Transmission of Periodontal Bacteria and Models of Infection

Total Page:16

File Type:pdf, Size:1020Kb

Transmission of Periodontal Bacteria and Models of Infection J Clin Periodontol 2005; 32 (Suppl. 6): 16–27 Copyright r Blackwell Munksgaard 2005 A. J. Van Winkelhoff and K. Boutaga Transmission of periodontal Academic Centre for Dentistry Amsterdam, Department of Oral Microbiology, bacteria and models of infection Amsterdam, The Netherlands Van Winkelhoff AJ, Boutaga K. Transmission of periodontal bacteria and models of infection. J Clin Periodontol 2005; 32 (Suppl. 6): 16–27. r Blackwell Munksgaard, 2005. Abstract Background: Bacteria play an essential role in the aetiology of periodontitis. Most bacterial species isolated from subgingival plaque are indigenous to the oral cavity. Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis are detected infrequently in periodontal health, which makes these species prime candidates to study person-to-person transmission. The aim of the present study was to review the literature on transmission of these periodontal bacterial species. Method: We review the literature on bacterial typing techniques and summarize the information on clonal distribution of A. actinomycetemcomitans and P. gingivalis in family units based on different typing techniques in order to establish the likelihood for person-to-person transmission of these periodontal pathogens. Results: Vertical transmission of A. actinomycetemcomitans is estimated to be between 30% and 60%, whereas vertical transmission of P. gingivalis has rarely been observed. Horizontal transmission between spouses ranges between 14% and 60% for A. actinomycetemcomitans and between 30% and 75% for P. gingivalis. There is some evidence to show that cohabitation with a periodontitis patient influences the periodontal status of the spouse; however, substantially more information is needed to prove this hypothesis. Conclusions: Transmission of putative periodontal pathogens between family members has been shown. The clinical consequences of these events have been poorly documented. Based on the current knowledge, screening for and prevention of transmission of specific virulent clones of A. actinomycetemcomitans may be feasible and effective in preventing some forms of periodontal disease. P. gingivalis is usually recovered from diseased adult subjects, and transmission of this pathogens seems largely restricted to adult individuals. Horizontal transmission of P. gingivalis may Key words: bacteria; transmission; therefore be controlled by periodontal treatment involving elimination or significant periodontitis; infection; bacterial typing suppression of the pathogen in diseased individuals and by a high standard of oral hygiene. Accepted for publication 1 April 2005 Epidemiology is the study of the factors lococcus aureus can cause hard- and cause opportunistic infections. When the that affect the distribution of diseases in soft-tissue infections when penetrating composition of the normal microflora is populations, including infectious dis- the natural barriers of the skin or the disturbed, after or during antimicrobial eases that are spread by pathogenic mucosa. Oral streptococci may cause therapy for instance, resistant microor- organisms. transient bacteraemia following dental ganisms can emerge and cause infection Microorganisms that are indigenous extraction or tonsillectomy and may (Helovuo & Paunio 1989, Helovuo et al. to the host and are referred to as com- cause subacute bacterial endocarditis in 1993). Infections caused by commensal mensal, or resident organisms, can cause susceptible individuals. These microor- microorganisms are called endogenous infections. They can initiate disease ganisms can survive in the new environ- infections for which transmission of when they disseminate from their nor- ment if they are able to attach to the microorganisms from host to host is not mal ecological niche to sterile body sites surface of the host and are able to resist needed. In the oral cavity an increase as, for instance, is the case in urinary the local host immune responses. Often, of the bacterial load and a concomitant tract infection caused by Escherichia a change of the innate immunity is shift in the microbial composition of coli from the colon. Indigenous Staphy- necessary for commensal pathogens to the dental plaque can cause gingivitis. 16 Periodontal bacteria 17 Unlike exogenous bacterial disease, with a complex microflora such as infec- 20,000 contaminated droplets. Talking endogenous infections (1) have no defin- tious bowel diseases (Crohn and ulcera- is also a source of airborne particles, able incubation period, (2) are not com- tive colitis), vaginitis and periodontal although the number of organisms that municable in the usual sense, (3) do not disease, the matter of transmission is is shed is significantly less. Whether result in clinically recognizable immu- more complex. periodontal bacteria can be transmitted nity, and (4) involve bacterial agents First, some general principles of bac- via aerosols is currently not known. found in the normal microflora. These terial transmission are discussed. Then, Staphylococci are often transferred by agents are often characterized by a low the rationale for studying the transmis- dust from contaminated clothing, beds intrinsic pathogenicity and cause disease sion of two periodontal pathogens, Acti- and contaminated objects. when they appear either in unusual body nobacillus actinomycetemcomitans and Some systemic infections are caused sites or in greatly increased concentra- Porphyromonas gingivalis, is provided. by transmission of pathogens from tion in or near their usual habitats. Subsequently, studies on the distribution animals (zoonoses), which serve as a Microorganisms that do not normally of these periodontal species in popula- reservoir. Humans can be infected via occur in a healthy host and can cause tions and in families are summarized. milk (brucellosis, tuberculosis), car- disease upon infection in a significant Different typing methods are briefly casses (anthrax, tularaemia), contami- proportion of the recipients are called described, and data on distribution of nated swimming water (leptospirosis) exogenous pathogens (Salyers & Whitt genotypes among families are pre- or wounds. 1994). Most human pathogens not only sented. Finally, routes of transmission Biting/sticking arthropods can serve occur in diseased subjects, but also in of both pathogens and the possible clin- as vectors and may transfer bacteria, healthy carriers, who provide a reservoir ical consequences of transmission are rickettsiae and viruses from an animal and serve as a focus. It is suspected that discussed. reservoir by a cycle of infection (in lice, epidemics can be initiated by recombi- fleas or ticks). Often, these latter infec- nation between strains from different tions are not readily transmitted from carriers. Exogenous pathogens need to Transmission person to person. overcome the conditions of the environ- ment such as ultraviolet light, drying The behaviour of a pathogenic micro- and temperature. To survive these con- organism depends upon the interaction Vertical and horizontal transmission ditions, they have developed different between the host, the pathogen and the When transmission is directly from par- strategies such as spore formation (Clos- environment. Changes in any of these ents to offspring (via ovum, placenta, tridium, Bacillus), encapsulation (Myco- factors will affect the likelihood of milk, blood, saliva) it is referred to as bacterium) and survival in intermediate transmission. Host factors affect the vertical. Transmission is called horizon- hosts such as the rabies virus in animals chance of exposure to a microorganism, tal when an individual infects unrelated or Legionella pneumophila in amoebae. the possibility for colonization and the individuals by contact, respiratory or Organisms with moderate survival response to colonization, i.e. develop- faecal–oral spread. Examples of diseases potential can be transmitted by spread- ment of infection. Host factors include, that may spread by vertical transmission ing in air on droplet nuclei (viruses). among others, sexual behaviour, hygiene, are rubella, cytomegalovirus, syphilis, Some bacterial pathogens are extremely occupation, nutrition, immunity and gen- toxoplasma (pre-natal), gonococcal/chla- delicate and cannot survive outside the eral health. Microbial factors include mydial conjunctivitis (perinatal) and host, e.g. Neisseria gonorrhoea. Trans- infectiousness, pathogenicity, virulence hepatitis B (post-natal). Polio, influenza, mission of this type of pathogen is and survival in human and animal hosts, tuberculosis and typhoid are examples of achieved by direct mucosal contact including resistance towards immune diseases that are horizontally transmitted. between individuals. responses and drugs. Communicable diseases are infections Environmental factors such as tem- that are capable of spreading from person perature, humidity and oxygen tension Essential factors for transmission are determinants of the survival of to person. This is not the case with all The source infections. A subject with infective endo- microbes outside the host. carditis caused by Streptococcus sanguis When the source of the infection is may suffer from an infection that is not restricted to actively diseased indivi- Mechanisms of transmission able to spread from a patient to another duals, isolation measures are effective person. Communicable microorganisms Many bacteria are transmitted from per- in eradication of the infectious agents. are not always pathogenic and not all son to person primarily
Recommended publications
  • Appendix III: OTU's Found to Be Differentially Abundant Between CD and Control Patients Via Metagenomeseq Analysis
    Appendix III: OTU's found to be differentially abundant between CD and control patients via metagenomeSeq analysis OTU Log2 (FC CD / FDR Adjusted Phylum Class Order Family Genus Species Number Control) p value 518372 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium prausnitzii 2.16 5.69E-08 194497 Firmicutes Clostridia Clostridiales Ruminococcaceae NA NA 2.15 8.93E-06 175761 Firmicutes Clostridia Clostridiales Ruminococcaceae NA NA 5.74 1.99E-05 193709 Firmicutes Clostridia Clostridiales Ruminococcaceae NA NA 2.40 2.14E-05 4464079 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides NA 7.79 0.000123188 20421 Firmicutes Clostridia Clostridiales Lachnospiraceae Coprococcus NA 1.19 0.00013719 3044876 Firmicutes Clostridia Clostridiales Lachnospiraceae [Ruminococcus] gnavus -4.32 0.000194983 184000 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium prausnitzii 2.81 0.000306032 4392484 Bacteroidetes Bacteroidia Bacteroidales Bacteroidaceae Bacteroides NA 5.53 0.000339948 528715 Firmicutes Clostridia Clostridiales Ruminococcaceae Faecalibacterium prausnitzii 2.17 0.000722263 186707 Firmicutes Clostridia Clostridiales NA NA NA 2.28 0.001028539 193101 Firmicutes Clostridia Clostridiales Ruminococcaceae NA NA 1.90 0.001230738 339685 Firmicutes Clostridia Clostridiales Peptococcaceae Peptococcus NA 3.52 0.001382447 101237 Firmicutes Clostridia Clostridiales NA NA NA 2.64 0.001415109 347690 Firmicutes Clostridia Clostridiales Ruminococcaceae Oscillospira NA 3.18 0.00152075 2110315 Firmicutes Clostridia
    [Show full text]
  • Clostridioides Difficileinfections
    bioMérieux In vitro diagnostics serving CLOSTRIDIOIDES public health DIFFICILE INFECTIONS A major player in in vitro diagnostics for more than 50 years, From Diagnosis to bioMérieux has always been driven by a pioneering spirit and unrelenting commitment to improve public health worldwide. Outbreak Management Our diagnostic solutions bring high medical value to healthcare professionals, providing them with the most relevant and reliable information, as quickly as possible, to support treatment decisions and better patient care. bioMérieux’s mission entails a commitment to support medical education, by promoting access to diagnostic knowledge for as many people as possible. Focusing on the medical value of diagnostics, our collection of educational booklets aims to raise awareness of the essential role that diagnostic test results play in healthcare decisions. Other educational booklets are available. Consult your local bioMérieux representative. The information in this booklet is for educational purposes only and is not intended to be exhaustive. It is not intended to be a substitute for professional medical advice. Always consult a medical director, physician, or other qualified health provider regarding processes and/or protocols for diagnosis and treatment of a medical condition. bioMérieux assumes no responsibility or liability for any diagnosis established or treatment prescribed by the physician. bioMérieux, Inc. • 100 Rodolphe Street • Durham, NC 27712 • USA • Tel: (800) 682 2666 • Fax: (800) 968 9494 © 2019 bioMérieux, Inc. • BIOMERIEUX and the BIOMERIEUX logo, are used pending and/or registered trademarks belonging to bioMérieux, or one of its subsidiaries, or one of its companies. companies. its or one of subsidiaries, its or one of bioMérieux, belonging to trademarks registered pending and/or used are logo, and the BIOMERIEUX • BIOMERIEUX Inc.
    [Show full text]
  • Staphylococcus Aureus Kentaro Iwata1*, Asako Doi2, Takahiko Fukuchi1, Goh Ohji1, Yuko Shirota3, Tetsuya Sakai4 and Hiroki Kagawa5
    Iwata et al. BMC Infectious Diseases 2014, 14:247 http://www.biomedcentral.com/1471-2334/14/247 RESEARCH ARTICLE Open Access A systematic review for pursuing the presence of antibiotic associated enterocolitis caused by methicillin resistant Staphylococcus aureus Kentaro Iwata1*, Asako Doi2, Takahiko Fukuchi1, Goh Ohji1, Yuko Shirota3, Tetsuya Sakai4 and Hiroki Kagawa5 Abstract Background: Although it has received a degree of notoriety as a cause for antibiotic-associated enterocolitis (AAE), the role of methicillin resistant Staphylococcus aureus (MRSA) in the pathogenesis of this disease remains enigmatic despite a multitude of efforts, and previous studies have failed to conclude whether MRSA can cause AAE. Numerous cases of AAE caused by MRSA have been reported from Japan; however, due to the fact that these reports were written in the Japanese language and a good portion lacked scientific rigor, many of these reports went unnoticed. Methods: We conducted a systematic review of pertinent literatures to verify the existence of AAE caused by MRSA. We modified and applied methods in common use today and used a total of 9 criteria to prove the existence of AAE caused by Klebsiella oxytoca. MEDLINE/Pubmed, Excerpta Medica Database (EMBASE), the Cochrane Database of Systematic Reviews, and the Japan Medical Abstract Society database were searched for studies published prior to March 2013. Results: A total of 1,999 articles were retrieved for evaluation. Forty-five case reports/series and 9 basic studies were reviewed in detail. We successfully identified articles reporting AAE with pathological and microscopic findings supporting MRSA as the etiological agent. We also found comparative studies involving the use of healthy subjects, and studies detecting probable toxins.
    [Show full text]
  • Identification and Antimicrobial Susceptibility Testing of Anaerobic
    antibiotics Review Identification and Antimicrobial Susceptibility Testing of Anaerobic Bacteria: Rubik’s Cube of Clinical Microbiology? Márió Gajdács 1,*, Gabriella Spengler 1 and Edit Urbán 2 1 Department of Medical Microbiology and Immunobiology, Faculty of Medicine, University of Szeged, 6720 Szeged, Hungary; [email protected] 2 Institute of Clinical Microbiology, Faculty of Medicine, University of Szeged, 6725 Szeged, Hungary; [email protected] * Correspondence: [email protected]; Tel.: +36-62-342-843 Academic Editor: Leonard Amaral Received: 28 September 2017; Accepted: 3 November 2017; Published: 7 November 2017 Abstract: Anaerobic bacteria have pivotal roles in the microbiota of humans and they are significant infectious agents involved in many pathological processes, both in immunocompetent and immunocompromised individuals. Their isolation, cultivation and correct identification differs significantly from the workup of aerobic species, although the use of new technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight mass spectrometry, whole genome sequencing) changed anaerobic diagnostics dramatically. In the past, antimicrobial susceptibility of these microorganisms showed predictable patterns and empirical therapy could be safely administered but recently a steady and clear increase in the resistance for several important drugs (β-lactams, clindamycin) has been observed worldwide. For this reason, antimicrobial susceptibility testing of anaerobic isolates for surveillance
    [Show full text]
  • Characterization of an Endolysin Targeting Clostridioides Difficile
    International Journal of Molecular Sciences Article Characterization of an Endolysin Targeting Clostridioides difficile That Affects Spore Outgrowth Shakhinur Islam Mondal 1,2 , Arzuba Akter 3, Lorraine A. Draper 1,4 , R. Paul Ross 1 and Colin Hill 1,4,* 1 APC Microbiome Ireland, University College Cork, T12 YT20 Cork, Ireland; [email protected] (S.I.M.); [email protected] (L.A.D.); [email protected] (R.P.R.) 2 Genetic Engineering and Biotechnology Department, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh 3 Biochemistry and Molecular Biology Department, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh; [email protected] 4 School of Microbiology, University College Cork, T12 K8AF Cork, Ireland * Correspondence: [email protected] Abstract: Clostridioides difficile is a spore-forming enteric pathogen causing life-threatening diarrhoea and colitis. Microbial disruption caused by antibiotics has been linked with susceptibility to, and transmission and relapse of, C. difficile infection. Therefore, there is an urgent need for novel therapeutics that are effective in preventing C. difficile growth, spore germination, and outgrowth. In recent years bacteriophage-derived endolysins and their derivatives show promise as a novel class of antibacterial agents. In this study, we recombinantly expressed and characterized a cell wall hydrolase (CWH) lysin from C. difficile phage, phiMMP01. The full-length CWH displayed lytic activity against selected C. difficile strains. However, removing the N-terminal cell wall binding domain, creating CWH351—656, resulted in increased and/or an expanded lytic spectrum of activity. C. difficile specificity was retained versus commensal clostridia and other bacterial species.
    [Show full text]
  • Synergistic Haemolysis Test for Presumptive Identification and Differentiation of Clostridium Perfringens, C
    J Clin Pathol: first published as 10.1136/jcp.33.4.395 on 1 April 1980. Downloaded from J Clin Pathol 1980; 33: 395-399 Synergistic haemolysis test for presumptive identification and differentiation of Clostridium perfringens, C. bifermentans, C. sordeilhi, and C. paraperfringens STEVAN M GUBASH From the Department ofPathology, Division of Medical Microbiology, Kingston General Hospital, Kingston, Ontario, Canada K7L 2 V7, and the Department of Microbiology and Immunology, Queen's University, Kingston, Ontario, Canada K7L 3N6 SUMMARY A new test for the presumptive identification of Clostridium perfringens, C. bifermentans, C. sordellii, and C. paraperfringens is described. The test is based on the synergistic haemolysis shown by the clostridia and group B streptococci on sheep and human and CaCl2-supplemented human blood agar. C. perfringens gave crescent-shaped synergistic lytic zones (7 to over 10 mm in length), and C. paraperfringens usually small-sized (3 mm), bullet-shaped reactions on all three types of media. C. bifermentans showed a horseshoe-shaped synergistic reaction only on human blood containing media, and C. sordellii only on CaCl2-supplemented human blood agar. C. perfringens type A antiserum inhibited synergistic lytic activities of the four species. The test provided a reliable method for presumptive identification and differentiation of the four clostridial species and may obviate the need for the Nagler test. http://jcp.bmj.com/ Most clinical microbiology laboratories use the genically related phospholipase C. The test is based Nagler test 2 3 for presumptive identification of on the synergistic haemolysis due to the interaction Clostridium perfringens and other phospholipase C of the CAMP-factor of group B streptococci and (lecithinase C) producing clostridia.
    [Show full text]
  • Clostridial Diseases of Cattle
    Clostridial Diseases of Cattle Item Type text; Book Authors Wright, Ashley D. Publisher College of Agriculture, University of Arizona (Tucson, AZ) Download date 01/10/2021 18:20:24 Item License http://creativecommons.org/licenses/by-nc-sa/4.0/ Link to Item http://hdl.handle.net/10150/625416 AZ1712 September 2016 Clostridial Diseases of Cattle Ashley Wright Vaccinating for clostridial diseases is an important part of a ranch health program. These infections can have significant Sporulating bacteria, such as Clostridia and Bacillus, economic impacts on the ranch due to animal losses. There form endospores that protect bacterial DNA from extreme are several diseases caused by different organisms from the conditions such as heat, cold, dry, UV radiation, and some genus Clostridia, and most of these are preventable with a disinfectants. Unlike fungal spores, these spores cannot sound vaccination program. Many of these infections can proliferate; they are dormant forms of the bacteria that allow progress very rapidly; animals that were healthy yesterday survival until environmental conditions are ideal for growth. are simply found dead with no observed signs of sickness. In most cases treatment is difficult or impossible, therefore we absence of oxygen to survive. Clostridia are one genus of rely on vaccination to prevent infection. The most common bacteria that have the unique ability to sporulate, forming organisms included in a 7-way or 8-way clostridial vaccine microscopic endospores when conditions for growth and are discussed below. By understanding how these diseases survival are less than ideal. Once clostridial spores reach a occur, how quickly they can progress, and which animals are suitable, oxygen free, environment for growth they activate at risk you will have a chance to improve your herd health and return to their bacterial (vegetative) state.
    [Show full text]
  • Clostridioides Difficile Infection in Adults and Children
    Guidelines for Clinical Care Quality Department Clostridioides difficile Infection Guideline Team Clostridioides difficile Infection Team Leads in Adults and Children Tejal N Gandhi MD Infectious Diseases Patient population: Adults and children with a primary or recurrent episode of Clostridioides Krishna Rao, MD difficile infection (CDI). Infectious Diseases Team Members Objectives: Gregory Eschenauer, PharmD 1. Provide a brief overview of the epidemiology of, and risk factors for development Pharmacy of CDI. John Y Kao, MD 2. Provide guidance regarding which patients should be tested for CDI, summarize merits and Gastroenterology limitations of available diagnostic tests, and describe the optimal approach to laboratory diagnosis. Lena M Napolitano, MD 3. Review the most effective treatment strategies for patients with CDI including patients with Surgery recurrences or complications. F Jacob Seagull, PhD Leaning Heath Sciences Key Points for Adult Patients: David M Somand, MD Emergency Medicine Diagnosis Alison C Tribble, MD Definitive diagnosis of CDI requires either the presence of toxigenic C. difficile in stool with Pediatric Infectious Diseases compatible symptoms, or clinical evidence of pseudomembranous colitis (Table 2, Figure 4). Amanda M Valyko, MPH, CIC Once identified, CDI should be classified according to severity (Table 3). Infection Control Although risk factors for CDI (Table 1) should guide suspicion for CDI, testing should be ordered Michael E Watson Jr, MD, only when indicated (Figure 1). Use judgment and consider not testing in patients that have PhD recently started tube feeds, are taking a laxative medication, or have recently received oral Pediatric Infectious Diseases radiologic contrast material. [IC] Consultants: Choice of test should be guided by a multi-step algorithm for the rapid diagnosis of CDI (Figure 2).
    [Show full text]
  • Porphyromonas Gingivalis and Treponema Denticola Exhibit Metabolic Symbioses
    Porphyromonas gingivalis and Treponema denticola Exhibit Metabolic Symbioses Kheng H. Tan1., Christine A. Seers1., Stuart G. Dashper1., Helen L. Mitchell1, James S. Pyke1, Vincent Meuric1, Nada Slakeski1, Steven M. Cleal1, Jenny L. Chambers2, Malcolm J. McConville2, Eric C. Reynolds1* 1 Oral Health CRC, Melbourne Dental School, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia, 2 Department of Biochemistry and Molecular Biology, Bio21 Institute, The University of Melbourne, Parkville, Victoria, Australia Abstract Porphyromonas gingivalis and Treponema denticola are strongly associated with chronic periodontitis. These bacteria have been co-localized in subgingival plaque and demonstrated to exhibit symbiosis in growth in vitro and synergistic virulence upon co-infection in animal models of disease. Here we show that during continuous co-culture a P. gingivalis:T. denticola cell ratio of 6:1 was maintained with a respective increase of 54% and 30% in cell numbers when compared with mono- culture. Co-culture caused significant changes in global gene expression in both species with altered expression of 184 T. denticola and 134 P. gingivalis genes. P. gingivalis genes encoding a predicted thiamine biosynthesis pathway were up- regulated whilst genes involved in fatty acid biosynthesis were down-regulated. T. denticola genes encoding virulence factors including dentilisin and glycine catabolic pathways were significantly up-regulated during co-culture. Metabolic labeling using 13C-glycine showed that T. denticola rapidly metabolized this amino acid resulting in the production of acetate and lactate. P. gingivalis may be an important source of free glycine for T. denticola as mono-cultures of P. gingivalis and T. denticola were found to produce and consume free glycine, respectively; free glycine production by P.
    [Show full text]
  • Type of the Paper (Article
    Supplementary Materials S1 Clinical details recorded, Sampling, DNA Extraction of Microbial DNA, 16S rRNA gene sequencing, Bioinformatic pipeline, Quantitative Polymerase Chain Reaction Clinical details recorded In addition to the microbial specimen, the following clinical features were also recorded for each patient: age, gender, infection type (primary or secondary, meaning initial or revision treatment), pain, tenderness to percussion, sinus tract and size of the periapical radiolucency, to determine the correlation between these features and microbial findings (Table 1). Prevalence of all clinical signs and symptoms (except periapical lesion size) were recorded on a binary scale [0 = absent, 1 = present], while the size of the radiolucency was measured in millimetres by two endodontic specialists on two- dimensional periapical radiographs (Planmeca Romexis, Coventry, UK). Sampling After anaesthesia, the tooth to be treated was isolated with a rubber dam (UnoDent, Essex, UK), and field decontamination was carried out before and after access opening, according to an established protocol, and shown to eliminate contaminating DNA (Data not shown). An access cavity was cut with a sterile bur under sterile saline irrigation (0.9% NaCl, Mölnlycke Health Care, Göteborg, Sweden), with contamination control samples taken. Root canal patency was assessed with a sterile K-file (Dentsply-Sirona, Ballaigues, Switzerland). For non-culture-based analysis, clinical samples were collected by inserting two paper points size 15 (Dentsply Sirona, USA) into the root canal. Each paper point was retained in the canal for 1 min with careful agitation, then was transferred to −80ºC storage immediately before further analysis. Cases of secondary endodontic treatment were sampled using the same protocol, with the exception that specimens were collected after removal of the coronal gutta-percha with Gates Glidden drills (Dentsply-Sirona, Switzerland).
    [Show full text]
  • The American Society of Colon and Rectal Surgeons Clinical Practice
    CLINICAL PRACTICE GUIDELINES 05/18/2021 on m7j+Lz0A3Xux7u8LH54Mj5YEKJ1nYV8VK4orUjhbpk89GhwzOnar+8anRBK3LfF1V2zEXE1u0nGxPGdFl1M3hEeUEtFEphcxy9cz7yeir/pEV8b5POc6vbIuuK2BN7bKd/4WfXOBO9Zdt9xCqbLQaKAuqUBNPYvKIxVC/YioDhw= by http://journals.lww.com/dcrjournal from Downloaded The American Society of Colon and Rectal Surgeons Downloaded Clinical Practice Guidelines for the Management of from http://journals.lww.com/dcrjournal Clostridioides difficile Infection Vitaliy Poylin, M.D.1 • Alexander T. Hawkins, M.D., M.P.H.2 • Anuradha R. Bhama, M.D.3 Marylise Boutros, M.D.4 • Amy L. Lightner, M.D.5 • Sahil Khanna, M.B.B.S., M.S.6 Ian M. Paquette, M.D.7 • Daniel L. Feingold, M.D.8 by m7j+Lz0A3Xux7u8LH54Mj5YEKJ1nYV8VK4orUjhbpk89GhwzOnar+8anRBK3LfF1V2zEXE1u0nGxPGdFl1M3hEeUEtFEphcxy9cz7yeir/pEV8b5POc6vbIuuK2BN7bKd/4WfXOBO9Zdt9xCqbLQaKAuqUBNPYvKIxVC/YioDhw= Prepared by the Clinical Practice Guidelines Committee of The American Society of Colon and Rectal Surgeons 1 Division of Gastrointestinal Surgery, Northwestern Medicine, Chicago, Illinois 2 Department of Surgery, Section of Colon & Rectal Surgery, Vanderbilt University Medical Center, Nashville, Tennessee 3 Department of Surgery, Division of Colon & Rectal Surgery, Rush University Medical Center, Chicago, Illinois 4 Jewish General Hospital, McGill University, Montreal, Quebec, Canada 5 Department of Colorectal Surgery, Digestive Disease Surgery Institute, Cleveland Clinic, Cleveland, Ohio 6 Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota 7 Department of Surgery, University of Cincinnati,
    [Show full text]
  • Method Comparison for the Direct Enumeration of Bacterial Species Using a Chemostat Model of the Human Colon Ines B
    Moura et al. BMC Microbiology (2020) 20:2 https://doi.org/10.1186/s12866-019-1669-2 METHODOLOGY ARTICLE Open Access Method comparison for the direct enumeration of bacterial species using a chemostat model of the human colon Ines B. Moura1* , Charmaine Normington1, Duncan Ewin1, Emma Clark1, Mark H. Wilcox1,2, Anthony M. Buckley1† and Caroline H. Chilton1† Abstract Background: Clostridioides difficile infection (CDI) has a high recurrent infection rate. Faecal microbiota transplantation (FMT) has been used successfully to treat recurrent CDI, but much remains unknown about the human gut microbiota response to replacement therapies. In this study, antibiotic-mediated dysbiosis of gut microbiota and bacterial growth dynamics were investigated by two quantitative methods: real-time quantitative PCR (qPCR) and direct culture enumeration, in triple-stage chemostat models of the human colon. Three in vitro models were exposed to clindamycin to induce simulated CDI. All models were treated with vancomycin, and two received an FMT. Populations of total bacteria, Bacteroides spp., Lactobacillus spp., Enterococcus spp., Bifidobacterium spp., C. difficile, and Enterobacteriaceae were monitored using both methods. Total clostridia were monitored by selective culture. Using qPCR analysis, we additionally monitored populations of Prevotella spp., Clostridium coccoides group, and Clostridium leptum group. Results: Both methods showed an exacerbation of disruption of the colonic microbiota following vancomycin (and earlier clindamycin) exposure, and a quicker recovery (within 4 days) of the bacterial populations in the models that received the FMT. C. difficile proliferation, consistent with CDI, was also observed by both qPCR and culture. Pearson correlation coefficient showed an association between results varying from 98% for Bacteroides spp., to 62% for Enterobacteriaceae.
    [Show full text]