Large Alluvial Fans on Mars Jeffrey M
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Identification of the Deepest Craters on Mars Based on the Preservation
IDENTIFCATION OF THE DEEPEST CRATERS ON MARS BASED ON THE PRESERVATION OF PITTED IMPACT MELT-BEARING DEPOSITS. L. L. Tornabene1,2, V. Ling3, J. M. Boyce4, G. R. Osinski1,5, T. N. Harrison1, and A. S. McEwen6, 1Dept. of Earth Sciences & Centre for Planetary Science and Exploration, Western University, London, ON, N6A 5B7, Canada ([email protected]), 2SETI Institute, Mountain View, CA 94043, USA, 3Central Secondary School, London, ON, N6B 2P8, Canada, 4Hawaii Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA, 5Dept. Physics & Astronomy, Western University, London, ON, N6A 5B7, Canada, 6Lunar and Planetary Laborato- ry, University of Arizona, Tucson, AZ 85721, USA. Introduction: Crater-related pitted materials, were avoided. As such, the lowest elevation on the thought to be impact melt-rich deposits formed from floor off the central pit was used instead. Likewise, any volatile-rich substrates, have been observed in high- overprinting primary or secondary impact craters on resolution images of both the youngest and best- the host crater floors were avoided – again, using the preserved craters on both Mars and Vesta [1–3]. To next lowest elevation that clearly fell on “unmodified” date, 205 such craters have been identified on Mars host crater floor. After plotting all the dr vs. D values, ranging from 1–150 km in diameter, and are randomly outliers (i.e., extremely deep or shallow craters) were distributed between ~60°S and 60°N latitudes [1]. assessed carefully with respect to pre-existing topogra- Because pitted materials likely represent the prima- phy and post-impact modification. Craters with uneven ry crater-fill deposits, and show a strong correlation or complex background terrains, or craters that over- with crater preservation [1–3], we explore their use to printed other craters, specifically in the vicinity of the reassess depth-to-Diameter (d/D) scaling relationship rim or the floor were noted, adjusted if possible or not using Mars Orbiter Laser Altimeter (MOLA) data. -
Charles Darwin: a Companion
CHARLES DARWIN: A COMPANION Charles Darwin aged 59. Reproduction of a photograph by Julia Margaret Cameron, original 13 x 10 inches, taken at Dumbola Lodge, Freshwater, Isle of Wight in July 1869. The original print is signed and authenticated by Mrs Cameron and also signed by Darwin. It bears Colnaghi's blind embossed registration. [page 3] CHARLES DARWIN A Companion by R. B. FREEMAN Department of Zoology University College London DAWSON [page 4] First published in 1978 © R. B. Freeman 1978 All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise without the permission of the publisher: Wm Dawson & Sons Ltd, Cannon House Folkestone, Kent, England Archon Books, The Shoe String Press, Inc 995 Sherman Avenue, Hamden, Connecticut 06514 USA British Library Cataloguing in Publication Data Freeman, Richard Broke. Charles Darwin. 1. Darwin, Charles – Dictionaries, indexes, etc. 575′. 0092′4 QH31. D2 ISBN 0–7129–0901–X Archon ISBN 0–208–01739–9 LC 78–40928 Filmset in 11/12 pt Bembo Printed and bound in Great Britain by W & J Mackay Limited, Chatham [page 5] CONTENTS List of Illustrations 6 Introduction 7 Acknowledgements 10 Abbreviations 11 Text 17–309 [page 6] LIST OF ILLUSTRATIONS Charles Darwin aged 59 Frontispiece From a photograph by Julia Margaret Cameron Skeleton Pedigree of Charles Robert Darwin 66 Pedigree to show Charles Robert Darwin's Relationship to his Wife Emma 67 Wedgwood Pedigree of Robert Darwin's Children and Grandchildren 68 Arms and Crest of Robert Waring Darwin 69 Research Notes on Insectivorous Plants 1860 90 Charles Darwin's Full Signature 91 [page 7] INTRODUCTION THIS Companion is about Charles Darwin the man: it is not about evolution by natural selection, nor is it about any other of his theoretical or experimental work. -
Chapter 4 Ild Observations in Valles Marineris and Chaotic Terrains
46 CHAPTER 4 ILD OBSERVATIONS IN VALLES MARINERIS AND CHAOTIC TERRAINS ILDs have been found and analysed in locations in Valles Marineris and in the chaotic terrains that lie east of Valles Marineris, from 18°S/309°E to 5°N/343°E. Ganges and Capri/Eos Chasma are related to chaotic terrain and outflow channels as well (Sect. 2.4). Even within the Valles Marineris, ILDs are enclosed by chaotic terrain. ILDs are often found in the form of erosional remnants as mesas or buttes (Sect. 2.4.3, 2.5). Exposures in the Ganges and Capri Chasmata as well as in Aurorae, Arsinoes, Aureum, Aram, and Iani Chaos (Fig. 28) were analysed in this thesis. Figure 28: MOLA map of the research area. The research area is located in the eastern Valles Marineris and the Margaritifer Terra chaotic terrains. ILDs that are found and analysed are marked black and are situated between 18°S/309°E to 5°N/343°E. 4.1 Chaotic Terrains 47 4.1 CHAOTIC TERRAINS 4.1.1 Aram Chaos Aram Chaos (3°N/338.8°E) is a 280 km-wide circular structure that is located between the Ares Vallis outflow channel to the east and Aureum Chaos, and Iani Chaos (Fig. 28). The ILD material measures 120 by 140 km and is located near the crater centre (Fig. 29). Elevation ranges from -3700 m to -2900 m (Fig. 31C). Figure 29: Aram Chaos impact crater (centred 3°N/338.8°E) exhibiting ILD material superimposed on heavily disrupted chaotic terrain. To the east, there is a gorge that empties into Ares Vallis (Fig. -
Meat: a Novel
University of New Hampshire University of New Hampshire Scholars' Repository Faculty Publications 2019 Meat: A Novel Sergey Belyaev Boris Pilnyak Ronald D. LeBlanc University of New Hampshire, [email protected] Follow this and additional works at: https://scholars.unh.edu/faculty_pubs Recommended Citation Belyaev, Sergey; Pilnyak, Boris; and LeBlanc, Ronald D., "Meat: A Novel" (2019). Faculty Publications. 650. https://scholars.unh.edu/faculty_pubs/650 This Book is brought to you for free and open access by University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Faculty Publications by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. Sergey Belyaev and Boris Pilnyak Meat: A Novel Translated by Ronald D. LeBlanc Table of Contents Acknowledgments . III Note on Translation & Transliteration . IV Meat: A Novel: Text and Context . V Meat: A Novel: Part I . 1 Meat: A Novel: Part II . 56 Meat: A Novel: Part III . 98 Memorandum from the Authors . 157 II Acknowledgments I wish to thank the several friends and colleagues who provided me with assistance, advice, and support during the course of my work on this translation project, especially those who helped me to identify some of the exotic culinary items that are mentioned in the opening section of Part I. They include Lynn Visson, Darra Goldstein, Joyce Toomre, and Viktor Konstantinovich Lanchikov. Valuable translation help with tricky grammatical constructions and idiomatic expressions was provided by Dwight and Liya Roesch, both while they were in Moscow serving as interpreters for the State Department and since their return stateside. -
MARS an Overview of the 1985–2006 Mars Orbiter Camera Science
MARS MARS INFORMATICS The International Journal of Mars Science and Exploration Open Access Journals Science An overview of the 1985–2006 Mars Orbiter Camera science investigation Michael C. Malin1, Kenneth S. Edgett1, Bruce A. Cantor1, Michael A. Caplinger1, G. Edward Danielson2, Elsa H. Jensen1, Michael A. Ravine1, Jennifer L. Sandoval1, and Kimberley D. Supulver1 1Malin Space Science Systems, P.O. Box 910148, San Diego, CA, 92191-0148, USA; 2Deceased, 10 December 2005 Citation: Mars 5, 1-60, 2010; doi:10.1555/mars.2010.0001 History: Submitted: August 5, 2009; Reviewed: October 18, 2009; Accepted: November 15, 2009; Published: January 6, 2010 Editor: Jeffrey B. Plescia, Applied Physics Laboratory, Johns Hopkins University Reviewers: Jeffrey B. Plescia, Applied Physics Laboratory, Johns Hopkins University; R. Aileen Yingst, University of Wisconsin Green Bay Open Access: Copyright 2010 Malin Space Science Systems. This is an open-access paper distributed under the terms of a Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: NASA selected the Mars Orbiter Camera (MOC) investigation in 1986 for the Mars Observer mission. The MOC consisted of three elements which shared a common package: a narrow angle camera designed to obtain images with a spatial resolution as high as 1.4 m per pixel from orbit, and two wide angle cameras (one with a red filter, the other blue) for daily global imaging to observe meteorological events, geodesy, and provide context for the narrow angle images. Following the loss of Mars Observer in August 1993, a second MOC was built from flight spare hardware and launched aboard Mars Global Surveyor (MGS) in November 1996. -
Can't Go Home by Noelle Adams / Pfangirl PART 1
Can't go home By Noelle Adams / pfangirl PART 1 - SUFFOCATED A caged lioness. That's what Lara reminded Sam of now. Every time she looked at her best friend, the American thought of the big cat she'd seen in a German zoo during her globe- trotting childhood. It wouldn't lie still. It was pure feral energy, striding back and forth in its enclosure, muscles rippling beneath its pelt. Lara was the same. Lithe grace and power in human form, always moving, always intensely focused on some task or thing. Almost permanently scowling. Sam had always wondered which of her parents Lara inherited her effortless physicality from. Four years of knowing Lara, and Sam still wasn't sure. There were no photos for her to consult. The young archaeologist hardly spoke about her vanished mother and father. She avoided talking about them; evidently running from their memory like she ran from what had happened on Yamatai. In the one and a half months since the shipwreck – well, at least since she was released from hospital – Lara had been seized by a frantic, feverish vigour. They had travelled from Osaka to the UK, where Lara had spent a single day at her family's estate, ransacking her father's study. From there they headed to New York. This put Lara closer to her next intended stop – Roanoke Island. Although the city was a good base for Lara to work from while she planned her next expedition, there was a second, more distasteful reason for the archaeologist to be there: an exclusive television interview. -
Watershed Modeling in the Tyrrhena Terra Region of Mars Scott C
JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115, E09001, doi:10.1029/2009JE003429, 2010 Watershed modeling in the Tyrrhena Terra region of Mars Scott C. Mest,1,2 David A. Crown,1 and William Harbert3 Received 9 May 2009; revised 13 December 2009; accepted 29 January 2010; published 1 September 2010. [1] Watershed analyses from high‐resolution image (Viking, Mars Orbiter Camera, and Thermal Emission Imaging System) and topographic (Mars Orbiter Laser Altimeter [MOLA]) data are used to qualitatively and quantitatively characterize highland fluvial systems and analyze the role of water in the evolution of Tyrrhena Terra (13°S–30°S, 265°W–280°W), Mars. In this study, Geographical Information System software is used in conjunction with MOLA Digital Elevation Models to delineate drainage basin divides, extract valley networks, and derive basin and network morphometric parameters (e.g., drainage density, stream order, bifurcation ratio, and relief morphometry) useful in characterizing the geologic and climatic conditions of watershed formation, as well as for evaluating basin “maturity” and processes of watershed development. Model‐predicted valley networks and watershed boundaries, which are dependent on the degree to which pixel sinks are filled in the topographic data set and a channelization threshold, are evaluated against image and topographic data, slope maps, and detailed maps of valley segments from photogeologic analyses. Valley morphologies, crater/valley relationships, and impact crater distributions show that valleys in Tyrrhena Terra are ancient. Based on geologic properties of the incised materials, valley and network morphologies, morphometric parameters, and the presence of many gullies heading at or near‐crater rim crests, surface runoff, derived from rainfall or snowmelt, was the dominant erosional process; sapping may have only played a secondary role in valley formation in Tyrrhena Terra. -
Martian Crater Morphology
ANALYSIS OF THE DEPTH-DIAMETER RELATIONSHIP OF MARTIAN CRATERS A Capstone Experience Thesis Presented by Jared Howenstine Completion Date: May 2006 Approved By: Professor M. Darby Dyar, Astronomy Professor Christopher Condit, Geology Professor Judith Young, Astronomy Abstract Title: Analysis of the Depth-Diameter Relationship of Martian Craters Author: Jared Howenstine, Astronomy Approved By: Judith Young, Astronomy Approved By: M. Darby Dyar, Astronomy Approved By: Christopher Condit, Geology CE Type: Departmental Honors Project Using a gridded version of maritan topography with the computer program Gridview, this project studied the depth-diameter relationship of martian impact craters. The work encompasses 361 profiles of impacts with diameters larger than 15 kilometers and is a continuation of work that was started at the Lunar and Planetary Institute in Houston, Texas under the guidance of Dr. Walter S. Keifer. Using the most ‘pristine,’ or deepest craters in the data a depth-diameter relationship was determined: d = 0.610D 0.327 , where d is the depth of the crater and D is the diameter of the crater, both in kilometers. This relationship can then be used to estimate the theoretical depth of any impact radius, and therefore can be used to estimate the pristine shape of the crater. With a depth-diameter ratio for a particular crater, the measured depth can then be compared to this theoretical value and an estimate of the amount of material within the crater, or fill, can then be calculated. The data includes 140 named impact craters, 3 basins, and 218 other impacts. The named data encompasses all named impact structures of greater than 100 kilometers in diameter. -
Widespread Crater-Related Pitted Materials on Mars: Further Evidence for the Role of Target Volatiles During the Impact Process ⇑ Livio L
Icarus 220 (2012) 348–368 Contents lists available at SciVerse ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus Widespread crater-related pitted materials on Mars: Further evidence for the role of target volatiles during the impact process ⇑ Livio L. Tornabene a, , Gordon R. Osinski a, Alfred S. McEwen b, Joseph M. Boyce c, Veronica J. Bray b, Christy M. Caudill b, John A. Grant d, Christopher W. Hamilton e, Sarah Mattson b, Peter J. Mouginis-Mark c a University of Western Ontario, Centre for Planetary Science and Exploration, Earth Sciences, London, ON, Canada N6A 5B7 b University of Arizona, Lunar and Planetary Lab, Tucson, AZ 85721-0092, USA c University of Hawai’i, Hawai’i Institute of Geophysics and Planetology, Ma¯noa, HI 96822, USA d Smithsonian Institution, Center for Earth and Planetary Studies, Washington, DC 20013-7012, USA e NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA article info abstract Article history: Recently acquired high-resolution images of martian impact craters provide further evidence for the Received 28 August 2011 interaction between subsurface volatiles and the impact cratering process. A densely pitted crater-related Revised 29 April 2012 unit has been identified in images of 204 craters from the Mars Reconnaissance Orbiter. This sample of Accepted 9 May 2012 craters are nearly equally distributed between the two hemispheres, spanning from 53°Sto62°N latitude. Available online 24 May 2012 They range in diameter from 1 to 150 km, and are found at elevations between À5.5 to +5.2 km relative to the martian datum. The pits are polygonal to quasi-circular depressions that often occur in dense clus- Keywords: ters and range in size from 10 m to as large as 3 km. -
Diverse Morphology and Mineralogy of Aqueous Outcrops at Libya Montes, Mars D
46th Lunar and Planetary Science Conference (2015) 1738.pdf DIVERSE MORPHOLOGY AND MINERALOGY OF AQUEOUS OUTCROPS AT LIBYA MONTES, MARS D. Tirsch1, J. L. Bishop1,2, J. Voigt1,3, L. L. Tornabene4, G. Erkeling5, H. Hiesinger5 and R. Jaumann1,3 1Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany, [email protected]. 2Carl Sagan Center, SETI Institute, Mountain View, CA, USA.3Institute of Geological Sciences, Freie Universität Berlin, Berlin, Germany. 4Dept. of Earth Sciences, Centre for Planetary Science and Exploration, University of Western Ontario, London, Canada. 5Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Germany. Introduction: The Libya Montes are part of about the geological history of the study site in context the southern rim-complex of the Isidis impact basin on with regionally acting modification processes. Mars. The region is characterized by pre-Noachian and Methods: We performed a photogeological Noachian aged highland rocks alternating with multiple mapping, as well as morphological and spectral sedimentary units of Noachian to Amazonian age, analyses on a variety of datasets. HRSC topography some of them heavily dissected by dense valley (50 m/px), HiRISE and CTX imagery (25 cm/px and networks [1 - 7]. The region experienced a complex 6 m/px), and CRISM spectral data (18/33.8 m/px) have history of impact, volcanic, tectonic, fluvial and been used to reveal the geological setting of the region. aeolian modification processes resulting in the geology Specific geologic units indicated by CRISM mineral observed today. Ancient aqueous outcrops have been maps derived from spectral parameter products (R: identified by coordinated spectral and geological BD2300, G: OLV, B: LCP), have been evaluated analyses at various locations in the region [7]. -
Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum K
Evidence from Opportunity's Microscopic Imager for Water on Meridiani Planum K. E. Herkenhoff, et al. Science 306, 1727 (2004); DOI: 10.1126/science.1105286 This copy is for your personal, non-commercial use only. If you wish to distribute this article to others, you can order high-quality copies for your colleagues, clients, or customers by clicking here. Permission to republish or repurpose articles or portions of articles can be obtained by following the guidelines here. The following resources related to this article are available online at www.sciencemag.org (this infomation is current as of October 27, 2011 ): Updated information and services, including high-resolution figures, can be found in the online version of this article at: http://www.sciencemag.org/content/306/5702/1727.full.html Supporting Online Material can be found at: http://www.sciencemag.org/content/suppl/2004/11/30/306.5702.1727.DC1.html A list of selected additional articles on the Science Web sites related to this article can be on October 27, 2011 found at: http://www.sciencemag.org/content/306/5702/1727.full.html#related This article has been cited by 70 article(s) on the ISI Web of Science This article has been cited by 10 articles hosted by HighWire Press; see: http://www.sciencemag.org/content/306/5702/1727.full.html#related-urls This article appears in the following subject collections: Planetary Science www.sciencemag.org http://www.sciencemag.org/cgi/collection/planet_sci Downloaded from Science (print ISSN 0036-8075; online ISSN 1095-9203) is published weekly, except the last week in December, by the American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005. -
March 21–25, 2016
FORTY-SEVENTH LUNAR AND PLANETARY SCIENCE CONFERENCE PROGRAM OF TECHNICAL SESSIONS MARCH 21–25, 2016 The Woodlands Waterway Marriott Hotel and Convention Center The Woodlands, Texas INSTITUTIONAL SUPPORT Universities Space Research Association Lunar and Planetary Institute National Aeronautics and Space Administration CONFERENCE CO-CHAIRS Stephen Mackwell, Lunar and Planetary Institute Eileen Stansbery, NASA Johnson Space Center PROGRAM COMMITTEE CHAIRS David Draper, NASA Johnson Space Center Walter Kiefer, Lunar and Planetary Institute PROGRAM COMMITTEE P. Doug Archer, NASA Johnson Space Center Nicolas LeCorvec, Lunar and Planetary Institute Katherine Bermingham, University of Maryland Yo Matsubara, Smithsonian Institute Janice Bishop, SETI and NASA Ames Research Center Francis McCubbin, NASA Johnson Space Center Jeremy Boyce, University of California, Los Angeles Andrew Needham, Carnegie Institution of Washington Lisa Danielson, NASA Johnson Space Center Lan-Anh Nguyen, NASA Johnson Space Center Deepak Dhingra, University of Idaho Paul Niles, NASA Johnson Space Center Stephen Elardo, Carnegie Institution of Washington Dorothy Oehler, NASA Johnson Space Center Marc Fries, NASA Johnson Space Center D. Alex Patthoff, Jet Propulsion Laboratory Cyrena Goodrich, Lunar and Planetary Institute Elizabeth Rampe, Aerodyne Industries, Jacobs JETS at John Gruener, NASA Johnson Space Center NASA Johnson Space Center Justin Hagerty, U.S. Geological Survey Carol Raymond, Jet Propulsion Laboratory Lindsay Hays, Jet Propulsion Laboratory Paul Schenk,