Binasal Hemianopia

Total Page:16

File Type:pdf, Size:1020Kb

Binasal Hemianopia J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.36.5.697 on 1 October 1973. Downloaded from Journal ofNeurology, Neurosurgery, and Psychiatry, 1973, 36, 697-709 Binasal hemianopia J. E. A. O'CONNELL AND E. P. G. H. DU BOULAY From St. Bartholomew's Hospital, London SUMMARY Three patients with nasal visual field defects are described. In each case it is believed that compression of the lateral fibres of the optic nerve by the anterior cerebral or internal carotid artery was the cause. Binasal hemianopia can thus be produced by a single lesion and is as much a true hemianopia as the common bitemporal one. The value of careful neuroradiological investiga- tion to display the relationships of a tumour to the chiasma, optic nerves, and related vessels and thus explain the field defects is demonstrated. Isolated loss of the nasal fields of vision is un- nized during the middle of the last century, the common. In Traquair's Clinical Perimetry (Scott, passage of time and increasing experience were 1957) it is stated that the term hemianopia is necessary before these methods of clinical Protected by copyright. best reserved for bilateral field defects produced investigation could be fully utilized. During the by a single lesion-chiasmal or suprachiasmal. same period the pathology of compression of the This author considered that binasal hemianopia optic nerves and chiasma attracted considerable was not a true hemianopia, since its occurrence attention and a number of descriptions of in- indicated bilateral involvement of the uncrossed volvement of these structures by the Willisian fibres at the chiasma, the crossed fibres remaining vessels, observed at postmortem examination, intact. This could be due to displacement of the appeared. In 1852 Turck described the necropsy terminal parts of both optic nerves against the findings in a patient with a pituitary tumour who internal carotid arteries in internal hydroceph- had total blindness in the left eye with some alus: atherosclerosis or aneurysms of both residual vision in the right one. Both optic internal carotid vessels could lead to compression nerves were deeply grooved by the anterior of the nerves in the same area: symmetrical cerebral arteries and on the left the optic tract gummata or other lesions could produce a simi- was also grooved; at the site of compression the lar result. Duke-Elder (1971) also takes the view left optic nerve was reduced to an empty sheath- that bilateral symmetrical lesions at the chiasma there being preservation of the medial one-third are necessary for the development of binasal of the right one. Knapp (1873) had stated that http://jnnp.bmj.com/ hemianopia, though he suggests that bilateral sclerosis of the intracranial internal carotid occipital lesions might produce such a defect. arteries could cause blindness. Smith (1905) From a list of possible causes those due to pres- reported his postmortem finding of atrophy of sure which are mentioned are atherosclerosis or both optic nerves secondary to atherosclerosis of aneurysms of the internal carotid arteries com- the supraclinoid portion of the internal carotid pressing the terminations of both optic nerves, arteries. He had seen altogether six such cases in or displacement of the nerves against blood ves- dissecting and postmortem rooms in Cairo. He on October 1, 2021 by guest. sels by a local tumour, or a distended third refers to the second edition of Fuchs's Textbook ventricle in internal hydrocephalus. It is hoped of Ophthalmology published in the United States to show in this paper that binasal hemianopia in 1903 as also describing such cases. In 1905 can result from a single intracranial lesion and Sachs, cited by Fay and Grant (]928), described that, though rare, it is therefore as much a true the necropsy findings in 48 cases of pituitary hemianopia as is the common bitemporal one. tumour and noted that in two the optic nerves Although the importance of ophthalmoscopy were grooved by the anterior cerebral arteries. and visual field examination began to be recog- Bartels (1906) cited Erdheims's account of seven 697 J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.36.5.697 on 1 October 1973. Downloaded from 698 J. E. A. O'Connell and E. P. G. H. du Boulay necropsy specimens in which the optic nerves tumours; excellent photographs demonstrate the and chiasma were grooved by the anterior grooving of the nervous structures by the vascu- cerebral or anterior communicating arteries, or lar ones in these postoperative cases. The the optic tract by the internal carotid artery. relationship of the findings to the field changes is Bartels also described a case of his own in which by no means clear and it would seem that post- the tracts were grooved by the anterior cerebral operative swelling of residual tumour tissue arteries. Uhthoff (1911) described another such accounted in some measure for the postmortem case where the anterior cerebral arteries con- findings. stricted the optic nerves. It will be seen that all these studies have been Sixty years ago, in a number of papers, based on the examination of postmortem Cushing and Walker reported their careful material. With the development of neurological studies of the visual fields in patients with intra- surgery, and resulting accurate diagnosis and cranial tumours; among these was one on binasal successful surgical treatment of tumours in the hemianopia which appeared in 1912. These sellar region, the opportunities for such post- authors had noted in patients with optic atrophy mortem examinations dwindled. At the same secondary to high intracranial pressure that, time the surgeon's goal would be to excise the where some vision had been retained, this was lesion with minimal trauma and the wide expo- usually in the temporal fields. They suggested sure possible at postmortem examination would that the uncrossed fibres at the chiasma were not be obtained. Perhaps for this reason, rela- damaged not only at the nerve head by develop- tively little has been said in recent years concern- ing scar tissue here, but also close to the chiasma ing the involvement of the optic chiasma, nerves,Protected by copyright. as a result of pressure of the nerves against the and tracts by related vessels and its possible internal carotid arteries occasioned by distension relationship to the production of visual field of the third ventricle. The visual acuity was so defects. It is probable that many surgeons have reduced in their patients that it is extremely noticed grooving of the optic nerve or chiasma doubtful if the small islands of temporal vision by the anterior cerebral artery in operating for which persisted justified the diagnosis of binasal pituitary tumours and some have related this to hemianopia. Hirsch (1921) described grooving an inferior quadrantic nasal field defect on the of both optic nerves by both anterior cerebral affected side (Schneider et al., 1970). arteries and of the chiasma by the anterior com- Modern methods of investigation and their municating artery as a necropsy finding in a skilful interpretation can provide very full patient with a pituitary tumour. Fay and Grant information concerning the relationship of the (1923) provided a good review of the literature optic nerves and chiasma, the Willisian vessels, and described a case of interpeduncular cranio- and an associated tumour mass to one another. pharyngioma, which had displaced the chiasma With the single exception of the bony landmarks anteriorly so that the optic tracts on both sides of the posterior margin of the optic canal in the http://jnnp.bmj.com/ were grooved by the internal carotid arteries, lateral skull view, the radiological anatomy is the left one also being grooved by the anterior well known. The pneumographic appearance of cerebral artery. These authors attributed the the chiasmatic cistern was described in detail by nasal portion of the severe visual field disturb- Dilenge in 1955 and by Liliequist in 1959. Bull ance in this patient to vascular notching of the (1955) has made a detailed study of the normal optic tracts. Balado and Malbran (1933a, b) variations in the position of the optic recess of discussed involvement of the optic nerves, tracts, the third ventricle and Gado and Bull have and chiasma by related arteries in the presence of recently (1971) shown the many ways in which on October 1, 2021 by guest. pituitary tumours, cerebral tumours in various the anterior cerebral arteries may be displaced situations, and internal hydrocephalus. In addi- by suprasellar masses. tion, they describe three patients with binasal In the normal patient the pre-communicating hemianopia and in each case relate this to the parts of the anterior cerebral arteries bear a postmortem findings. Rucker and Kernohan fairly constant relationship to the chiasma and (1954) described the necropsy findings in five may, of course, be demonstrated by angio- patients who died after surgery for pituitary graphy, but a more precise localization of the J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.36.5.697 on 1 October 1973. Downloaded from Binasal hemianopia 699 FIG. 1. Case 1. Fields of vision. Protected by copyright. optic chiasma and the intracranial parts of the of their course, even after the most careful optic nerves is possible both in the normal and pneumography in cases of pituitary adenoma. the abnormal patient by observation of certain However, just as the attachment of the chiasma other anatomical features shown during the to the third ventricle can virtually always be various radiographic examinations. At both shown even in abnormal cases (by pneumo- pneumoencephalography and ventriculography encephalography), so can the anterior point of the impression made by the optic chiasma on the attachment of the optic nerves at the skull base anterior end of the third ventricle, between the be recognized on lateral plain radiographs and optic and infundibular recesses, may, itself, this localization may be transferred to lateral regularly be seen.
Recommended publications
  • Neuroophthalmology
    Neuroophthalmology MAREK MICHALEC, MD PHD Clinic of Ophthalmology Faculty Hospital Brno and Masaryk University Version 12/2019 Content • Visual pathway affection • Diseases and affections of optic nerve • Optic chiasm pathology • Pathology of retrochiasmic part • Eye movement disorders • Binocular diplopia • Pupillary reaction abnormalities • Anisocoria • Combined disorders Examination - part I • Medical history • subjective (visual loss, diplopia) • When it started/ how long lasts it? • Does it change in time/ during the day? • Any progression? • What about the fellow eye? • Other signs? • Personal medical history? • Pharmacological history? • objective (pupillary dysfunction, eye movement disorders, ptosis of upper eyelid, red eye) Examination - part II • Visual acuity • Without and with correction • Monocular vision / binocular vision • Basic ophthalmological examination • Anterior segment (by slit lamp) • Posterior segment - arteficial mydriasis is essential (indirect ophthalmoscopy) • Visual field examination (static / kinetic perimetry) Examination - part III • Basic examination (GP) • Neurological examination • Intracranial conditions (including MRI) • neurological signs • Endocrinology • Thyroid associated orbitopathy / ophthalmopathy • Pituitary dysfunction Examination - part IV • Imaging techniques • Ultrasonography (eye bulb, orbit) • X-ray of skull (orbit, paranasal cavities) • Computerised Tomography of head (brain, skull bones, orbital bones) • MRI of head (brain, orbital structures) Optic nerve disorders Clinical signs •
    [Show full text]
  • Ministry of Public Health of Ukraine Ukrainian Medical Stomatological Academy
    Ministry of Public Health of Ukraine Ukrainian Medical Stomatological Academy Approved At the meeting of the department of neurological diseases with neurosurgery and medical genetic "__"__ ____________20___ Protocol №________ Head of department _______________ prof. Delva M.Yu. METHODICAL INSTRUCTIONS FOR THE INDEPENDENT WORK OF STUDENTS FOR PREPARATION TO PRACTICAL CLASSES AND DURING PRACTICAL CLASSES Academic subject Neurology The module № 1 General neurology Topic Syndromes of defeat oculomotor nerves. Pathology of olfactory and visual analyzers. Year of study IV Faculty Foreign Students Training (Medicine) Poltava 20___ 1.Relevance of the topic: the olfactory and visual analyzers play a role in receptor function of the nervous system. With the functions of these disorders analyzers, as well as with oculomotor disturbances faced by doctors of different specialties - neurologists, ophthalmologists, neurosurgeons, pediatricians, phthisiatricians, endocrinologists, internists. Violations of the functions of these analyzers is observed in a variety of inflammatory, demyelinating processes, tumors, trauma, endocrine disorders. The correct methodological approach to the study of functions, pathological changes of the olfactory and visual analyzers, oculomotor nerves makes it possible to deliver topical and clinical diagnosis and treatment in a timely manner. 2. Specific Objectives: To investigate the function of I, II, III, IV, VI pairs of cranial nerves, identify signs of a lesion of the nerve disorder Examine the identification functions
    [Show full text]
  • 1- Orientation, History Taking, and Examination (Part II)
    432 Ophthalmology Team #1- Orientation, History Taking, and Examination (Part II) Done by: Shaikha Aldossari Revised by: Alanoud Alyousef Doctor's note Team's note Not important Important 431 teamwork in a yellow box 432 Ophthalmology Team Objectives of The Comprehensive Ophthalmic Evaluation: 1. Obtain an ocular and systemic history. 2. Determine the optical and health status of the eye and visual system. 3. Identify risk factors for ocular and systemic disease. 4. Detect and diagnose ocular diseases. 5. Establish and document the presence or absence of ocular symptoms and signs of systemic disease. 6. Discuss the nature of the findings and the implications with the patient. 7. Initiate an appropriate response. (e.g. further diagnostic tests, treatment, or referral). History Taking & Physical Examination HISTORY • It is a gathering information process from the patient guided by an educated and active mind. • It is a selective guided and progressive elicitation and recognition of significant information • History by skilled person can arrive at the proper diagnosis in 90% of patients. • It gives vital guidance for: o Physical examination o Laboratory work o Therapy • Failure to take history can lead to missing vision or life threatening conditions. Chief complaint: ’’The patient’s own words’’ ‘’She cannot see with the right eye’’ You should not come to conclusion that her problem is nearsightedness and write down “Myopia of RE”. 432 Ophthalmology Team • The patient needs will not be satisfied until he/she has received an acceptable explanation of the meaning of the chief complaint and its proper management. History of the Present Illness: • Detailed description of the chief complaint to understand the symptoms and course of the disorder.
    [Show full text]
  • Visual Impairment Age-Related Macular
    VISUAL IMPAIRMENT AGE-RELATED MACULAR DEGENERATION Macular degeneration is a medical condition predominantly found in young children in which the center of the inner lining of the eye, known as the macula area of the retina, suffers thickening, atrophy, and in some cases, watering. This can result in loss of side vision, which entails inability to see coarse details, to read, or to recognize faces. According to the American Academy of Ophthalmology, it is the leading cause of central vision loss (blindness) in the United States today for those under the age of twenty years. Although some macular dystrophies that affect younger individuals are sometimes referred to as macular degeneration, the term generally refers to age-related macular degeneration (AMD or ARMD). Age-related macular degeneration begins with characteristic yellow deposits in the macula (central area of the retina which provides detailed central vision, called fovea) called drusen between the retinal pigment epithelium and the underlying choroid. Most people with these early changes (referred to as age-related maculopathy) have good vision. People with drusen can go on to develop advanced AMD. The risk is considerably higher when the drusen are large and numerous and associated with disturbance in the pigmented cell layer under the macula. Recent research suggests that large and soft drusen are related to elevated cholesterol deposits and may respond to cholesterol lowering agents or the Rheo Procedure. Advanced AMD, which is responsible for profound vision loss, has two forms: dry and wet. Central geographic atrophy, the dry form of advanced AMD, results from atrophy to the retinal pigment epithelial layer below the retina, which causes vision loss through loss of photoreceptors (rods and cones) in the central part of the eye.
    [Show full text]
  • A1the Eye in Detail
    A. The Eye A1. Eye in detail EYE ANATOMY A guide to the many parts of the human eye and how they function. The ability to see is dependent on the actions of several structures in and around the eyeball. The graphic below lists many of the essential components of the eye's optical system. When you look at an object, light rays are reflected from the object to the cornea , which is where the miracle begins. The light rays are bent, refracted and focused by the cornea, lens , and vitreous . The lens' job is to make sure the rays come to a sharp focus on the retina . The resulting image on the retina is upside-down. Here at the retina, the light rays are converted to electrical impulses which are then transmitted through the optic nerve , to the brain, where the image is translated and perceived in an upright position! Think of the eye as a camera. A camera needs a lens and a film to produce an image. In the same way, the eyeball needs a lens (cornea, crystalline lens, vitreous) to refract, or focus the light and a film (retina) on which to focus the rays. If any one or more of these components is not functioning correctly, the result is a poor picture. The retina represents the film in our camera. It captures the image and sends it to the brain to be developed. The macula is the highly sensitive area of the retina. The macula is responsible for our critical focusing vision. It is the part of the retina most used.
    [Show full text]
  • MR Imaging of Diffuse Glioma Case Report
    MR Imaging of Diffuse Glioma Kiyoyuki Yanaka, 1 Takao Kamezaki, 1 Eiki Kobayashi, 1 Kiyoshi Matsueda,2 Yoshihiko Yoshii,3 and Tadao Nose3 Summary: Neuroradiologic diagnosis of "gliomatosis cerebri" is scopic examination revealed bilateral papilledema. CT of hampered by the diffuse, isodense character of the lesion, and the brain demonstrated the presence of small lateral ven­ the fact that it may not enhance when intravenous contrast tricles and decreased attenuation bilaterally within the white medium is administered. Clinical signs and symptoms are matter of the frontal lobes and in the left temporal lobe usually nonspecific, nonfocal, and disproportionately mild. We without postcontrast enhancement. No enlarged sulci were report a case of diffuse glioma in a 30-year-old man, discuss observed (Fig. 1). The patient underwent MR (General the difficulty in arriving at a precise diagnosis of gliomatosis Electric 1.5-Tesla Signa scanner) using T1- and T2- cerebri, and examine the possible role of MR in its detection weighted spin-echo pulse sequences. A T 1-weighted axial and delineation. scan was obtained using a repetition time (TR) of 600 msec and an echo time (TE) of 30 msec. This sequence was Index terms: Gliomatosis; Brain neoplasms, magnetic reso­ followed by T2-weighted scans employing a TR of 2500 nance; Magnetic resonance, contrast enhancement msec and TEs from 30 to 80 msec. Intravenous (IV) administration of gadolinium diethylenetriaminepentaacetic "Gliomatosis cerebri" is a rare condition char­ acid (Gd-DTPA) was carried out for enhanced MR exami­ acterized by diffuse overgrowth of the central nation. MR using T1-weighted images (T1 WI) revealed nervous system (CNS) by glial cells in varying enlargement of the left temporal lobe with herniation of the stages of differentiation ( 1 ).
    [Show full text]
  • Complete Binasal Hemianopia B
    Donald and Barbara Zucker School of Medicine Journal Articles Academic Works 2014 Complete binasal hemianopia B. T. Bryan H. D. Pomeranz Hofstra Northwell School of Medicine K. H. Smith Follow this and additional works at: https://academicworks.medicine.hofstra.edu/articles Part of the Ophthalmology Commons Recommended Citation Bryan B, Pomeranz HD, Smith K. Complete binasal hemianopia. 2014 Jan 01; 27(4):Article 1698 [ p.]. Available from: https://academicworks.medicine.hofstra.edu/articles/1698. Free full text article. This Article is brought to you for free and open access by Donald and Barbara Zucker School of Medicine Academic Works. It has been accepted for inclusion in Journal Articles by an authorized administrator of Donald and Barbara Zucker School of Medicine Academic Works. Complete binasal hemianopia Beau T. Bryan, MD, Howard D. Pomeranz, MD, PhD, and Kyle H. Smith, MD Binasal hemianopia is a rarely encountered visual field defect. We ex- a b amined two asymptomatic female patients, aged 17 and 83, with com- plete binasal hemianopia. Both patients had unremarkable eye exams except for the visual field deficits and minimally reduced visual acuity and color vision. Both patients had normal neuroimaging. These are the first reported cases of complete binasal visual field defects without an identifiable ocular or neurologic cause. euro-ophthalmologists rarely encounter patients with binasal (heteronymous) hemianopia. Several reports of incomplete binasal visual fi eld defects have appeared N(1–5). We found no reports, however, of complete bi- c d nasal hemianopia. Here we present two cases of asymptomatic complete binasal hemianopia associated with minimally reduced visual acuity and color vision, but with otherwise unremarkable eye exams and neuroimaging.
    [Show full text]
  • On So-Called Binasal Hemianopsia in Brain Tumor
    tion of these various products is inert, perhaps authoritative writers, the one unsurpassed in it is inactivated or its activity greatly retarded the field of cerebral surgery, the other unsur- by the various menstrua. We see that scale pep- passed in the field of perimetry, cannot fail to sin, 15 grs. to a fl. 5 ss of distilled water, re- carry great weight. duced the albumin to 4^4 grs. (Test Series Quoting from their paper (p. 597) :— No. 5, Tube No. x), and to 33,4 grs. (Test Series "A constriction of the field of vision due to a de- No. Tube No. vti). Scale in the pro- 6, pepsin struction of fibres more of found in the complete from the temporal portion .3% (as gastric juice) than from the nasal half of the retina and justify- did not exert any great effect, the albumin ing the designation of nasal hemianopsia has been 8 or 9 Series No. weighed grs. (Test 5, Tube observed in from 5 to 6% of a series of 500 cases of No. vin. The reader may make other deduc- brain tumor.". "It is difficult or impossible to at- tions by studying and comparing the tables. tribute the ultimate binasal blindness to a lesion The first three series demonstrated as far as confined alone to the nerve and retina. Another visible results could be judged, that the higher factor must come into play, which elsewhere in the course of the nerve affects uncrossed fasciculus temperature of 125° F. did not cause any greater the digestive effect than did the temperature of from the temporal retina more markedly than the 100° F.
    [Show full text]
  • Poster Session
    North American Neuro-Ophthalmology Society 41st Annual Meeting February 21-26, 2015 Hotel del Coronado • San Diego, California Poster Presentations Tuesday, February 24, 2015 • 6:00 p.m. – 9:30 p.m. Authors will be standing by their posters during the following hours: Odd-Numbered Posters: 6:45 p.m. – 7:30 p.m. Even-Numbered Posters: 7:30 p.m. – 8:15 p.m. Poster # Presenting Author Category: Anterior Afferent Visual Pathway (Optic Neuropathy and Chiasm) 1 Normal Tension Glaucoma (NTG) is it a Type of Glaucoma or an Entity of a Mohammed Areesh Compressive Optic Neuropathy (CON)? 2 Anterior Ischemic Optic Neuropathy Due to Biopsy-Proven Giant Cell Arteritis in Thai Taweevat Attaseth Patients 3 Visual Outcomes Following Perioperative Vision Loss Jasmina Bajric 4 Pituitary Apoplexy in Pregnancy Matthew J. Benage 5 Bilateral, Sequential Anterior then Posterior Ischemic Optic Neuropathy in a Young Damian E. Migraineur Berezovsky 6 Traumatic Optic Neuropathy. Our Experience Mariana de Virgiliis 7 Sensitivity of Magnetic Resonance Imaging in Acute Demyelinating Optic Neuritis Lulu LCD Bursztyn 8 Characterization of Leber’s Hereditary Optic Neuropathy Patients Treated with Jasdeep S. Chahal Idebenone 9 Gliosarcoma of the Optic Nerves 15 years After Radiation Treatment for Hypophyseal Ayse I. Colpak Adenoma 10 Optic Nerve Compression by an Anomalous Internal Carotid Artery Valerie I. Elmalem 11 Identifying Risk Factors for the Development of Radiation Optic Neuropathy at “Safe” Pavle Doroslovački Doses: A Review of Cases Seen 1994-2014 12 Optic Neuritis After Refractive Surgery: Causal or Coincidence? Shlomo Dotan 13 Long Term Treatment of Lebers Hereditary Optic Neuropathy with Idebenone Jennifer I.
    [Show full text]
  • Complete Binasal Hemianopsia
    perim Ex en l & ta a l ic O p in l h t C h f Journal of Clinical & Experimental a Lešták et al. J Clinic Experiment Ophthalmol 2011, S:5 o l m l a o DOI: 10.4172/2155-9570.S5-002 n l r o g u y o J Ophthalmology ISSN: 2155-9570 ResearchCase Report Article OpenOpen Access Access Complete Binasal Hemianopsia Jan Lešták1*, Ivan Škúci2, Renata Říčařová3, Milan Choc2 and Jan Kastner4 1JL Clinic, Prague, Czech Republic 2Neurosurgery Department of the University Hospital in Plzen, Czech Republic 3Eye Clinic of the University Hospital in Plzen, Czech Republic 4Imaging Methods Clinic of the University Hospital in Plzen, Czech Republic Abstract The authors describe a case study of a 21-year-old female patient suffering from a tumour in the pineal region and dorsal part of the 3rd cerebral ventricle (pineocytoma) who developed complete binasal hemianopsia 11 months after the tumour’s removal. These perimetric changes did not show any progression for seven years. In discussing the question of the pathogenesis of hemianopic defects, the authors are inclined to the opinion that both of the optic nerves are compressed by the circle of Willis vessels. Keywords: Complete binasal hemianopsia; Tumour in the pineal widely adhered and pressed against the colliculi superiores et inferiores region and the third cerebral ventricle; Pathogenesis of binasal of the upper stalk burrowing into the caudal part of the 3rd ventricle. hemianopsia The tumour was partially cystic, some parts had brittle structure while other parts had rigid bodies. The tumour was gradually sharply Introduction separated from the base respecting its boundary against the upper stalk The existence of complete binasal hemianopsia has been disputed and was radically removed.
    [Show full text]
  • Morgan C. Ollinger, OD, FAAO Phone: 231-408-8030 Email: [email protected]
    Morgan C. Ollinger, OD, FAAO Phone: 231-408-8030 Email: [email protected] Professional Experience Clinical Instructor 2017-Present Southern College of Optometry, Memphis, TN Duties include: Overseeing student interns within pediatric, vision therapy, and primary care services Clinical research Scholarly activities within the optometric field Residency in Pediatric Optometry 2016-2017 Michigan College of Optometry, Big Rapids, MI Duties include: Examining pediatric patients, managing binocular vision disorders, and overseeing student interns within the College’s Pediatric service Examining pediatric patients at Cherry Street Health Services, a Federally Qualified Health Centre, as well as within the public school system Observing ophthalmologic and pediatric specialties throughout Michigan Assisting within pediatric and vision therapy teaching labs Education Residency in Pediatric Optometry 2016-2017 Michigan College of Optometry, Big Rapids, MI Doctor of Optometry (with Distinction) 2012-2016 University of Waterloo, Waterloo, ON 93 of 120 credit hours completed towards Bachelor of 2009-2012 Science in Biology University of Regina, Regina, SK Accepted into the Doctor of Optometry program after 3 years Peer Reviewed Posters Survey of self-reported reading and video gaming habits 2021 and ocular discomfort Heart of America – Kansas City, MO (Co-Author) A Comparison of Near Visual Acuity Optotype Validity 2019 within a Pediatric Population American Academy of Optometry – Orlando, FL (Co-Author) Changes in Near Visual Function from
    [Show full text]
  • Methodic Materials Cranial Nerves
    Medical Academy named after S.I. Georgievsky of V.I. Vernadsky CFU Department of Neurology a n d Neurosurgery Cliiss 4 Anatomy, physiology and pathology of the Cranial nerves VII-XI1 Key points: 1. Brainstem: 1.1. Surface anatomy 1.2.Internal structures and organization 1.3.Cross section through the medulla 1.4.Cross section through the pons 1.5.Cross section through the rostral midbrain 2. Cranial Nerves 2.1. Anatomy 2.2. Functions 2.3. Connections 2.4. Symptoms, signs, syndromes of lesions 2.5. Clinical correlations Key concepts: 1) Study the transverse sections o f the brain stem and localize the cranial nerve nuclei. 2) Study the ventral and dorsal surface o f the brain stem and identify the exiting and entering cranial nerves. 3) Carefully study all o f the figures and legends 4) Study the main information about anatomy of all cranial nerves, their functions, connections and symptoms/signs/syndromes of lesions Define the following terms: Brain stem, medial structures, lateral structures, dorsal structures, tegmentum, medial lemniscus, gracile and cuneate nuclei, pyramids, corticospinal fibers, inferior cerebellar peduncle, spinocerebellar tract, cuneocerebellar tract, olivocerebellar tract, lateral spinothalamic tract (spinal lemniscus), superior colliculi, inferior colliculi, oliva, medial longitudinal fasciculus (MLF), cerebral peduncle, red nucleus, substantia nigra, hypoglossal nucleus o f CNXII, nucleus ambiguus X, andXI), vestibular nuclei (CN VIII,) spinal nucleus and tract o f trigeminal nerve, abducent nucleus of CN VI, facial nucleus (CN VII), spinal nucleus and tract o f trigeminal nerve (CN V), oculomotor nucleus (CN III), cranial nerves I-XII. Literature: Mathias Baehr, M.D., Michael Frotscher, M.D.
    [Show full text]