An Externally Heated Copper Vapour Laser
Total Page:16
File Type:pdf, Size:1020Kb
— AECL—10757 CA9400047 AECL-10757 ATOMIC ENERGY ENERGIE ATOMIQUE OF CANADA LIMITED A> DU CANADA LIMITEE AN EXTERNALLY HEATED COPPER VAPOUR LASER UN LASER A VAPEURS DE CUIVRE CHAUFFE EXTERIEUREMENT P.A ROCHEFORT, F.C. SOPCHYSHYN, E.B. SELKIRK and L.W. GREEN Chalk River Laboratories Laboraloires de Chaik Rh/er Chalk River, Ontario KOJ 1JO August 1993 aout AECL Research AN EXTERNALLY HEATED COPPER VAPOUR LASER by P.A. Rochefort, F.C Sopchyshyn, E.B. Selkirk, and L.W. Green Physical Chemistry Branch Chalk River Laboratories Chalk River, Ontario, Canada KOJ 1J0 1993 August AECL-10757 EACL Recherche UN LASER À VAPEURS DE CUIVRE CHAUFFÉ EXTÉRIEUREMENT par P.A. Rochefort, F.C. Sopchyshyn, E.B. Selkirk et L.W. Green RÉSUMÉ On a conçu, construit et mis en service un Laser puisé à vapeurs de cuivre (LVC) (CVL) aux Laboratoires de Chalk River; sa fréquence nominale de répétition est de 5 kHz. On avait besoin de ce laser pour les essais à l'aide de la Spectroscopie de masse associée à l'ionisation résonnante (RIMS) et pour les projets associés aux études de la Séparation isotopique par laser à vapeurs atomiques (SILVA) (AVLIS). Pour que le laser fonctionne, il faut qu'on mette en place des coupons de cuivre sur la longueur d'un tube en céramique et qu'on les chauffe suffi- samment pour créer une pression de vapeurs appropriée. Le laser à vapeurs de cuivre (CVL) d'EACL comporte un élément chauffant extérieur dont la conception unique permet d'augmenter la température du tube. La forme de l'élément chauffant cylindrique en graphite permet de compenser les pertes importantes aux extrémités du tube du laser par radiation. L'utilisation d'un élément chauffant extérieur empêche l'appareil coûteux de commutation de haute tension de chauffer le tube du laser comme c'est le cas pour la plupart des lasers commerciaux. C'est une caractéristique particulièrement importante étant donné l'usage intermittent qui est typi- que de la recherche expérimentale. En outre, l'élément chauffant permet un meilleur réglage paramétrique du faisceau de sortie lors de l'étude de l'émission d'un faisceau de laser par les vapeurs de cuivre (ou autre). Dans le présent rapport, on donne un aperçu du processus d'émission du faisceau de laser par Z :s vapeurs de cuivre et on décrit en détail tous les trois sous-systèmes principaux du laser, à savoir le corps du laser, l'élé- ment chauffant du tube du laser, la décharge puisée de haute tension, et on signale les mesures paramétriques des sous-systèmes particuliers et du laser dans l'ensemble. On y signale également les techniques opératoires normales à employer pour chauffer, faire fonctionner et arrêter le laser. Service de Chimie physique Laboratoires de Chalk River Chalk River (Ontario), Canada KOJ 1J0 1993 août AECL-10757 AECL Research AN EXTERNALLY HEATED COPPER VAPOUR LASER by P.A. Rochefort, F.C. Sopchyshyn, E.B. Selkirk, and L.W. Green ABSTRACT A pulsed Copper Vapour Laser (CVL), with a nominal 6 kHz repetition rate, was designed, built, and commissioned at Chalk River Laboratories. The laser was required for Resonant Ionization Mass Spectroscopy (RIMS) experiments and for projects associated with Atomic Vapour Laser Isotope Separation (AVLIS) studies. For the laser to operate, copper coupons positioned along the length of a ceramic tube must be heated sufficiently to create an appropriate vapour pressure. The AECL CVL uses an external heater element with a unique design to raise the temperature of the tube. The cylindrical graphite heating element is shaped to compensate for the large radiation end losses of the laser tube. The use of an external heater saves the expensive high-current-voltage switching device from heating the laser tube, as in most commercial lasers. This feature is especially important given the intermittent usage typical of experimental research. As well, the heater enables better parametric control of the laser output when studying the lasing of copper (or other) vapour. This report outlines the lasing process in copper vapour, describes in detail all three major laser sub-systems: the laser body, the laser tube neater, the high voltage pulsed discharge, and reports parametric measurements of the individual sub-systems and the laser system as a whole. Also included are normal operating procedures to heat up, run and shut down the laser. Physical Chemistry Branch Chalk River Laboratories Chalk River, Ontario, Canada KOJ 1 JO 1993 August AECL-10757 TABLE OF CONTENTS Page 1. INTRODUCTION 1 2. THEORY OF COPPER VAPOUR LASERS 2 3. LASER DESIGN 6 3.1 Laser Body 6 3.2 Heater System Design 11 3.2.1 Power Supply 11 3.2.2 Heater Element Assembly Design 11 3.2.2.1 Heater Element 11 3.2.2.2 High Temperature Insulation 12 3.2.2.3 Heater Element Connectors 12 3.3 High Voltage Discharge System Design 16 3.3.1 Theory of the Resonant Charge Line-type Pulsars 16 3.3.2 High Voltage Pulser System Components , 17 4. LASER PERFORMANCE RESULTS 19 4.1 Methodology of Laser Power Measurement 19 4.1.1 Laser Tube Temperature Measurements 19 4.1.2 Current and Voltage Measurement ,... 19 4.1.3 Laser Power Measurement , 19 4.2 Heater System Performance 20 4.2.1 Temperature Profile 20 4.2.2 Plasma Tube Conditioning and Copper Loading 21 4.2.3 Overheating Effects on the Laser Tube 21 4.3 Discharge System Performance 22 4.3.1 Charging and Hold-Off Cycle 22 4.3.2 High Voltage Discharge 23 4.4 Laser Performance 26 4.4.1 Variance with Plasma Tube Temperature 26 4.4.2 Variance with Plasma Tube Pressure 30 4.5 Laser Operating Procedure 32 5. CONCLUSIONS 35 6. REFERENCES 36 APPENDKA A-l APPENDIX B B-l LIST OF FIGURES Page Figure 2.1: A conceptual model of a laser 2 F^-jre 2.2: Photon-atom interaction 3 Figure 2.3: Four level lasing cycle 4 Figure 2.4: CVL energy level transitions 5 Figure 3.1:CVL system 6 Figure 3.2: Laser body schematic 9 Figure 3.3: CVL laser body sitting on the optical table 10 Figure 3.4: Graphite connector tabs press fitted onto the end of the heater element 13 Figure 3.5: Various heater connector tab designs 15 Figure 3.6: Self-tightening bolt assembly on zirconium electrodes 16 Figure 3.7: Pulser discharge circuit 17 Figure 4.1: Temperature distribution along laser tube at various heat currents 20 Figure 4.2: Voltage trace of discharge capacitors charging cycle with 6 nF charge capacitance 22 Figure 4.3: The variation of energy per pulse with prr and temperature using a 10 kV charging voltage 24 Figure 4.4: Variation of the energy per pulse with charging voltage and prr with a laser tube temperature, of 1465°C, 6 nF charging capacitance and 3 nF peaking capacitance 24 Figure 4.5: Variation of the maximum energy per pulse with peaking capacitance 25 Figure 4.6: Trace of a current and voltage pulse with 8 kV charging voltage 26 Figure 4.7: Energy per pulse versus tube temperature at various prr with 10 kV charge voltage 27 Figure 4.8: The variation total laser energy per pulse with charging voitage and laser tube temperature at 6 kHz. 28 Figure 4.9: The ratio of the 578 to 511 nm energy per pulse versus tube temperature at 6 kHz prr and 12 kV charging voltage 28 Figure 4.10: Energy per pulse versus prr at various neon pressures with 10 kV charging voltage 29 Page Figure 4.11: Energy per pulse versus prr at various neon pressures with 12 kV charging voltage 29 Figure 4.12: Energy per pulse versus changing voltage with various neon pressures at 2 kHz prr 30 Figure 4.13: Energy per pulse versus charging voltage with various neon pressures at 6 kHz prr 31 Figure 4.14: Energy per puise versus charging voltage with various neon pressures at 8 kHz prr 31 Figure 4.16: Typical intensity trace of 511 nm line at 6 kHz prr 33 Figure 4.17: Typical intensity trace of 578 nm line at 6 kHz prr 33 Figure 4.18: Typical intensity trace of the combined 511 and 578 nm lines at 6 kHz prr 34 1. INTRODUCTION An in-house design for a Copper Vapour Laser (CVL) was constructed in support of the Atomic Vapour Laser Isotope Separation (AVLIS) and Resonance Ionization Mass Spectroscopy (RIMS) research projects. CVLs are high efficiency (-1%), high repetition rate (1 to 10 kHz) pulsed lasers. CVLs lase at two visible wavelengths: the green 510.6 (511) nm line and the yellow 578.2 (578) run line; the light output pulses are about 50 ns long. The lasing medium is vapourized copper, typically contained in a ceramic tube heated to about 1450°C, and excited by a high voltage pulsed electrical discharge. Because the iasing media is gaseous, the laser can be relatively easily scaled up for high power. CVLs are used in a number of applications [1,2,3,4] that take advantage of the unique properties of the lasers, such as high speed photography[5] and large scale visual displays. Most importantly, CVLs are used for the optical pumping of tunable liquid dye lasers in Atomic Vapour Laser Isotope Separation (AVLIS) [6,7,8,9], Resonant Ionization Mass Spectroscopy (RIMS) and general scientific work [10]. Tunable liquid organic dye lasers are narrow band tunable visible lasers that can operate,with the large number of available dyes, from the ultra-violet to the near-infrared in ranges of 20 to 50 nm per dye.