Atomic Evolution January 10 Environmental Problems in Our Lifetime

Total Page:16

File Type:pdf, Size:1020Kb

Atomic Evolution January 10 Environmental Problems in Our Lifetime 3.01 Understanding Atoms The Events Leading to the Discovery of the Building Block of Matter Dr. Fred Omega Garces Chemistry 111 Miramar College 1 3.02 Atomic Evolution January 10 Environmental Problems in our Lifetime The sun and our atmosphere 2 3.02 Atomic Evolution January 10 Relationship between CO2 and Global Temperature Atmospheric CO2 and Global Temperature 3 3.02 Atomic Evolution January 10 Charles David Keeling, An Analytical Chemist • Charles David Keeling 4 3.02 Atomic Evolution January 10 Idea of the Atom How did man come up with the idea of the atom ? It took ~2400 years from when it was conceived to the time experimental evidence prove of the atom existence. 5 3.02 Atomic Evolution January 10 History of Chemistry and development of the atomic model History of Atomic Structure The timeline of the progression of the development of the Modern Atomic theory. Atomic Theory Timeline J. Dalton Empedocles J. Proust Aristotle A. Lavoisier R. Boyle Democritus Leucippus Zeno Aristotle Democritus Boyle Lavoisier Dalton R. Bacon -5 0 0 -2 5 0 0 2 5 0 5 0 0 7 5 0 1 0 0 0 1 2 5 0 1 5 0 0 1 7 5 0 2 0 0 0 6 3.02 Atomic Evolution January 10 Matter according to ... Greek Philosophers 492-375 BC: Empedocles (supported by Aristotle) Earth-Air-Fire-Water 400 BC: Zeno (also supported by Aristotle) Matter can be infinitely divided 400 BC: Leucippus 470-375 BC: Democritus (student of Leucippus) Proposed the idea of the atom Matter -indivisible particles called atoms “Atheistic Belief” 7 3.02 Atomic Evolution January 10 Next 2000 Years Alchemy (pseudo science) lead into gold experiments (black magic) took detailed notes (lab notebook conceived) Systematic metallurgy (extracted metals from ore) Roger Bacon (1214-1292) An English and alchemist, Bacon became known as the founder of experimental science. He believed that doing experiments for yourself rather than just accepting what other people tell you was the way to learn about nature. His most important work was the Opus Matus, in what he wrote about the scientific method of learning. He did many experiment which showed how rainbow are made by the effect of water drops on sunlight and how lenses could be used to help people with weak sight. Pierre Gassendi (1600), Priest, Philosopher and scientist that modified the original hypothesis of Leuccipus and stated all atoms 8 3.02 Atomic Evolution created by “God”. January 10 Atomic Structure Revolution 1500 Robert Boyle The Skeptical Chemist He performed detailed experiment with gases; this initiated the break down of the Greek's model of matter. 1700 Antoine Lavoisier Father of modern chemistry (Law of conservation of mass) He made very careful measurements and concluded that mass is neither created nor destroyed. The thought at the time was then when a substance was burned, the ashes were lighter than the starting material, but Lavoisier did the experiment in an enclosed container and determined that the mass did not change. Subsequent experiments with other reactions was consistent with the conservation of mass findings. 9 3.02 Atomic Evolution January 10 1790-1800 Joseph Proust (Law of definite proportion or Law of constant composition) A given compound always contain exactly the same proportion of elements by mass. i.e., H2O 2:16 or H : O 1 : 8 by mass always true whether there is 18 g or 139 g H2O For, H2O2 2:32 the H : O is 1 g H : 16 g O In other words, Water found in SD or the Arctic or Jupiter’s moon will all have 1 g hydrogen to 8 g oxygen ratios. Likewise glucose found in sugar cane or sweet beets have 6 g carbon to 1 g hydrogen to 8 gram oxygen ratios (12 x 6 C: 1 x 12 H: 16 x 6 O). i.e.,The relative numbers and kinds of atoms are constant. 10 3.02 Atomic Evolution January 10 1800 John Dalton J. Dalton: Founder of the Modern Atomic Theory (Law of Multiple proportion) When two elements form a series of compounds, the ratio of the masses of the element that combine with 1 gram of the first element can be reduce to small whole numbers. Example: : Mass of nitrogen that combines with 1.0 gram of oxygen *Compound A 1.750 g g A/B = 1.750/0.8760 = 2 / 1 Compound B 0.8750 g g B/C = 0.8760 / 0.4375 = 2 / 1 Compound C 0.4375 g g A/C = 1.750 / 0.4375 = 4 / 1 Compounds consist of atoms which combines in whole number ratios. *N2O g N2O NO g NO NO2 g N1/2 O 11 3.02 Atomic Evolution January 10 1808 Dalton's Atomic Theory : A new system of Chemical Philosophy • All matter is made of atom. • In a chemical reaction atoms are neither created or destroyed but only arranged differently. • Atoms of the same element are identical. • Compounds are formed from two or more atoms. Atoms combine in simple whole number ratios to form compounds. 12 3.02 Atomic Evolution January 10 ... what’s next ?? Around this period, the model of the atom was gaining acceptance by scientist. Questions still unanswered - What is an atom? How is it put together? What are the parts of an atom? 13 3.02 Atomic Evolution January 10 Faraday Electrolysis ~1832 Contributions to the Modern Atomic Theory Mendeleev Balmer Michelson Periodic Table Discharge Tubes C The modern Atom: a flow chart ~ 1830 - 90 ~1870 ~1885 of major theoretical and Becquerel, Curie Thomson Planck Radioactivity α,β γ experimental contributions e/m Quantum ~1897 ~1897 ~1900 (who, what, and when) leading to Einstein our understanding of the atom. Millikan Rutherford E=hv, E=mc2 e Nucleus ~1905 ~1909 ~1911 Bohr Scientific discovery is a Shell Model ~1913 complex human endeavor. The Aston Isotopes developments leading to our ~1909 Stern, Gerlach deBroglie Electron Spin Matter Waves ~1921 ~1924 understanding of the modern atom, dramatically depict Schrodinger scientific discoveries not as Wave Model, Heisenberg Pauli Exclusion, Uncertainty Principle individual efforts, but as the Hund's Rules ~1927 ~1926 collective work of the scientific community. Chadwick Neutron ~1932 14 3.02 Atomic Evolution January 10 Early experiments to Characterize the atoms 1820's Sir Humphrey Davy / Michael Faraday Matter contains negative charge particles (electrons). Later, cathode rays were discovered and in the late 1800's cathode rays was investigated further. (1832) http://video.google.com/videoplay?docid=4144497206440839046 1900 John J. Thomson Cathode rays were electrically charge particles. Cathode Ray tube with electron stream where deflected by positive and negative plate: e / m = -1.76•108 C/g Proposed the "plum pudding model" theory of the atom; based on Coulomb's Law: F = k ( Q1 Q2) / r. Atoms contains protons and electrons. 1909 R.A. Millikan Oil drop expt.: Determine the electron’s charge-value. e- = -1.60•10-19 C m = 9.11 •10-31 kg 15 3.02 Atomic Evolution January 10 Arrangement of subatomic particles 1911 Ernest Rutherford: Gold thin foil experiment. Reflection of alpha radiation on gold foil proved that the atom consisted of a very dense nucleus. • Based on the particles deflection pattern, Rutherford calculated the fraction of the atomic volume occupied by the positive nucleus of about 1 part in 1014. The mass is so dense that a nucleus the size of a pea would have mass greater that 250 million tons. 16 3.02 Atomic Evolution January 10 Characteristics of Atomic Parts The parts: Subatomic particles and their properties Particle Mass *Rel Mass Relative Charge (amu) e -; electron 9.109•10 -31 Kg 1/1837 - 1.602•10 -19 C p + ; proton 1.673•10 -27 Kg 1 + 1.602•10 -19 C n; neutron 1.675•10 -27 Kg 1 0 * Relative mass: 1 amu = 1 proton 17 3.02 Atomic Evolution January 10 Summary These were a few of the experiments which lead to the discovery and a better understanding to the parts of the atom. Three sub-atomic particles : electron, protons, and neutrons combine in various numbers and arrangement to make the different 109 elements (and counting) in the periodic table. The picture of the atomic architecture is now complete (or is it ?). From the time of Dalton g Thomson g Rutherford g Bohr g Schrodinger, our model of the atom has undergone many modifications. The model is not finish however. 18 3.02 Atomic Evolution January 10 String Theory String theory is an active research framework in particle physics that attempts to reconcile quantum mechanics and general relativity general relativity.[1] It is a contender for the theory of everything (TOE), a manner of describing the known fundamental forces and matter in a mathematically complete system. The theory has yet to make testable experimental predictions, leading some scientists to claim that it cannot be considered a part of science. http://superstringtheory.com/. http://www.pbs.org/wgbh/nova/elegant/ 19 3.02 Atomic Evolution January 10 .
Recommended publications
  • The Prolongation of Life in Early Modern English Literature and Culture, with Emphasis on Francis Bacon
    THE PROLONGATION OF LIFE IN EARLY MODERN ENGLISH LITERATURE AND CULTURE, WITH EMPHASIS ON FRANCIS BACON ROGER MARCUS JACKSON A dissertation submitted to the faculty of the University of North Carolina at Chapel Hill in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of English and Comparative Literature. Chapel Hill 2010 Approved by: Dr. Reid Barbour Dr. Mary Floyd-Wilson Dr. Darryl Gless Dr. James O‘Hara Dr. Jessica Wolfe ©2010 Roger Marcus Jackson ALL RIGHTS RESERVED ii ABSTRACT ROGER MARCUS JACKSON: The Prolongation of Life in Early Modern English Literature and Culture (Under the direction of Reid Barbour) Drawing upon early modern texts of poetry, theology, and natural philosophy written in England and the continent, this dissertation explores the intellectual traditions inherent in Renaissance discourses addressing the prolongation of life. It is organized around two nodal questions: Can life be prolonged? Should it be prolonged? The project hinges upon Francis Bacon (1561-1626), for whom the prolongation of life in the sense of a longer human lifespan serves as the loftiest goal of modern experimental science. Addressing the first question, Part One illustrates the texture and diversity of early modern theories of senescence and medical treatments against the ―disease‖ of old age promoted by Galen, Avicenna, medieval theologians, Jean Fernel, Marsilio Ficino, and Paracelsus. Part Two then demonstrates that Bacon‘s theory of senescence and corresponding therapies nevertheless differ from those of his predecessors and contemporaries in three regards: their attempt to isolate senescence from disease, their postulation of senescence as a process based on universal structures and actions of matter, and their deferral to further experiment for elucidation.
    [Show full text]
  • Early Modern Philosophy of Technology: Bacon and Descartes
    Early Modern Philosophy of Technology: Bacon and Descartes By Robert Arnăutu Submitted to Central European University Department of Philosophy In partial fulfilment of the requirements for the degree of Doctor of Philosophy in Philosophy Supervisor: Professor Hanoch Ben-Yami CEU eTD Collection Budapest, Hungary 2013 Copyright notice I hereby declare that this dissertation contains no materials accepted for any other degrees in any other institutions of higher education. Also, I declare that this dissertation contains no material previously written and/or published by any other person, except where appropriate acknowledgement has been made in the form of bibliographic reference. Robert Arnăutu June 2013 CEU eTD Collection i Abstract The contemporary understanding of technology is indebted to Bacon and Descartes, who challenged the pre-modern conceptions regarding useful material production. Although the production of artefacts has been a constant activity of humans since the dawn of history, the Ancient world tended to disvalue it, considering it a lower endeavour that aims to satisfy ignoble material needs. Technology, according to Ancient Greek thinkers, cannot surpass nature but can only bring small improvements to it; moreover, there is a difference in kind between natural things and technological artefacts; the activity of inventing and producing useful objects is unsuited for the nobility and for free men; there is an irreducible gap between proper knowledge and the production of artefacts. This approach toward technology is completely
    [Show full text]
  • Descartes' Optics
    Descartes’ Optics Jeffrey K. McDonough Descartes’ work on optics spanned his entire career and represents a fascinating area of inquiry. His interest in the study of light is already on display in an intriguing study of refraction from his early notebook, known as the Cogitationes privatae, dating from 1619 to 1621 (AT X 242-3). Optics figures centrally in Descartes’ The World, or Treatise on Light, written between 1629 and 1633, as well as, of course, in his Dioptrics published in 1637. It also, however, plays important roles in the three essays published together with the Dioptrics, namely, the Discourse on Method, the Geometry, and the Meteorology, and many of Descartes’ conclusions concerning light from these earlier works persist with little substantive modification into the Principles of Philosophy published in 1644. In what follows, we will look in a brief and general way at Descartes’ understanding of light, his derivations of the two central laws of geometrical optics, and a sampling of the optical phenomena he sought to explain. We will conclude by noting a few of the many ways in which Descartes’ efforts in optics prompted – both through agreement and dissent – further developments in the history of optics. Descartes was a famously systematic philosopher and his thinking about optics is deeply enmeshed with his more general mechanistic physics and cosmology. In the sixth chapter of The Treatise on Light, he asks his readers to imagine a new world “very easy to know, but nevertheless similar to ours” consisting of an indefinite space filled everywhere with “real, perfectly solid” matter, divisible “into as many parts and shapes as we can imagine” (AT XI ix; G 21, fn 40) (AT XI 33-34; G 22-23).
    [Show full text]
  • Roger Bacon and the Beginnings of Experimental Science in Britain
    FROM THE JAMES LIND LIBRARY Roger Bacon and the beginnings of experimental science in Britain Eric Sidebottom Sir William Dunn School of Pathology, Oxford OX1 3RE, UK Correspondence to: Eric Sidebottom. Email: [email protected] DECLARATIONS Roger Bacon is something of an enigma. He has I am puzzled that RW Southern’s biography of been called many things – ‘Britain’s first scientist’, Grosseteste does not mention Roger Bacon,2 des- Competing interests ‘wonderful doctor’, ‘conjurer’ and ‘magician’. pite the Preface in AC Crombie’s Robert Grosseteste None declared Many of the details of his life are uncertain and and the origins of experimental science, published they have been discussed and argued about by half a century earlier, which states: ‘In the 13thC, Funding scholars for centuries. He is generally thought to the Oxford school, with Robert Grosseteste as its None declared have been born in Ilchester, Somerset, around founder, assumes a paramount importance: the 1214, although some authors have put his date work of this school in fact marks the beginning Ethical approval of birth as late as 1220. There is good evidence of the modern tradition of experimental science’.3 that he was in Paris in 1245 and 1251, but it is What is clear is that Roger Bacon was an Not applicable uncertain if he ever actually studied in Oxford. innovative thinker and a courageous scholar, not Contributorship If he did, he would have met Robert Grosseteste, afraid to challenge current beliefs about philoso- often described as Oxford University’s first phy, science and religion.
    [Show full text]
  • The Oxford Greyfriars: a Centre of Learning
    THE OXFORD GREYFRIARS: A CENTRE OF LEARNING The Oxford Franciscans (Greyfriars) are significant in the history of the University of Oxford and the development of academic learning, especially scientific study. As a Studium Generale the Alchemy was the friary served as an important medieval forerunner of early “college”, within a chemistry. Alchemists network of similar Christian were famously colleges throughout Europe. concerned with the The friary had two libraries, a search for a way to scriptorium (where books were convert low grade copied out and translated), (base) metals, such many knowledgeable friars as iron and lead, into or masters, and a structured precious metals, such teaching programme. It was as gold and silver. They were also absorbed with trying to find the only rivalled in the later 13th elixir of life, which would bring the user youth and longevity and century by similar colleges perhaps immortality. in Paris and Cambridge. With such a good reputation To date, little physical evidence students came to Oxford for the practice of alchemy from across Europe, including has been identified through France, Italy, Spain, Portugal archaeological excavation. Statue to Roger Bacon in the Natural History However, in 2005 a group of Museum, Oxford and Germany. ceramic and glass alembics, The Oxford friars were inspired by great scholarly Arabic texts skillets and furnace fragments from the Islamic Golden Age during the 9th and 11th centuries. were found in an old pit (used They used these texts (translated into Latin) which enabled as a lavatory) belonging to a the ideas and knowledge from previous centuries of Islamic medieval hall buried below scholarship to be studied more widely in the emerging medieval Peckwater Quad, Christ Church, universities of Europe.
    [Show full text]
  • Roger Bacon: the Christian, the Alchemist, the Enigma
    University at Albany, State University of New York Scholars Archive History Honors Program History 2019 Roger Bacon: The Christian, the Alchemist, the Enigma Victoria Tobes University at Albany, State University of New York Follow this and additional works at: https://scholarsarchive.library.albany.edu/history_honors Part of the History Commons Recommended Citation Tobes, Victoria, "Roger Bacon: The Christian, the Alchemist, the Enigma" (2019). History Honors Program. 12. https://scholarsarchive.library.albany.edu/history_honors/12 This Undergraduate Honors Thesis is brought to you for free and open access by the History at Scholars Archive. It has been accepted for inclusion in History Honors Program by an authorized administrator of Scholars Archive. For more information, please contact [email protected]. 1 Roger Bacon: The Christian, the Alchemist, the Enigma By: Victoria Tobes [email protected] An honors thesis presented to the Department of History, University at Albany, State University of New York in partial fulfillment of the requirements for graduation with Honors in History. Advisors: Dr. Patrick Nold and Dr. Mitch Aso 5/12/2019 2 ABSTRACT: This paper explores the life and work of 13th century English Franciscan friar, Roger Bacon in light of the spiritual-religious practice of alchemy. Bacon’s works in pertinence to alchemy reflect his belonging to a school of intellectual thought known as Hermeticism; which encompasses the practice of alchemy. Bacon can be placed among other philosophic practitioners of alchemy throughout history; allowing for expanded insight into the life of this medieval scholar. Throughout history, Bacon’s most well-known work, the Opus Majus, has been interpreted in a variety of ways.
    [Show full text]
  • Roger Bacon (With Portraits). Paul Carus 449
    $1.00 per Year AUGUST, 1914 Price, 10 Cents ^be ©pen Court A MONTHLY MAGAZINE Devoted to tbe Science of IRellaton, tbe IReliQion ot Science, an& tbe Extension of tbe IReligious parliament fDea Founded by Edwabd C Hbgeleb ROGER BACON. 1214-1914. Xvbe ©pen Court publfsbing (Tompanie CHICAGO AND LONDON Per copy, lo cents (sixpence). Yearly, $i.oo (in the U.P.U., Ss. 6d.). Entered M Secoad-Clau Matter Much a6, 1897, at the Post OflSce at Chicago, IIL under Act ol Match j, 18/1^ Copyright by The Open Court PublisUng Company, 1914. $1.00 per Year AUGUST, 1914 Price, 10 Cents XTbe ©pen Court A MONTHLY MAGAZINE H)epotcD to tbc Science of IRelialon, tbe IReliafon of Science, an& tbc Bitension of tbe IReUaious parliament fOea Founded by Eowabd C Hbgelbb ROGER BACON. 1214-1914. ^be ©pen Court publfsbina Companie CHICAGO AND LONDON Per copy, lo cents (sixpence). Yearly, $i.oo (in the U.P.U., Ss. 6d.). Entered M Secood-Oass Matter March a6, 1897, M the Post Office at Chici«o, IIL andar Act ot Uaicb j, tS/^ Copyright by The Open Court Publishing Company, 19 14. VOL. XXVIII. (No. 8) AUGUST, 1914 NO. 699 CONTENTS: FAGR Frontispiece, Roger Bacon. Roger Bacon (With portraits). Paul Carus 449 Biography of Roger Bacon 452 The Two Bacons. Ernst Duhring 468 Roger Bacon the Philosopher. Alfred H. Lloyd 486 Roger Bacon as a Scientist. Karl E. Guthe % 494 Roger Bacon, Logician and Mathematician. Philip E. B. Jourdain 508 Book Reviezvs 511 REVUE CONSACREE A L'HISTOIRE ET A L'ORGANISATION DE la SCIENCE, ISIS PUBLIEE PAR GEORGE SARTON En resume /.sw est a la fois la revue philosophique des savants et la revue scientifique des philosophes ; la revue historique des savants et la revue scientifique des historiens ; la revue sociologique des savants et la revue scientifique des sociologues.
    [Show full text]
  • Scientific Methodology for Evaluation of Eriugena's Doctrine
    European Journal of Science and Theology, February 2018, Vol.14, No.1, 1-13 _______________________________________________________________________ SCIENTIFIC METHODOLOGY FOR EVALUATION OF ERIUGENA’S DOCTRINE Andrew Tolstenko* Saint Petersburg State University of Architecture and Civil Engineering, Vtoraja Krasnoarmejskaja ul. 4, St. Petersburg, 190005, Russia (Received 6 May 2017, revised 21 October 2017) Abstract This article considers the phenomenon of the philosophy of John Scottus Eriugena (c.800 – c.877) as a source of modern philosophical systems. The author has undertaken to determine the unique place of this medieval philosopher‟s ideas in the context of ontological semantics. Comparative, concrete historical, typological, and systematic textual analytic methods of research were applied to understand and provide a scientific evaluation of the events and facts that triggered Eriugena‟s philosophical choices in respect to medieval thought. It was found that the philosophical categories developed by Eriugena were later used in the pantheistic systems of Spinoza and Schelling. Eriugena‟s ideas were rooted in Neoplatonism, which prevailed in Byzantine theology, and in the language of Hermeneutics. They transformed Western philosophy and created a special kind of „natural‟ definition – logical and grammatical structures through which our language, engaged in the totality of all that exists, conveys a sense of things being. As a result, the „grammatism‟ of Eriugena became a constructive principle in his theological reasoning and in his teachings on the division of Nature, or God. As a consequence, medieval thinking became full of cogitative content, which was still relevant to modern and postmodern philosophers (Berkeley and the idealist tradition, Emerson‟s natural theology, Husserl‟s phenomenology as a transcendental idealism).
    [Show full text]
  • What the Middle Ages Knew IV
    Late Medieval Philosophy Piero Scaruffi Copyright 2018 http://www.scaruffi.com/know 1 What the Middle Ages knew • Before the Scholastics – The Bible is infallible, therefore there is no need for scientific investigation or for the laws of logic – Conflict between science and religion due to the Christian dogma that the Bible is the truth – 1.Dangerous to claim otherwise – 2.Pointless to search for additional truths – Tertullian (3rd c AD): curiosity no longer necessary because we know the meaning of the world and what is going to happen next ("Liber de Praescriptione Haereticorum") 2 What the Middle Ages knew • Before the Scholastics – Decline of scientific knowledge • Lactantius (4th c AD) ridicules the notion that the Earth could be a sphere ("Divinae Institutiones III De Falsa Sapientia Philosophorum") • Cosmas Indicopleustes' "Topographia Cristiana" (6th c AD): the Earth is a disc 3 What the Middle Ages knew • Before the Scholastics – Plato's creation by the demiurge in the Timaeus very similar to the biblical "Genesis" – Christian thinkers are raised by neoplatonists • Origen was a pupil of Ammonius Sacca (Plotinus' teacher) • Augustine studied Plotinus 4 What the Middle Ages knew • Preservation of classical knowledge – Boethius (6th c AD) translates part of Aristotle's "Organon" and his "Arithmetica" preserves knowledge of Greek mathematics – Cassiodorus (6th c AD) popularizes scientific studies among monks and formalizes education ("De Institutione Divinarum" and "De artibus ac disciplinis liberalium litterarum") with the division of disciplines into arts (grammar, rhetoric, dialectic) – and disiplines (arithmeitc,geometry, music, astronomy) – Isidore of Sevilla (7th c AD) preserves Graeco- Roman knowledge in "De Natura Rerum" and "Origines" 5 What the Middle Ages knew • Preservation of classical knowledge – Bede (8th c AD) compiles an encyclopedia, "De Natura Rerum" – St Peter's at Canterbury under Benedict Biscop (7th c AD) becomes a center of learning – Episcopal school of York: arithmetic, geometry, natural history, astronomy.
    [Show full text]
  • The Impact of the Scientific Revolution: a Brief History of the Experimental Method in the 17Th Century∗
    Connexions module: m13245 1 The Impact of the Scientific Revolution: A Brief History of the Experimental Method in the 17th Century∗ Jo Kent This work is produced by The Connexions Project and licensed under the Creative Commons Attribution License y Lauren Ames, Jo Kent, Amneet Gulati, Adam Purtee Faculty Sponsor: Christopher Kelty, Rice University Department of Anthropology The Impact of the Scientic Revolution: A Brief History of the Experimental Method in the 17th Century The American statesman Adlai Stevenson once said, America can chart our future clearly and wisely only when we know the path which has led to the present. 1This is clearly true in the eld of science and research. Today, as scientists experiment with nanotechnology and venture into a wide variety of new scientic disciplines, it remains important to take a look back to the origins of scientic discovery and understand some of the events that have shaped the world of science, and, more importantly, to realize how science behaves as an evolving process. 1 Introduction The beginning of the seventeenth century is known as the scientic revolution for the drastic changes evidenced in the European approach to science during that period. The word revolution connotes a period of turmoil and social upheaval where ideas about the world change severely and a completely new era of academic thought is ushered in. This term, therefore, describes quite accurately what took place in the scientic community following the sixteenth century. During the scientic revolution, medieval scientic philosophy was abandoned in favor of the new methods proposed by Bacon, Galileo, Descartes, and Newton; the importance of experimentation to the scientic method was rearmed; the importance of God to science was for the most part invalidated, and the pursuit of science itself (rather than philosophy) gained validity on its own terms.
    [Show full text]
  • Physical Color Theory Before Newton Author(S): Henry Guerlac Reviewed Work(S): Source: Journal of the History of Ideas, Vol
    Can there Be Colors in the Dark? Physical Color Theory before Newton Author(s): Henry Guerlac Reviewed work(s): Source: Journal of the History of Ideas, Vol. 47, No. 1 (Jan. - Mar., 1986), pp. 3-20 Published by: University of Pennsylvania Press Stable URL: http://www.jstor.org/stable/2709592 . Accessed: 28/11/2011 22:42 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. University of Pennsylvania Press is collaborating with JSTOR to digitize, preserve and extend access to Journal of the History of Ideas. http://www.jstor.org CAN THERE BE COLORS IN THE DARK? PHYSICAL COLOR THEORY BEFORE NEWTON BY HENRY GUERLACt Isaac Newton's first scientific paper, setting forth his epoch-making theory of light and colors, appeared in the Philosophical Transactionsof the Royal Society of London in February 1672.1 Newton was barely thirty years old, a young don at Trinity College, Cambridge, where he was destined to remain immured for the next quarter century. Yet several years before submitting his classic paper he had been investigating the problem of colors using what one scholar has called his "instrument of choice," the triangular glass prism.
    [Show full text]
  • Roger Bacon (C
    Roger Bacon (c. 1220–1292) and his System of Laws of Nature: Classification, Hierarchy and Significance Yael Kedar Tel Hai College Giora Hon University of Haifa Bacon discussed three different types of laws of nature: (1) particular laws governing one element or phenomenon (such as the law of the gravity of water); (2) the laws of the multiplication of species; and, (3) the universal law of nature. Each set of laws has its own explanatory function: (1) the particular laws account for the unique features of individuals and species; (2) the laws of multiplication explain the common features of matter and how individuals affect one another physically; and (3) the law of universal nature regulates these interactions and keep them in balance. Bacon’s laws share common fea- tures with early modern conception of laws. For example, they can be restated as if/then sentences and cover future events; some support counterfactuals; and all are endowed with explanatory power and free from space-time limitations. When considered together, they form a system, ordered in hierarchical relations. The different levels of laws cover three aspects of Aristotelian causality: formal, efficient, and final. The law of universal nature is a metaphysical axiom, necessary for upholding the very idea of a nature governed by laws. This indicates that Bacon conceived of nature as orderly and predictable; he presented a conception of a lawful nature and showed an understanding of what it takes to be lawful to a degree that had not been seen before. 1. Introduction The idea that nature is governed by laws and that the goal of science is to discover and formulate these laws, rose to prominence during the Scientific This research was supported by the Israel Science Foundation (grant no.
    [Show full text]