-92 Center Wavelength**, nm 971 Center Wavelength Tolerance, nm ± 5 Output Power, W 80 Spectral Width (FWHM), nm 4 Slope Efficiency, W/A 5 Minimum Efficiency, % 52 Threshold Current (ITH), A 0.8 Operating Current (IOP), A 16 Forward Voltage, V 9.3 Recommended Case Temperature, ⁰C 25 Wavelength Shift with Temperature, nm/⁰C 0.35 Wavelength Shift with Operating Current, nm/A 0.6 *Typical performance data measured at 16 A, 25⁰C.
    [Show full text]
  • Portable Alignment Laser System
    OT - 4 0 4 0 Portable Alignment Laser System. ® The OT-4040. Portable, Two Dimensional Alignment. Introducing an easy, powerful way A typical system consists of a single Anyone Can Operate It. to perform accurate alignment measure- Model OT-4040 LL Alignment Laser, Concentrate on your work, not ments on the go. OT-4040 TTS4 Transparent Target, your alignment system. The OT-4040 The OT-4040 Alignment Laser OT-4040 TS4 Reference Target, and two couldn't be easier to operate. In fact, System enables instant measurement of OT-4040 Central Processing Units (one even first-time operators can be up-and- X-Y deviation, in real-time, at any point CPU for each target). Numerous running in less than five minutes on a visible laser reference line — a line options are also available. with hardly a glance at the instruc- extending up to 300 feet long. tion manual. The system is Dynamically monitor your project 0.001-Inch that simple and intuitive. as it unfolds. Simply drop a "transpar- Resolution At ent" measurement target into any stan- 300 Feet. Industrial Strength. dard NAS tooling sphere along the refer- Optimize precision Extreme industrial ence line, and take your reading with and gain a greater environments? No prob- Silicon Position Sensing Detector. the attached central processing unit. measure of confidence. lem. The OT-4040 CPU The OT-4040 Alignment Laser The OT-4040 provides conservatively- and OT-4040 Target are built to with- System is extensively proven by aircraft specified 0.001-inch resolution at dis- stand the rigors of day-to-day, on-the- manufacturers, shipbuilders, and the tances up to 300 feet.
    [Show full text]
  • 5 an Overview of Laser Diode Characteristics
    An Overview of Laser Diode Characteristics # 5 For application assistance or additional information on our products or services you can contact us at: ILX Lightwave Corporation 31950 Frontage Road, Bozeman, MT 59715 Phone: 406-556-2481 800-459-9459 Fax: 406-586-9405 Email: [email protected] To obtain contact information for our international distributors and product repair centers or for fast access to product information, technical support, LabVIEW drivers, and our comprehensive library of technical and application information, visit our website at: www.ilxlightwave.com Copyright 2005 ILX Lightwave Corporation, All Rights Reserved Rev01.063005 Measuring Diode Laser Characteristics Diode Lasers Approach Ubiquity, But They Still Can Be Frustrating To Work With By Tyll Hertsens Diode lasers have been called “wonderful little attempt at real-time equivalent-circuit mod- devices.” They are small and effi cient. They eling, mostly during device modulation. The can be directly modulated and tuned. These last two categories of Table 1 represent devices affect us daily with better clarity in our topics of other articles, for other authors. telephone system, higher fi delity in the music we play at home, and a host of other, less Electrical Characteristics obvious ways. The L/I Curve. The most common of the diode laser characteristics is the L/I curve But diode lasers can be frustrating to work (Figure 1). It plots the drive current applied with. The same family of characteristics that to the laser against the output light intensity. permit wide areas of application also make This curve is used to determine the laser’s diode lasers diffi cult to control.
    [Show full text]
  • Photodetectors for Lidar
    Oct. 2020 Photodetectors for LiDAR Hamamatsu offers solution for LiDAR applications with various devices MPPCR APD Photosensor with PIN photodiode (multi-pixel photo counter) front-end IC Schematic of a distance measurement system What is Time of Flight (TOF)? One of the methods to measure distance is time of flight (TOF). A direct TOF system calculates the distance by measuring the time for light emitted from a light source to be reflected at the target object and received by a photosensor. The system can be configured by combining a sensor, such as a MPPC, APD, or PIN photodiode, a timer circuit, and a time measurement circuit. Used in combination with a pulse modulated light source, the direct TOF system can obtain distance information by calculating the phase information of the light emission and reception timing. Other known distance measurement methods include the proximity method and triangulation distance measurement method. These methods are used to measure relatively close distances. In comparison, the TOF method allows long distance measurement. Depending on the selected device, a wide range of distances, from short to long distances, can be measured. TOF system Optical system Light source Reference light Photosensor Object (MPPC, APD, PIN photodiode) Reflected light Timer circuit Time measurement circuit Distance measurement Photosensors for TOF Triangulation TOF Proximity Measurement accuracy Short range Long range SiSi PD APD MPPC KMPDC0473EA 2 Photodetectors for LiDAR Detector demands for LiDAR applications ● High sensitivity, Low noise ● High speed response ● Usable under strong ambient light condition ● Wide dynamic range - Especially in automotive application - From a distance black target (very weak reflected light) ● Usable under wide temperature range to nearby shiny target (too much reflected light) ● Mass productivity and low cost ● Array capability Comparison MPPC (multi-pixel photon counter) The MPPC is one of the devices called silicon photomultipliers (SiPM).
    [Show full text]
  • Design and Development of Discrete Laser Diode Driver
    International Journal of Engineering Sciences & Emerging Technologies, April 2012. ISSN: 2231 – 6604 Volume 2, Issue 1, pp: 16-23 ©IJESET DESIGN AND DEVELOPMENT OF DISCRETE LASER DIODE DRIVER Sheeja M.K. Assistant Professor, Dept. of Electronics and Communication Engineering, SCT College of Engineering, Pappanamcode, Trivandrum. [email protected] ABSTRACT Laser diode power supplies are power supplies that are required to provide a constant current output to the laser diode. Due to the dynamic LI characteristic of the laser diode, the control of current in the laser circuit is very complicated. The characteristic of laser diode defines a threshold current and a maximum current between which the current has to be fixed. The complicating aspect of this is that this range is just 10-20% of the threshold value. A power supply circuit for laser diodes, in general should account to numerous features. The features of the diode power supply can be classified on the basis of two factors, firstly its performance issues and secondly its protections issues. Performance and protection are the basic concerns for laser current sources. Performance issues include the current source’s magnitude and stability under all conditions, output- connection restrictions, voltage compliance, efficiency, programming interface, and power requirements. Protection features are necessary to prevent laser and optical component damage. The laser, which is an expensive and delicate device, must have protection under all conditions, including supply ramp-up and -down, improper control-input commands, open or intermittent load connections etc. A circuit that provides all the fundamental features is being done here. KEYWORDS: Laser diode, current driver, simulator, CAD, operating current.
    [Show full text]
  • Statement on Leds and Laser Diodes
    INTERNATIONAL COMMISSION ON NON‐IONIZING RADIATION PROTECTION ICNIRP STATEMENT ON LIGHT‐EMITTING DIODES AND LASER DIODES: IMPLICATIONS FOR HAZARD ASSESSMENT PUBLISHED IN: HEALTH PHYSICS 78(6):744‐752; 2000 ICNIRP PUBLICATION – 2000 ICNIRP Statement ICNIRP STATEMENT ON LIGHT-EMITTING DIODES (LEDS) AND LASER DIODES: IMPLICATIONS FOR HAZARD ASSESSMENT International Commission on Non-Ionizing Radiation Protection*† INTRODUCTION From a safety standpoint, LEDs have been treated both as lasers (e.g., in IEC standard 60825-1) (IEC 1998; ANSI BOTH VISIBLE and infrared laser diodes and light-emitting 1988) and as lamps (CIE 1999; ANSI/IESNA 1996a,b). diodes (LEDs, or sometimes referred to as IREDs in the Because of some confusion relating to the actual risk, infrared) are widely used in displays and in many home ICNIRP organized a panel of experts to review the entertainment systems, toys, signal lamps, optical fiber potential hazards of current DEs. communication, and optical surveillance systems. Col- Laser diodes are constructed with miniature reso- lectively these are referred to as diode emitters (DEs). nant cavities with gain, produce a very narrow spectral While the higher power laser diodes have routinely been bandwidth, can generally achieve shorter pulse durations, considered to be “eye hazards,” traditional LEDs have are not limited in radiance, and can emit much higher been regarded as safe. However, with the recent devel- radiant powers than LEDs. opment of higher power LEDs, there has been an effort to Light-emitting diodes of low to moderate brightness develop LED safety standards. There are a variety of (luminance) are used in many types of visual displays as LED types ranging from surface emitters to super- indicator lights and many related products.
    [Show full text]
  • LIGO Photodiode Characterization and Measurement of the Prestabilized Laser Intensity Noise by Peter Csatorday Submitted To
    LIGO Photodiode Characterization and Measurement of the Prestabilized Laser Intensity Noise by Peter Csatorday Submitted to the Department of Physics in partial fulfillment of the requirements for the degree of Master of Science at the MASSACHUSETTS INSTITUTE OF TECHNOLOGY September, 1999 ©Massachusetts Institute of Technology, 1999. All Rights Reserved. Author ................................ /................. Department of Physics I, August 1999 C ertified b y ......... ................................................................................. Rainer Weiss Professor of Physics Thesis Supervisor Accepted by......................... -...... ...... Thoma Greytak Professor, Associate Department Head Education Department of Physics MASSACHUSETTS INSTITUTE OF TECHNOLOGY L Afe .t 2 LIGO Photodiode Characterization and Measurement of the Prestabilized Laser Intensity Noise by Peter Csatorday Submitted to the Department of Physics September 1999 in partial fulfillment of the requirements for the degree of Master of Science Abstract The Laser Interferometer Gravitational Wave Observatory (LIGO) and other current gen- eration laser interferometer gravitational wave antennas have demonstrated the need for photodetector performance that neither existing commercial, nor laboratory prototype devices have met. We undertook the development of a new detector whose parameters were dictated by the expected conditions at the "dark", or "antisymmetric", port of the interferometer - where the actual length sensing signals that provide a measurement of the gravitational wave strain are read out. LIGO is a recycled Michelson interferometer with Fabry-Perot arm cavities. Length sens- ing and control of the arm lengths works by radio frequency optical modulation and homodyne demodulation techniques. The carrier is a beam of Nd:YAG laser light. To maximize the gravitational signal-to-noise ratio, one uses high laser power in the interfer- ometer and expects about 600mW to appear at the dark port.
    [Show full text]