LATE WATER CYCLES on EARLY MARS and THEIR POSSIBLE CAUSES. R. P. Irwin III1 and Y. Matsubara1, 1Center for Earth and Planetary S

Total Page:16

File Type:pdf, Size:1020Kb

LATE WATER CYCLES on EARLY MARS and THEIR POSSIBLE CAUSES. R. P. Irwin III1 and Y. Matsubara1, 1Center for Earth and Planetary S Eighth International Conference on Mars (2014) 1446.pdf LATE WATER CYCLES ON EARLY MARS AND THEIR POSSIBLE CAUSES. R. P. Irwin III1 and Y. Matsubara1, 1Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, MRC 315, 6th St. at Independence Ave. SW, Washington DC 20013, [email protected], [email protected]. Introduction: Studies of Martian degraded impact craters and valley networks based on Mariner and Vi- king data found a concurrent decline in crater degrada- tion and fluvial erosion around the Noachian to Hespe- rian boundary [1,2]. These findings suggested a major climate change around that time from a warmer, wetter early Mars to the cold, dry conditions seen today. Martian impact craters have a range of degradation states, and stratigraphically younger craters are gener- ally less degraded than older ones of the same size, indicating that crater degradation was progressive with time and not the result of a single erosional spike [3]. In this context, one would expect to see some late No- achian or early Hesperian craters with an overall fresh morphology (i.e., little interior fill, a raised rim, visible ejecta, and possibly a secondary crater field) but with some fluvial dissection. A number of impact craters with these characteristics have been noted [4,5]. Some of the larger ones have locally deep dissection of their rims and large alluvial fans on their floors [4]. New observations based on Mars Reconnaissance Fig. 1. Buta crater (11 km in diameter) and an un- Orbiter imagery show that fluvial erosion of fresh im- named 6 km primary crater that superimpose Holden pact craters is more widespread than was previously crater secondaries but have dissected ejecta. recognized and not confined to local areas. Here we provide examples in four regions around Mars, note complexities in the local stratigraphy, and make some preliminary interpretations regarding an intermittent water cycle on early Mars. Observations: The cratered highlands between about 15–30° S contain some of the most obvious fresh craters with fluvial dissection, but such erosion is found on Hesperian surfaces elsewhere as well. Margaritifer and Noachis Terrae. Holden and Bakhuysen are two examples of large craters with both fluvial erosion and preserved secondary fields. These characteristics and their superimposed crater counts suggest a Hesperian age [6–8]. Holden crater’s (26.0º S, 34.0º W, 153 km diame- ter) western rim has deeply dissected alcoves that sourced a large alluvial bajada [4]. Inside the crater, younger alluvial fan deposits postdate flood deposits from Uzboi Vallis, which overlie light-toned stratigra- phy. The latter may be contemporary with older fan development [7]. We have identified multiple primary craters that post-date Holden crater or its ejecta but have either fluvial dissection or infilling by light-toned stratigraphy (Fig. 1) [9,10]. These craters formed after Fig. 2. A fluvially breached and partly infilled 2 km the Holden impact but before the end of fluvial erosion crater on the eastern rim of Bakhuysen crater. in the area. Eighth International Conference on Mars (2014) 1446.pdf Bakhuysen crater (23.0º S, 15.8º W, 153 km diame- lands are elevated and multibasinal, and the only sur- ter) has significant rim dissection and large alluvial face flow path from the South Pole to equatorial lati- deposits [4]. At least two primary impact craters ap- tudes would require filling Argyre with water [20], so pear to postdate Bakhuysen but predate the end of ero- the southern highlands are also a trap [21]. The Hellas sion in the area, as shown by their dissection (Fig. 2). and Argyre basins both occupy mid-latitude positions Terrae Cimmeria and Sirenum. The region around that would have experienced less evaporation than if Gale crater has a compelling record of fluvial dissec- they had been at the equator. For these reasons, Mars tion both before and after the crustal dichotomy would have had little water in its tropical areas and boundary scarp formed. These indicators include val- should have been more arid than Earth regardless of its leys that were left hanging by the scarp formation but atmospheric mass. experienced later knickpoint retreat, and fluvial erosion One possible explanation for a variable Martian after the Aeolis Mons deposit formed within Gale water cycle has independent empirical and theoretical crater, which crosscuts the boundary scarp [11]. support. The axial obliquity of Mars is believed to In Terra Sirenum, Hesperian airfall mantling (the have varied over time, alternately moving water to the “Electris deposit”) postdated the major fluvial and la- poles during low-obliquity periods and to the mid- custrine activity in the region, but some dissection of latitudes when obliquity is high [22,23]. This mecha- that deposit took place later [12,13]. nism could have intermittently overcome the polar cold Discussion: The limited dissection of some impact traps and facilitated discrete periods of fluvial erosion. craters is not surprising, because large craters were still Ultimately a thinning atmosphere would have elimi- forming (at a declining rate) as the Martian climate nated the liquid phase from this cycle. changed during the Hesperian Period [14]. The more References: [1] Malin M. C. (1976) JGR, 81, significant findings are locations where fluvial erosion 4825–4845. [2] Craddock R. A. and Maxwell T. A. occurred both before and after two separate events that (1990) JGR, 95, 14265–14278. [3] Craddock R. A. and are not likely to have been closely spaced in time, and Maxwell T. A. (1993) JGR, 98, 3453–3468. [4] Moore which show little evidence for fluvial dissection in J. M. and Howard A. D. (2005) JGR, 110, doi: between the two. The occurrence of rare or complex 10.1029/2004JE002352. [5] Mangold N. et al. (2012) geologic events between larger impacts and the last JGR, 117, doi:10.1029/2011JE004005. [6] Mangold N. fluvial dissection suggests that the water cycle was et al. (2012) Icarus, 220, 530–551. [7] Irwin R. P. III active long after the impacts and was not their direct and Grant J. A. (2013) USGS Map I-3209. [8] Irwin R. consequence [8]. These sites suggest that Martian cli- P. III (2013) LPS 44, Abstract #2958. [9] Grant J. A. mate change involved multiple epochs of activity ra- and Wilson S. A. (2012) PSS, 72, 44–52. [10] Irwin R. ther than one monotonic decline. P. III et al., submitted, Geomorphology. [11] Irwin R. Published explanations for a variable hydrologic P. III et al. (2005) JGR, 110, doi:10.1029/ cycle have been varied and (to a degree) speculative. 2005JE002460. [12] Grant J. A. and Schultz P. H. These scenarios include an ambient hyperarid climate (1990) Icarus, 84, 166–195. [13] Irwin R. P. III et al. that was punctuated by relatively brief precipitation (2004) JGR, 109, doi:10.1029/2004JE002287. [14] following large impacts or volcanism [15,16]. The Hartmann W. K. and Neukum G. (2001) Space Sci. former explanation is inconsistent with our finding that Rev., 96, 165–194. [15] Baker V. R. et al. (1991) Na- fluvial erosion occurred long after three of the six larg- ture, 352, 589–594. [16] Segura T. L. et al. (2002) Sci- est post-Noachian impact craters and that the other ence, 298, 1977–1980. [17] Wordsworth R. et al. three craters did not experience substantial erosion at (2013) Icarus, 222, 1–19. [18] Andrews-Hanna J. C. all [8]. The volcanic explanation is consistent with the (2012) JGR, 117, doi:10.1029/2011JE003954. [19] very large amount of Hesperian volcanic resurfacing Clifford S. M. and Parker T. J. (2001) Icarus, 154, 40– on Mars, but most volcanic surfaces similarly have 79. [20] Parker T. J. (1985) M. S. Thesis, Calif. State little dissection. Univ. [21] Irwin R. P. III et al. (2011) JGR, 116, Much attention has focused on the early surface air doi:10.1029/2010JE003620. [22] Touma J. and Wis- pressure (a proxy for the atmospheric mass per unit dom J. (1993) Science, 259, 1294–1297. [23] Forget F. area) that would have enhanced greenhouse warming et al. (2006) Science, 311, 368–371. [17]. However, a more massive atmosphere does not imply an active water cycle by itself. Tharsis fixes the equator along the Martian crustal dichotomy boundary, which it superimposes [18], so the crustal dichotomy is a pole-to-pole slope that would have moved water to a cold trap at the North Pole [19]. The southern high-.
Recommended publications
  • Identification of the Deepest Craters on Mars Based on the Preservation
    IDENTIFCATION OF THE DEEPEST CRATERS ON MARS BASED ON THE PRESERVATION OF PITTED IMPACT MELT-BEARING DEPOSITS. L. L. Tornabene1,2, V. Ling3, J. M. Boyce4, G. R. Osinski1,5, T. N. Harrison1, and A. S. McEwen6, 1Dept. of Earth Sciences & Centre for Planetary Science and Exploration, Western University, London, ON, N6A 5B7, Canada ([email protected]), 2SETI Institute, Mountain View, CA 94043, USA, 3Central Secondary School, London, ON, N6B 2P8, Canada, 4Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA, 5Dept. Physics & Astronomy, Western University, London, ON, N6A 5B7, Canada, 6Lunar and Planetary Laborato- ry, University of Arizona, Tucson, AZ 85721, USA. Introduction: Crater-related pitted materials, were avoided. As such, the lowest elevation on the thought to be impact melt-rich deposits formed from floor off the central pit was used instead. Likewise, any volatile-rich substrates, have been observed in high- overprinting primary or secondary impact craters on resolution images of both the youngest and best- the host crater floors were avoided – again, using the preserved craters on both Mars and Vesta [1–3]. To next lowest elevation that clearly fell on “unmodified” date, 205 such craters have been identified on Mars host crater floor. After plotting all the dr vs. D values, ranging from 1–150 km in diameter, and are randomly outliers (i.e., extremely deep or shallow craters) were distributed between ~60°S and 60°N latitudes [1]. assessed carefully with respect to pre-existing topogra- Because pitted materials likely represent the prima- phy and post-impact modification. Craters with uneven ry crater-fill deposits, and show a strong correlation or complex background terrains, or craters that over- with crater preservation [1–3], we explore their use to printed other craters, specifically in the vicinity of the reassess depth-to-Diameter (d/D) scaling relationship rim or the floor were noted, adjusted if possible or not using Mars Orbiter Laser Altimeter (MOLA) data.
    [Show full text]
  • Martian Crater Morphology
    ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter.
    [Show full text]
  • Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
    Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km.
    [Show full text]
  • March 21–25, 2016
    FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,
    [Show full text]
  • Mars 2001: Integrated Science in Preparation for
    WORKSHOP ON MARS 2001: INTEGRATED SCIENCE IN PREPARATION FOR ......... SAMPLE RETURN AND HUMAN EXPLORATION October 2--4, 1999 Lunar and Planetary Institute, Houston, Texas Edited by John Marshall and Cathy Weitz Sponsored by Lunar and Planetary Institute Mars Program Office, Jet Propulsion Laboratory National Aeronautics and Space Administration Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 LPI Contribution No. 991 Compiled in 1999 by LUNAR AND PLANETARY INSTITUTE The Institute is operated by the Universities Space Research Association under Contract No. NASW-4574 with the National Aeronautics and Space Administration. Material in this volume may be copied without restraint for library, abstract service, education, or personal research purposes; however, republication of any paper or portion thereof requires the written permission of the authors as well as the appropriate acknowledgment of this publication. This volume may be cited as Marshall J. and Weitz C., eds. (1999) Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration. LPI Contribution No. 991, Lunar and Planetary Institute, Houston. 129 pp. This volume is distributed by ORDER DEPARTMENT Lunar and Planetary Institute 3600 Bay Area Boulevard Houston TX 77058-1113 Phone: 281-486-2172 Fax: 281-486-2186 E-mail: order @lpi.j sc.nasa.gov Mail order requestors will be invoiced for the cost of shipping and handling. LPI Contribution No. 991 iii PREFACE The Workshop on Mars 2001: Integrated Science in Preparation for Sample Return and Human Exploration was held on October 2-4, 1999, at the Lunar and Planetary Institute in Houston, Texas. The workshop was sponsored by the Lunar and Planetary Institute, the Mars Program Office of the Jet Propulsion Laboratory, and the National Aeronautics and Space Administration.
    [Show full text]
  • Appendix I Lunar and Martian Nomenclature
    APPENDIX I LUNAR AND MARTIAN NOMENCLATURE LUNAR AND MARTIAN NOMENCLATURE A large number of names of craters and other features on the Moon and Mars, were accepted by the IAU General Assemblies X (Moscow, 1958), XI (Berkeley, 1961), XII (Hamburg, 1964), XIV (Brighton, 1970), and XV (Sydney, 1973). The names were suggested by the appropriate IAU Commissions (16 and 17). In particular the Lunar names accepted at the XIVth and XVth General Assemblies were recommended by the 'Working Group on Lunar Nomenclature' under the Chairmanship of Dr D. H. Menzel. The Martian names were suggested by the 'Working Group on Martian Nomenclature' under the Chairmanship of Dr G. de Vaucouleurs. At the XVth General Assembly a new 'Working Group on Planetary System Nomenclature' was formed (Chairman: Dr P. M. Millman) comprising various Task Groups, one for each particular subject. For further references see: [AU Trans. X, 259-263, 1960; XIB, 236-238, 1962; Xlffi, 203-204, 1966; xnffi, 99-105, 1968; XIVB, 63, 129, 139, 1971; Space Sci. Rev. 12, 136-186, 1971. Because at the recent General Assemblies some small changes, or corrections, were made, the complete list of Lunar and Martian Topographic Features is published here. Table 1 Lunar Craters Abbe 58S,174E Balboa 19N,83W Abbot 6N,55E Baldet 54S, 151W Abel 34S,85E Balmer 20S,70E Abul Wafa 2N,ll7E Banachiewicz 5N,80E Adams 32S,69E Banting 26N,16E Aitken 17S,173E Barbier 248, 158E AI-Biruni 18N,93E Barnard 30S,86E Alden 24S, lllE Barringer 29S,151W Aldrin I.4N,22.1E Bartels 24N,90W Alekhin 68S,131W Becquerei
    [Show full text]
  • In Pdf Format
    lós 1877 Mik 88 ge N 18 e N i h 80° 80° 80° ll T 80° re ly a o ndae ma p k Pl m os U has ia n anum Boreu bal e C h o A al m re u c K e o re S O a B Bo l y m p i a U n d Planum Es co e ria a l H y n d s p e U 60° e 60° 60° r b o r e a e 60° l l o C MARS · Korolev a i PHOTOMAP d n a c S Lomono a sov i T a t n M 1:320 000 000 i t V s a Per V s n a s l i l epe a s l i t i t a s B o r e a R u 1 cm = 320 km lkin t i t a s B o r e a a A a A l v s l i F e c b a P u o ss i North a s North s Fo d V s a a F s i e i c a a t ssa l vi o l eo Fo i p l ko R e e r e a o an u s a p t il b s em Stokes M ic s T M T P l Kunowski U 40° on a a 40° 40° a n T 40° e n i O Va a t i a LY VI 19 ll ic KI 76 es a As N M curi N G– ra ras- s Planum Acidalia Colles ier 2 + te .
    [Show full text]
  • Large Impact Crater Histories of Mars: the Effect of Different Model Crater Age Techniques ⇑ Stuart J
    Icarus 225 (2013) 173–184 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Large impact crater histories of Mars: The effect of different model crater age techniques ⇑ Stuart J. Robbins a, , Brian M. Hynek a,b, Robert J. Lillis c, William F. Bottke d a Laboratory for Atmospheric and Space Physics, 3665 Discovery Drive, University of Colorado, Boulder, CO 80309, United States b Department of Geological Sciences, 3665 Discovery Drive, University of Colorado, Boulder, CO 80309, United States c UC Berkeley Space Sciences Laboratory, 7 Gauss Way, Berkeley, CA 94720, United States d Southwest Research Institute and NASA Lunar Science Institute, 1050 Walnut Street, Suite 300, Boulder, CO 80302, United States article info abstract Article history: Impact events that produce large craters primarily occurred early in the Solar System’s history because Received 25 June 2012 the largest bolides were remnants from planet ary formation .Determi ning when large impacts occurred Revised 6 February 2013 on a planetary surface such as Mars can yield clues to the flux of material in the early inner Solar System Accepted 25 March 2013 which, in turn, can constrain other planet ary processes such as the timing and magnitude of resur facing Available online 3 April 2013 and the history of the martian core dynamo. We have used a large, global planetary databas ein conjunc- tion with geomorpholog icmapping to identify craters superposed on the rims of 78 larger craters with Keywords: diameters D P 150 km on Mars, 78% of which have not been previously dated in this manner.
    [Show full text]
  • Testing Links Between Impacts and Fluvial Erosion on Post-Noachian Mars
    44th Lunar and Planetary Science Conference (2013) 2958.pdf TESTING LINKS BETWEEN IMPACTS AND FLUVIAL EROSION ON POST-NOACHIAN MARS. R. P. Irwin III, Center for Earth and Planetary Studies, National Air and Space Museum, Smithsonian Institution, MRC 315, 6th St. at Independence Ave. SW, Washington DC 20013, [email protected]. Introduction: The valley networks and fan-shaped Results: deposits on Mars reflect past conditions when liquid Galle crater. This crater has experienced little flu- water flowed across the surface. Most crater counts on vial erosion. A count of craters superimposed on Galle valley networks suggest a decline of fluvial activity crater and its ejecta returns an Early Amazonian age, around the Noachian/Hesperian transition [1,2]. How- consistent with recent mapping [12]. ever, a number of studies have indicated Hesperian to Lyot crater. Lyot crater has sparse but lengthy inte- Amazonian ages for some valley networks or alluvial rior valleys or gullies [13], as well as a northward- fans [3–6]. These age estimates have motivated model- draining, parallel valley network that heads at the ing of possible water sources, including local, geologi- northern margin of the continuous ejecta [14]. Howev- cally short-lived precipitation and/or melting of ground er, significant fluvial erosion of the crater or its ejecta ice following larger impacts [6–9]. is not observed [15]. Published age estimates vary The purpose of this study is to determine whether from Late Hesperian [16] to Early Amazonian [17]. fluvial erosion of the largest post-Noachian impact Lowell crater. Interior dissection is relatively craters occurred immediately after the impacts, or if sparse and shallow, but some lengthy valleys are evi- geologically rare or long-lived events occurred be- dent.
    [Show full text]
  • Origin of the Degassing Pipes at the Ries Impact Structure and Implications for Impact‐Induced Alteration on Mars and Other Pl
    Meteoritics & Planetary Science 1–19 (2021) doi: 10.1111/maps.13600 Origin of the degassing pipes at the Ries impact structure and implications for impact-induced alteration on Mars and other planetary bodies Christy CAUDILL 1,2*, Gordon R. OSINSKI 1,2, Rebecca N. GREENBERGER 3, Livio L. TORNABENE1,2,4, Fred J. LONGSTAFFE1,2, Roberta L. FLEMMING1,2, and Bethany L. EHLMANN 3,5 1Department of Earth Sciences, The University of Western Ontario, 1151 Richmond St, London, Ontario N6A 5B7, Canada 2Institute for Earth and Space Exploration, The University of Western Ontario, 1151 Richmond St, London, Ontario N6A 5B7, Canada 3Division of Geological & Planetary Sciences, California Institute of Technology, Pasadena, California 91125, USA 4SETI Institute, 189 Bernardo Ave, Mountain View, California 94043, USA 5Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California 91109, USA *Corresponding author. E-mail: [email protected] (Received 03 January 2020; revision accepted 21 October 2020) Abstract–The impact melt-bearing breccias at the Ries impact structure, Germany, host degassing pipes: vertical structures that are inferred to represent conduits along which gases and fluids escaped to the surface, consistent with hydrothermal activity that occurs soon after an impact event. Although the presence of degassing pipes has been recognized within the well-preserved and long-studied ejecta deposits at the Ries, a detailed mineralogical study of their alteration mineralogy, as an avenue to elucidate their origins, has not been conducted to date. Through the application of high-resolution in situ reflectance imaging spectroscopy and X-ray diffraction, this study shows for the first time that the degassing pipe interiors and associated alteration are comprised of hydrated and hydroxylated silicates (i.e., Fe/Mg smectitic clay minerals with chloritic or other hydroxy-interlayered material) as secondary hydrothermal mineral phases.
    [Show full text]
  • Characterization of Impactite Clay Minerals with Implications for Mars Geologic Context and Mars Sample Return
    Western University Scholarship@Western Electronic Thesis and Dissertation Repository 4-9-2020 10:00 AM Characterization of Impactite Clay Minerals with Implications for Mars Geologic Context and Mars Sample Return Christy M. Caudill The University of Western Ontario Supervisor Dr. Gordon Osinski The University of Western Ontario Co-Supervisor Dr. Livio Tornabene The University of Western Ontario Graduate Program in Geology A thesis submitted in partial fulfillment of the equirr ements for the degree in Doctor of Philosophy © Christy M. Caudill 2020 Follow this and additional works at: https://ir.lib.uwo.ca/etd Part of the Geology Commons, and the Other Earth Sciences Commons Recommended Citation Caudill, Christy M., "Characterization of Impactite Clay Minerals with Implications for Mars Geologic Context and Mars Sample Return" (2020). Electronic Thesis and Dissertation Repository. 6935. https://ir.lib.uwo.ca/etd/6935 This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of Scholarship@Western. For more information, please contact [email protected]. Abstract Geological processes, including impact cratering, are fundamental throughout rocky bodies in the solar system. Studies of terrestrial impact structures, like the Ries impact structure, Germany, have informed on impact cratering processes – e.g., early hot, hydrous degassing, autometamorphism, and recrystallization/devitrification of impact glass – and products – e.g., impact melt rocks and breccias comprised of clay minerals. Yet, clay minerals of authigenic impact origin remain understudied and their formation processes poorly-understood. This thesis details the characterization of impact-generated clay minerals at Ries, showing that compositionally diverse, abundant Al/Fe/Mg smectite clays formed through these processes in thin melt-bearing breccia deposits of the ejecta, as well as at depth.
    [Show full text]
  • Glacial Landscape and Paleoglaciation in Terra Sabaea: Evidence for a 3.6 Ga Plateau Ice Cap
    Ninth International Conference on Mars 2019 (LPI Contrib. No. 2089) 6159.pdf Glacial landscape and paleoglaciation in Terra Sabaea: Evidence for a 3.6 Ga plateau ice cap. A.Bouquety1, A.Séjourné1, F.Costard1, S.Bouley1 and E.Leyguarda1, 1GEOPS-Géosciences Paris Sud, Université Paris-Sud, CNRS, Université Paris-Saclay, 91405 Orsay, France. Introduction: The early Mars climate is today one thanks to a detailed morphometrical analysis, the pres- of the most debated subject in the martian community ence of glacial landscape in the south of Terra Sabaea [1]. In the one hand, the observation of an early wet at an elevation > 1000 m in two impact craters and one and warm climate, carried by the presence of valley mountain [7]. These glacial landscapes are composed network and hydrated minerals, which are best lines of of glacial cirques linked with glacial valleys (Fig. 1). evidence for prolonged liquid water on Mars [2]. The The glacial landscape in Terra Sabaea have the same presence of valley networks similar to those on Earth morphometric characteristics as terrestrial and martian show that during the Noachian (4.5-3.7 Ga), a hydro- glacial valleys and cirques. They are also very different sphere was active at the surface of Mars with relatively from those observed in fluvial valleys on Earth and warm and wet conditions. In the other hand, a new vi- Mars. The purpose of this paper is to study craters in sion of an early cold climate, called “icy-highlands” is Terra Sabaea using the same morphometric method increasingly considered. This globally sub-zero scenar- described in [7] and understand the distribution and io is carried by climate modelling which indicate that type of glacial landscape at regional scale.
    [Show full text]