Chlorosulphuric Acid As Anon-Aqueous Solvent

Total Page:16

File Type:pdf, Size:1020Kb

Chlorosulphuric Acid As Anon-Aqueous Solvent NOTES 2. PAUUK, F., PAUUK, J. & ERDY, L., Talanta, 13 (1966), from high purity selenium and tellurium metalsc• 1405; Analytica chem. Acta, 34 (1966), 419. Selenium mono chloride was prepared and purified 3. FLANIGEN, E. M., KHATAMI, H. & SZYMANSKI, H. A., Molecular sieve zeolites, Advan. Chern. Ser. 101 by the reported method6• Phosphorus tribromide (American Chemical Society, Washington), 1971, 201. and pentabromide were prepared as reporteds. Phos• 4. CLARK, R. J. H. & WILLIAMS, C. S.,lnorg. Chem.,4 phorus pentachloride was sublimed in pure chlorine (1965), 350. gas and kept in vacuo over P206• Phosphorus tri• 5. KHAmY, E. M., MAHGOUB, A. E. & KENAWI, I. M., Egypt J. Chem., 17 (1976), 811. chloride was distilled on a water-bath and the fraction 6. KANIPPAYOOR, RAVEENDRAN, K. & BANERJEE, SATI ofb.p. 75-76°, was used. Arsenic trichloride was PRAsAD, Cent. Glass ceram. Res. lnst. Bull., (in press). distilled under dry nitrogen atmosphere and the 7. BANERJEE, SATI PRAsAD, J. Indian chem. Soc., 55 (1978), 99. fraction b.p. 223-224° 740 mm was used. Antimony 8. SRIVASTAVA, MALTI & BANERJEE, SATI PRAsAD, J. Inst. trichloride was purified by fractional distillation Chemists (India), 50 (1978), 264. and the fraction of b.p. 223° was used. 9. AsrAKHov, V. A., MEERSON, L. A. & KLYUSHKOVA, The method of conductance measurements and Vestsi Akad. Nauk BSSR, Ser. Khim, 3 (1978), 118; Chem. Abstr., 89 (1978), 65907. the determination of y, the number of SOaO- ions produced per mole of the solute have been described earlier7• UV and visible spectra of the solutions were recorded on a Beckman spectrophotometer using quartz cells. Chlorosulphuric Acid as ANon-aqueous Solvent : Interpolated values of the specific conductivity of Part XII-Behaviour of Some Inorganic Halides in various solutes in chlorosulphuric acid have been Chlorosulphuric Acid presented in Table I. Unlike the solution of selenium tetrachloride in R. C. PAUL, D. S. DHILLON, D. KONWER & J. K. PuRl· chlorosulphuric acid2, the solution of selenium Department of Chemistry, Panjab University, tetrabromide in this acid is always accompanied Chandigarh 160 014 with the evolution of S02 gas. The solution is highly conducting and unstable. The colour of the Received22 June 1978; revised 26 December 1978; rerevised and solution is reddish-brown similar to that of bromine accepted 22 September 1979 in chlorosulphuric acid. It may be assumed that Tetrabromides of selenium of tellurium form SeBrt and probably hydrobromic acid, produced during the TeBrt ions, when dissolved in chlorosulphuric acid. Solution reaction, is further oxidised by free sulphur trioxide of selenium monochloride in chlorosulphuric acid contains both (obtained from the self-dissociation of the solvent) to liberate free bromine. However, the conductance Seat and Se:+ ions. Phosphorus pentachloride forms PClt ions in chlorosulphuric acid while phosphorus trichloride behaves data, when extrapolated to zero time and compared as a very weak base. Phosphorus tribromide and pentabromide with that of potassium chlorosulphate in chloro• are oxidized in chlorosulphuric acid to from phosphoryl bromide sulphuric acid, suggest the following mode of re• which is further protonated by the acid. Trichlorides of arsenic action of SeBr4' and antimonysolvolyse when dissolved in chlorosulphuric acid. 2SeBr4 + 4HSOsCI ~ 2SeBrt + 2S0sCI- + Br2 + H2S04 + 2HCI + S02 pAUL and coworkers1 have studied the behaviour y == I .. (1) of various inorganic halides in disulphuric acid. Robinson and Ciruna2 have shown the formation The above reaction is further supported by UV of SeClt and TeCI+a ions by dissolving SeCl4 and spectrum of the solution which shows the absorp• TeCl4 in chlorosulphuric acid. In the present note, tion band at 280 nm (EM == 1050) which is attri• we report the behaviour of some more inorganic buted to the presence of sulphur dioxide in. the halides in chlorosulphuric acid which may be helpful above reaction. Sulphur dioxide and bromine, pro• in understanding the true nature of these halides. duced in the above reaction, behave as non-electro• Chlorosulphuric acid (BDH, reagent grade) was lytes in chlorosulphuric acid whereas H2S04 and used directly as suggested by Robinson and Cirunaa. HCI are veIY weak basesa of the system. TeBr. Selenium and tellurium tetrabromides were prepared shows a similar behaviour in chlorosulphuric acid. TABLE 1 -' 1.9050.0951.4150.7052.1850.120.1050.1150.7851.7150.0900.0800.180.040.080.7250.8850.1251.6250.1351.4050.3850.5850.060.101.5050.0850.6000.8250.9251.3201.6151.5752.3051.3151.7551.6050.6251.6650.4251.3050.8051.1051.1250.141.4251.8150.7151.5100.8101.2150.405Q.4151.2101.8251.1150.4001.4151.0501.2051.8050.16INTERPOLATED0.905 VALUES0.0600.1950.3150.0550.0500.2250.2150.200 OFSp.SPECIFICcondo atCoNDUCfANCESthe concentrationOF VARIOUS(equivalents/kgINORGANICoflIALIoESthe solution)IN CHLOROSULPHURIC ACID AT 25° PBrsPBr.pasTeBr.PClsAsClsSbCl.SeBr. Compounds SesCI. 0.02 473 INDIAN J. CHEM., VOL. 19A, MAY 1980 The ormation of SeBrt and TeBrt ions in chlo• these frequencies for P-CI are slightly lower than rosulp uric acid is quite possible, since these ions those reported for Si-Cl in isoelectronic SiCl4 have a ready been established to exist by Paul and due to the formal charge on PClt. These obser• cowor ersi in disulphuric acid. vations agree with the reported vibrations of this Sele ium mono chloride when dissolved in chloro• ion in the solid state and support the mode of sulphu ic acid, forms green solution which slowly ionization of these solutes as suggested earlier. change to yellow. It has already been reported Phosphorus trichloride dissolves in HSOaCI to that s lenium monochloride disproportionates in give solution with very little change in conductance, certain highly acidic solvent as : which indicates that it behaves as a very weak electro• lyte in this solvent systems. But the solution of 2 e2Cl2 ------+ SeCl4 + 3Se phosphorus tribromide in chIorosulphuric acid gives In chI rosulphuric acid solvent also probably smell of S02 indicating that some oxidation reaction seleni mono chloride disproportionates to give takes place. It may be assumed that phosphoryl eleme al selenium and selenium tetrachloride. bromide is formed which is further protonated in Eleme tal selenium, thus formed, reacts further with the solvent. The solution has a quite good conduc• the so vent to form green solution (due to Se2jj tance. From the conductance data the possible cation which slowly changes to yellow in colour mode of reaction may be suggested as (Eq. 3), due t the formation of cation)D. UV and Se2! PBra + 2HSOaCI---+ P(OH)+ Bra + SOaCI- visible spectra of the yellow solution show the pre• sence f Se:+ cation in solution. Selenium tetra• + HCI + S02 .. (3) chlori , so produced is further ionized in chloro• (y < 1) sulphu ic acid to form SeCI! ion. IR spectrum of the ab ve solution shows bands at 370, 340, 260, From the y value obtained, it has been 'concluded 560, 5 0, 780, 1070, 1240 and 1340 cm-I. The bands that POBra, formed in the reaction, undergoes at 370,340 and 260 cm-I are due to the cation SeClt . incomplete proton ation in chlorosulphuric acid, The b nding mode (V2)which is usually found in while in disuiphurici acid, it behaves as a fully the so id state at 385 cm-I is shifted to 370 cm-I, protonated base. sugges ing a slight solvation of the cations by the Unlike phosphorus pentachloride, phosphorus solven molecule. The bands at 560, 580, 1070, pentabromide dissolve in HSOaCI accompanied with 1240 d 1340 cm-I are due to chlorosulphate ion the evolution of S02 gas to form a reddish-brown and c nform to the mode of the ionization as solution which is stable and has a quite good con• report d earlier. UV spectrum of the solution of ductance. The colour of the solution is similar to seleniu monochIoride in chIorosulphuric acid that of bromine solution in HSOaCl. It has already shows bands characteristic of Se:+ and sulphur been reported that phosphorus pentabromide dis• dioxid 9. However, from the above spectral studies sociates to phosphorus tribromide and free bromine and t conductance data the overall reaction may in certain highly acidic solvents. Phosphorus tri• be rep sented by Eq. 2, bromide thus formed is oxidized by the solvent to phosphoryl bromide which is further protonated in 8Se2 12+ 16HSOaCI---* 3Se:++ 4SeCIt + it. The possible mode of reaction of phosohorus pentabromide in HSOaCI may be suggested as shown IOS0aCl- + 3H2S04 + IOHCI + 3S02 in Eq. 4. (y=1.25) .. (2) PBr5 + 2HSOaCl--+ P(OH+)Bra + SOaCl• Pho phorus pentachIoride readily dissolves in + Br2 + HCI + S02 chIoro ulphuric acid to form highly conducting (y < 1) .. (4) soluti n which is quite stable. From the conduc• tance atarit has been suggested that probably phos• However from the y value obtained, it has been phoru pentachloride first reacts with the free sulphur observed that phosphorus pentabromide also behaves trioxi (obtained from the self-dissociation of the as a weak electrolyte in chIorosulphuric acid. The solven) to form the compound PClt SOaCl- which presence of sulphur dioxide in the above reaction is is furt er ionized in chlorosulphuric acid to give further confirmed from the UV spectrum of the PClt ion, solution as discussed earlier .. Arsenic trichloride has been known to form ionic PCl + HSOaCI -+ PClt SOaCl- + HCl --+ complexes with stronger lewis acids such as SbCI~3 PClt + SOaCr- + HCI and BCI~4 and the ions have been formulated as y < 1 AsClt .BCI4 and AsCI! SbCI-; respectively. Con• ductometric titrations between acidsI5 and basesl'• The above reaction is further supported by the IR have shown the occurrence of autoionization as : spectr m of the solution [bands at 1160, 1030, 840, 750, 6 0, 570, 485 cm-I in comparison to IR bands 2AsCla ;=:!: AsClt + AsCI~ of PC t reported at 640, 570, and 485 cm-I by Beatti et al.IO].
Recommended publications
  • Chemicals, Rare Chemicals, Reagents & Solvents
    Annual Procurement Plan for the Year 2021-22 Consumable List 1 Chemicals, Rare Chemicals, Reagents & Solvents Sl. No. Generic Name Specification Quantity Approx Cost (Rs.) 1. HEPES Molecular biology 1kg 80000/‐ grade 2. MES hydrate Molecular biology 1kg 34000/‐ grade 3. Imidazole Molecular biology 1kg 28000/‐ grade 4. BIS‐TRIS Molecular biology 500g 44000/‐ grade 5. Agarose Type I Molecular biology 1kg 11900/‐ grade 6. CAPS Molecular biology 100g 8000/‐ grade 7. Trizma Base Molecular biology 1kg 31000/‐ grade 8. Glycerol Molecular biology 2.5L*4 8000/‐ grade 9. Ethanol Molecular biology 500ml*10 8000/‐ grade 10. NaCl Molecular biology 1kg 6000/‐ grade 11. Tris Buffer Molecular biology 1 kg 10000/‐ grade 12. Ethyl acetate Molecular biology 500ml*5 6500/‐ grade 13. Acetic acid 25L 11000/‐ 14. Methanol 25L 8000/‐ 15. Urea Molecular biology 1kg 2000/‐ grade 16. Agar Powder, Bacteriological 500g 8000/‐ 17. Trizma Hydrochloride Molecular biology 1kg 15000/‐ grade 18. Acrylamide Molecular biology 500g 4000/‐ grade 19. Phenol Molecular biology 500ml 5000/‐ grade 20. Luria Bertani Broth 2.5kg * 4 90,000 21. Acetone 2.5L 1500/‐ 22. Ni‐NTA beads 100ml 57000/‐ 23. Ammonium persulphate Molecular biology 100g 2000/‐ grade 24. Ampicillin Sodium Molecular biology 100 g 13000/‐ grade 25. Kanaymycin Monosulfate Molecular biology 100g 60000/‐ grade 26. Choramphenicol Molecular biology 100g 40000/‐ grade 27. Isopropyl β‐ d‐1‐thiogalactopyranoside Molecular biology 100g 35000/‐ grade 28. Coomassie Brilliant Blue R‐250 Molecular biology 25g 10,000/‐ grade 29. SDS Molecular biology 100g 2500/‐ grade 30. Isopropanol 25 L 15000/‐ 31. Crystallization screen JCSG‐Plus 1 unit/box 50000/‐ 32.
    [Show full text]
  • Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling
    University of Mary Washington Eagle Scholar Student Research Submissions Spring 5-7-2018 Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling Poornima Sunder Follow this and additional works at: https://scholar.umw.edu/student_research Part of the Biochemistry Commons Recommended Citation Sunder, Poornima, "Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling" (2018). Student Research Submissions. 226. https://scholar.umw.edu/student_research/226 This Honors Project is brought to you for free and open access by Eagle Scholar. It has been accepted for inclusion in Student Research Submissions by an authorized administrator of Eagle Scholar. For more information, please contact [email protected]. Synthetic Routes to Bromo-Terminated Phosphonate Films and Alkynyl Pyridine Compounds for Click Coupling Poornima Rachel Sunder Thesis submitted to the faculty of University of Mary Washington in partial fulfillment of the requirements for graduation with Honors in Chemistry (2018) ABSTRACT Click reactions are a highly versatile class of reactions that produce a diverse range of products. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) click reactions require an azide and a terminal alkyne and produce a coupled product that is “clicked” through a triazole ring that can have a variety of substituents. In this work, bromo-terminated phosphonate films on copper oxide surfaces were explored as the platform for click coupling, as the terminal azide needed for the reaction can be generated through an in situ SN2 reaction with a terminal bromo group. The reactions were characterized using model reactions in solution before being conducted on modified copper oxide surfaces.
    [Show full text]
  • Transport of Dangerous Goods
    ST/SG/AC.10/1/Rev.16 (Vol.I) Recommendations on the TRANSPORT OF DANGEROUS GOODS Model Regulations Volume I Sixteenth revised edition UNITED NATIONS New York and Geneva, 2009 NOTE The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the Secretariat of the United Nations concerning the legal status of any country, territory, city or area, or of its authorities, or concerning the delimitation of its frontiers or boundaries. ST/SG/AC.10/1/Rev.16 (Vol.I) Copyright © United Nations, 2009 All rights reserved. No part of this publication may, for sales purposes, be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, electrostatic, magnetic tape, mechanical, photocopying or otherwise, without prior permission in writing from the United Nations. UNITED NATIONS Sales No. E.09.VIII.2 ISBN 978-92-1-139136-7 (complete set of two volumes) ISSN 1014-5753 Volumes I and II not to be sold separately FOREWORD The Recommendations on the Transport of Dangerous Goods are addressed to governments and to the international organizations concerned with safety in the transport of dangerous goods. The first version, prepared by the United Nations Economic and Social Council's Committee of Experts on the Transport of Dangerous Goods, was published in 1956 (ST/ECA/43-E/CN.2/170). In response to developments in technology and the changing needs of users, they have been regularly amended and updated at succeeding sessions of the Committee of Experts pursuant to Resolution 645 G (XXIII) of 26 April 1957 of the Economic and Social Council and subsequent resolutions.
    [Show full text]
  • Synthesis and Antiplasmodial Activity Testing of (1)-N-(4-Methoxybenzyl)-1,10-Phenanthrolinium Bromide
    Indo. J. Chem., 2007, 7 (2), 197-201 197 SYNTHESIS AND ANTIPLASMODIAL ACTIVITY TESTING OF (1)-N-(4-METHOXYBENZYL)-1,10-PHENANTHROLINIUM BROMIDE 1,* 2 2 3 3 Ruslin Hadanu , Sabirin Mastjeh , Jumina , Mustofa , Mahardika Agus Widjayanti and Eti Nurwening Sholikhah3 1Department of Chemistry, Pattimura University, Ambon, Indonesia. 2Laboratorium of Organic Chemistry, Department of Chemistry, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281. 3Medical Faculty, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281. Received 7 April 2007; Accepted 25 May 2007 ABSTRACT Synthesis of (1)-N-(4-methoxybenzyl)-1,10-phenanthroline bromide from 1,10-phenanthroline monohydrate and 4-methoxybenzaldehyde as starting material and evaluation of its antiplasmodial activities have been carried out. The 4-methoxybenzyl alcohol was prepared from 4-methoxy-benzaldehyde using sodium borohydride (NaBH4) reagent and ethanol absolute solution. The mixture was refluxed for 3 h. To yield colorless dilution compound with 90.41 % in efficiency. Furthermore, bromination of 4-methoxybenzyl alcohol with phosphorus bromide (PBr3) was conducted by refluxing for 3 h. The product of this reaction was yellow liquid of 4-methoxybenzyl bromide, 79.03% yield and 95.34 % purity. The final step of reaction was benzylation of 1,10-phenanthroline monohydrate with 4- methoxybenzyl bromide reagent. It was conducted by refluxing in aceton for 8 h at 55 oC. The yield of the reaction was (1)-N-(4-methoxybenzyl)-1,10-phenanthroline bromide (77.63%). It is pink solid form, and its melting point is 192-193 oC. Identification of the product was carried out by means of GC-MS, IR and 1H-NMR spectrometers. The in vitro antiplasmodial activity on chloroquine-resistant Plasmodium falciparum FCR-3 strain and chloroquine sensitive P.
    [Show full text]
  • Alphabetical Index of Substances and Articles
    ALPHABETICAL INDEX OF SUBSTANCES AND ARTICLES - 355 - NOTES TO THE INDEX 1. This index is an alphabetical list of the substances and articles which are listed in numerical order in the Dangerous Goods List in Chapter 3.2. 2. For the purpose of determining the alphabetical order the following information has been ignored even when it forms part of the proper shipping name: numbers; Greek letters; the abbreviations “sec” and “tert”; and the letters “N” (nitrogen), “n” (normal), “o” (ortho) “m” (meta), “p” (para) and “N.O.S.” (not otherwise specified). 3. The name of a substance or article in block capital letters indicates a proper shipping name. 4. The name of a substance or article in block capital letters followed by the word “see” indicates an alternative proper shipping name or part of a proper shipping name (except for PCBs). 5. An entry in lower case letters followed by the word “see” indicates that the entry is not a proper shipping name; it is a synonym. 6. Where an entry is partly in block capital letters and partly in lower case letters, the latter part is considered not to be part of the proper shipping name. 7. A proper shipping name may be used in the singular or plural, as appropriate, for the purposes of documentation and package marking. - 356 - INDEX Name and description Class UN No. Name and description Class UN No. Accumulators, electric, see 4.3 3292 Acid mixture, nitrating acid, see 8 1796 8 2794 8 2795 Acid mixture, spent, nitrating acid, see 8 1826 8 2800 8 3028 Acraldehyde, inhibited, see 6.1 1092 ACETAL 3 1088
    [Show full text]
  • United States Patent Office Patented Jan
    3,119,666 United States Patent Office Patented Jan. 28, 1964 1. 2 solvent is immaterial, since in practical operation, I re 3,119,666 use the solvent for the reaction after the suspended phos METHOS FOR THE PREPARATION OF phorus pentabromide is removed therefrom by filtration PHOSPHORUS PENTABROMIDE or by centrifuging after the reaction is completed. There Richard C. Nametz, St. Louis, Mich., assignor to fore, upon the first use of the solvent it becomes satu Michigan Chemical Corporation, St. Louis, Mich., a rated with the small amount of phosphorus pentabromide corporation of Michigan which it will dissolve, and will dissolve no more of the No Drawing. Fied Nov. 12, 1957, Ser. No. 695,548 product upon reuse. 12 Claims. (C. 23-205) In this method, I utilize substantially equimolar quan This invention relates to an improved method for the O tities of bromide and of phosphorus tribromide, together production of phosphorus pentabromide. with an amount of the co-solvent for bromine and phos Phosphorus pentabromide (phosphoric bromide) is a phorus tribromide relative to the quantities of the re known compound having a melting point above 100 C., actants used which is within the range which will suspend at which temperature it decomposes to form phosphorus the phosphorus pentabromide as a slurry which can be tribromide with the evolution of bromine. Due to its 5 readily stirred and which at the end of the reaction can heat sensitivity, phosphorus pentabromide cannot be puri be readily filtered, but which does not provide an un wieldly bulk of material to handle.
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • The Replaceonetit of Hydi*Oxyl by Bromine
    View Article Online / Journal Homepage / Table of Contents for this issue THE REPLACEMENT OF HYDROXYL BY BROMINE. 855 LXXXVIII:.- The ReplaceoneTit of Hydi*oxyl by Bromine. By WILLIAM HENRYPERKIN, jun., and JOHNLIONEL SIREONSEN. Published on 01 January 1905. Downloaded by University of Windsor 26/10/2014 01:06:14. THEmethods available for the preparation of aliphatic compounds in which several atoms of bromine are combined with different carbon atoms are few in number. It is usually assumed that a substance containing one or more hydroxyl groups may be converted into the corresponding bromo-derivatives by treatment with hydrobromic acid, or phosphorus tri- or penta-bromide, but in attempting to use this method in the preparation of bromo-derivatives for the purpose of ring synthesis unexpected difficulties were encountered. The hydroxy -groups in such polyhydric alcohols as glycerol, erythritol, mannitol, ckc., are usually only partially replaced by bromine when these alcohols are treated with hydrobroinic acid, and if, by employing higher temperatures and a large excess of the halogen acid, the attempt is made to complete the substitution, decomposition usually takes place with much charring, and the yield obtained is con- sequently very small. The same remarks apply to the use of the View Article Online 856 PERKIN AND SIMONSEN : bromides of phosphorus in such cases, the results obtained by the action of these reagents on the polyhydric alcohols being frequently most unsatisfactory." In investigating this matter, we found that a great improvement is achieved if the alcohol is first converted into the acetate and the latter is then heated with a solution of hydrogen bromide in glacial acetic acid (saturated at 0") at about 150'.
    [Show full text]
  • Table of Contents
    UNIVERSITY OF MISSOURI-KANSAS CITY CHEMICAL MANAGEMENT PLAN Revised May 2016 UMKC CHEMICAL MANAGEMENT PLAN This document constitutes the Chemical Management Plan (CMP) for the University of Missouri-Kansas City (UMKC). It was developed by the Environmental Health and Safety Department (EHS), to ensure the safe and proper use of hazardous and non- hazardous chemicals and to comply with applicable governmental regulations addressing the disposal of these chemicals. In addition, it was developed to foster waste minimization, and to provide the faculty and the staff with a management program to reduce the potential for accidents involving hazardous chemicals and/or wastes. Elements of the CMP include: a. a procedure for identifying potential or actual hazardous chemicals or wastes b. a procedure for periodic reexamination of those hazardous chemicals or wastes identified by the procedure in (a.) above as well as a systematic method for identification and evaluation of any new potential or actual hazardous chemicals or wastes c. procedures for labeling, and inventorying hazardous chemicals or wastes d. a procedure for identification and training of personnel directly responsible for ensuring that (a.), (b.), and (c.) are implemented e. a procedure for monitoring, recording, and reporting compliance with the CMP f. a procedure by which information generated by the CMP is provided to the persons performing waste analyses Each element is addressed as part of the complete CMP in the following paragraphs. 4 Table of Contents 1 Definitions 7 2 Identification
    [Show full text]
  • Halogenation Reagents
    Halogenation Reagents Halogenation is a basic and fundamental transformation in organic chemistry, and halogenated compounds are of extreme importance as building blocks in organic synthesis. The development of modern coupling reactions, such as the [P2140] Suzuki-Miyaura and Mizoroki-Heck reactions, have greatly increased the demand for halogenated compounds as starting materials. P2140 (2.3 eq.) On the other hand, introduction of fluorine into a certain position of bioactive compound such as a pharmaceutical and an agricultural chemical may remarkably reduce the toxicity of the compound, or improve the efficiency of medicine. This is due to the structurally mimic and blocking effect characterized by fluorine. P2140 (3 eq.) In response to this situation, a number of novel halogenation reagents have been developed. 4-tert-Butyl-2,6-dimethylphenylsulfur trifluoride (FLUOLEAD™) [B3664] is introduced as below: B3664 is a novel nucleophilic 1-Fluoro-3,3-dimethyl-1,2-benziodoxole [F0957] is a hypervalent fluorinating agent which was first reported by Umemoto et al.1) iodine derivative developed by Stuart et al.3) F0957 is stable to air Differing from other existing fluorinating agents, such as DAST, and moisture and used as an electrophilic fluorinating reagent for B3664 is a crystalline solid with high thermal stability and less a α-monofluorination of β-ketoesters in the presence of fuming character, which makes it easier to handle. B3664 triethylamine trihydrofluoride. fluorinates a hydroxyl or carbonyl group to afford the corresponding fluorinated compounds in good yields.1) F I O [F0957] O O Ph OEt F0957(2eq.) F O O Et3N-3HF(2.7eq.) [B3664] Ph OEt CH2Cl2 O O 40oC,24h Ph OEt F F Dibromoisocyanuric acid (DBI) [D3753] which was first reported by Gottardi, is a mild and highly effective brominating agent,4a,b,c) and has superior brominating ability when compared with N-bromosuccinimide (NBS), which is frequently used in organic IF5-Pyridine-HF (Hara Reagent) [P2140] is also a novel synthesis.
    [Show full text]
  • Safety Data Sheet
    1/6 Phosphorus tribromide,6202E-1,28/01/2021 Date of issue: 28/01/2021 Safety Data Sheet 1. Identification of the substance/mixture and of the company/undertaking Product identifier: Product name: Phosphorus tribromide SDS No. : 6202E-1 Details of the supplier of the safety data sheet Manufacturer/Supplier: KISHIDA CHEMICAL CO., LTD. Address: 3-1, Honmachibashi, Chuo-ku,Osaka ,JAPAN Division: Safety Management Dept. of Chemicals Telephone number: +81-6-6946-8061 FAX: +81-6-6946-1607 e-mail address: [email protected] 2. Hazards identification GHS classification and label elements of the product Classification of the substance or mixture HEALTH HAZARDS Skin corrosion/irritation: Category 1B Serious eye damage/eye irritation: Category 1 Specific target organ toxicity - single exposure: Category 3 (Respiratory tract irritation) (Note) GHS classification without description: Not classified/Classification not possible Label elements Signal word: Danger HAZARD STATEMENT Causes severe skin burns and eye damage Causes serious eye damage May cause respiratory irritation PRECAUTIONARY STATEMENT Prevention Do not breathe dust/fume/gas/mist/vapors/spray. Use only outdoors or in a well-ventilated area. Wash contaminated parts thoroughly after handling. Wear protective gloves, protective clothing or face protection. Wear eye protection/face protection. Response Call a POISON CENTER or doctor/physician if you feel unwell. IF INHALED: Remove person to fresh air and keep comfortable for breathing. IF ON SKIN (or hair): Take off immediately all contaminated clothing. Rinse skin with water/shower. Wash contaminated clothing before reuse. IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do.
    [Show full text]
  • Hazardous Materials Safety Administration 49 CFR Parts 171, 172, 173, Et Al
    Vol. 80 Thursday, No. 5 January 8, 2015 Part II Department of Transportation Pipeline and Hazardous Materials Safety Administration 49 CFR Parts 171, 172, 173, et al. Hazardous Materials: Harmonization With International Standards (RRR); Final Rule VerDate Sep<11>2014 19:02 Jan 07, 2015 Jkt 235001 PO 00000 Frm 00001 Fmt 4717 Sfmt 4717 E:\FR\FM\08JAR2.SGM 08JAR2 mstockstill on DSK4VPTVN1PROD with RULES2 1076 Federal Register / Vol. 80, No. 5 / Thursday, January 8, 2015 / Rules and Regulations DEPARTMENT OF TRANSPORTATION III. Incorporation by Reference Discussion reduces regulatory compliance costs and Under 1 CFR Part 51 helps to avoid costly frustrations of Pipeline and Hazardous Materials IV. Comment Discussion international shipments. PHMSA’s Safety Administration V. Section-by-Section Review continued leadership in maintaining VI. Regulatory Analyses and Notices A. Statutory/Legal Authority for the consistency with international 49 CFR Parts 171, 172, 173, 175, 176, Rulemaking regulations enhances the hazardous 178 and 180 B. Executive Orders 12866 and 13563 and materials safety program and assists in DOT Regulatory Policies and Procedures maintaining a favorable trade balance. [Docket Nos. PHMSA–2013–0260 (HM– C. Executive Order 13132 215M)] D. Executive Order 13175 II. Background E. Regulatory Flexibility Act, Executive RIN 2137–AF05 PHMSA published a notice of Order 13272, and DOT Policies and proposed rulemaking (NPRM) under Procedures Docket HM–215M (79 FR 50741, August Hazardous Materials: Harmonization F. Paperwork Reduction Act With International Standards (RRR) G. Regulatory Identifier Number (RIN) 25, 2014) to incorporate various H. Unfunded Mandates Reform Act amendments to harmonize the HMR AGENCY: Pipeline and Hazardous I.
    [Show full text]