(12) Patent Application Publication (10) Pub. No.: US 2009/00992.59 A1 Jouni Et Al

Total Page:16

File Type:pdf, Size:1020Kb

(12) Patent Application Publication (10) Pub. No.: US 2009/00992.59 A1 Jouni Et Al US 200900992.59A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/00992.59 A1 Jouni et al. (43) Pub. Date: Apr. 16, 2009 (54) METHOD FOR REGULATING GENE Related U.S. Application Data EXPRESSION (60) Provisional application No. 60/777,724, filed on Feb. (76) Inventors: Zeina Jouni, Evansville, IN (US); 28, 2006. Joshua Anthony, Evansville, IN (US); Steven C. Rumsey, Curitiba Publication Classification (BR): Deshanie Rai, Evansville, IN (US); Kumar Sesha Kothapalli, (51) Int. Cl. Ithaca, NY (US); James T. Brenna, A6II 3L/20 (2006.01) Ithaca, NY (US) A6IP3/00 (2006.01) A6IP 25/00 (2006.01) Correspondence Address: A6IP37/00 (2006.01) Richard D. Schmidt Bristol-Myers Squibb Company (52) U.S. Cl. ........................................................ 514/560 2400 West Lloyd Expressay Evansville, IN 47721-0001 (US) (57) ABSTRACT (21) Appl. No.: 11/712,102 The present invention is directed to a novel method for modu lating the expression of one or more genes in a subject by (22) Filed: Feb. 28, 2007 administering an amount of DHA and ARA to the subject. ::::::: Patent Application Publication Apr. 16, 2009 US 2009/00992.59 A1 s :::::::::: US 2009/00992.59 A1 Apr. 16, 2009 METHOD FOR REGULATING GENE expression of certain genes in Subjects and thereby prevent EXPRESSION the onset of or treat various diseases and disorders. SUMMARY OF THE INVENTION 0001. This application claims the priority benefit of U.S. 0011 Briefly, the present invention is directed to a novel Provisional Application 60/777,724 filed Feb. 28, 2006 which method for modulating the expression of one or more genes in is incorporated by reference herein in its entirety. a Subject, wherein the gene is selected from the group con sisting of those genes listed in Tables 4-9 herein under the “Gene Symbol column, the method comprising administer BACKGROUND OF THE INVENTION ing to the subject DHA and ARA, alone or in combination with one another. The subject can be an infant or a child. The 0002 (1) Field of the Invention Subject can be one that is in need of Such modulation. In 0003. The present invention relates generally to a method particular situations, ARA and DHA can be administered in a for modulating gene expression in Subjects. ratio of ARA:DHA of between about 1:10 to about 10:1 by weight. 0004 (2) Description of the Related Art 0012. The present invention is also directed to a novel 0005. Every gene contains the information required to method for upregulating the expression of one or more genes make a protein or a non-coding ribonucleic acid (RNA). In in a Subject, wherein the gene is selected from the group order to produce functional RNA and protein molecules in a consisting of those genes listed in Tables 4 and 6 herein under cell, however, a gene must be expressed. Gene expression the “Gene Symbol' column, the method comprising admin occurs in two major stages, transcription and protein synthe istering to the subject DHA or ARA, alone or in combination sis. During transcription, the gene is copied to produce an with one another. RNA molecule (a primary transcript) with essentially the 0013 The present invention is additionally directed to a same sequence as the gene. Most human genes are divided novel method for downregulating the expression of one or into exons and introns, and only the exons carry information more genes in a Subject, wherein the gene is selected from the required for protein synthesis. Most primary transcripts are group consisting of those genes listed in Tables 5 and 7 under therefore processed by splicing to remove intron sequences the “Gene Symbol' column, the method comprising admin and generate a mature transcript or messenger RNA (mRNA) istering to the subject DHA or ARA, alone or in combination that only contains exons. with one another. 0014. The present invention is also directed to a novel 0006. The second stage of gene expression, protein syn method for upregulating the expression of one or more genes thesis, is also known as translation. During this stage there is in a Subject, wherein the gene is selected from the group no direct correspondence between the nucleotide sequence in consisting of TIMM8A, TIMM23, NF1, SFTPB, ACADSB, deoxyribonucleic acid (DNA) and RNA and the sequence of SOD, PDE3A, NSMAF, OSBP2, FTH1, SPTLC2, FOXP2, amino acids in the protein. In fact, three nucleotides are LUM, BRCA1, ADAM17, ADAM33, TOB1, XCL1, XCL2, required to specify one amino acid. RNASE2, RNASE3, SULT1C1, HSPCA, CD44, CD24, 0007 All genes in the human genome are not expressed in OSBPL9, FCER1G, FXD3, NRF1, STK3, and KIR2DS1, the the same manner. Some genes are expressed in all cells all of method comprising administering to the Subject DHA or the time. These so-called housekeeping genes are essential ARA, alone or in combination with one another. for very basic cellular functions. Other genes are expressed in 0015 The invention is further directed, in an embodiment, particular cell types or at particular stages of development. to a method for modulating the expression of one or more For example, the genes that encode muscle proteins such as genes in a subject, wherein the gene is selected from the group actin and myosin are expressed only in muscle cells, not in the consisting of TIMM8A, TIMM23, NF1, LUM, BRCA1, cells of the brain. Still other genes can be activated or inhib ADAM17, TOB1, RNASE2, RNASE3, NRF1, STK3, FZD3, ited by signals circulating in the body, Such as hormones. ADAM8, PERP, COL4A6, PLA2G6, MSRA, CTSD, CTSB, LMX1B, BHMT, TNNC1, PDE3A, PPARD, NPY1R, LEP, 0008. This differential gene expression is achieved by and any combination thereof. regulating transcription and translation. All genes are Sur 0016. The present invention is also, in an embodiment, rounded by DNA sequences that control their expression. directed to a method for treating or preventing tumors in a Proteins called transcription factors bind to these sequences Subject, the method comprising modulating a gene selected and can Switch the genes on or off. Gene expression is there from the group consisting of TOB1, NF1, FZD3, STK3, fore controlled by the availability and activity of different BRCA1, NRF1, PERP, and COL4A6 in the subject by admin transcription factors. istering to the subject an effective amount of DHA or ARA, 0009. As transcription factors are proteins themselves, alone or in combination with one another. they must also be produced by genes, and these genes must be 0017. The invention is directed to a method for treating or regulated by other transcription factors. In this way, all genes preventing neurodegeneration in a Subject, the method com and proteins can be linked into a regulatory hierarchy starting prising modulating a gene selected from the group consisting with the transcription factors present in the egg at the begin of PLA2G6, TIMM8A, ADAM17, TIMM23, MSRA, CTSD, ning of development. A number of human diseases are known CTSB, LMX1B, and BHMT in the subject by administering to result from the absence or malfunction of transcription to the subject an effective amount of DHA or ARA, alone or factors and the disruption of gene expression thus caused. in combination with one another. The invention is also 0010. If genes are not expressed in the right time, place and directed to a method for improving vision in a Subject, the amount, disease may occur. Thus, it would be beneficial to method comprising modulating the LUM gene in the Subject provide a composition that can regulate or modulate the by administering to the subject an effective amount of DHA US 2009/00992.59 A1 Apr. 16, 2009 or ARA, alone or incombination with one another. The inven present discussion is a description of exemplary embodi tion is further directed to a method for treating or preventing ments only, and is not intended as limiting the broader aspects macular degeneration in a Subject, the method comprising of the present invention. modulating the LUM gene in the Subject by administering to 0025. The term “modulation', as used herein, means a the subject an effective amount of DHA or ARA, alone or in positive or negative regulatory effect on the expression of a combination with one another. gene. 0.018. In other embodiments, the invention is directed to a 0026. As used herein, the term “upregulate” means a posi method for stimulating an immune response in a Subject, the tive regulatory effect on the expression of a gene. method comprising modulating a gene selected from the 0027. The term "downregulate” means a negative regula group consisting of RNASE2, RNASE3, and ADAM8 in the tory effect on the expression of a gene. Subject by administering to the Subject an effective amount of DHA or ARA, alone or in combination with one another. The 0028. As used herein the term “expression” means the invention is directed to a method for improving lung function conversion of genetic information encoded in a gene into in a subject, the method comprising modulating the ADAM33 mRNA, transfer RNA (tRNA) or ribosomal RNA (rRNA) gene in the Subject by administering to the Subject an effective through transcription. amount of DHA or ARA, alone or in combination with one 0029. The term “infant’ means a postnatal human that is another. The invention is also directed to a method for less than about 1 year of age. improving cardiac function in a subject, the method compris 0030 The term “child' means a human that is between ing modulating a gene selected from the group consisting of about 1 year and 12 years of age. In some embodiments, a TNNC1 and PDE3A in the subject by administering to the child is between the ages of about 1 and 6 years.
Recommended publications
  • RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
    RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Mitochondria Cat. no. 330231 PAHS-087ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Mitochondria RT² Profiler PCR Array profiles the expression of 84 genes involved in the biogenesis and function of the cell's powerhouse organelle. The genes monitored by this array include regulators and mediators of mitochondrial molecular transport of not only the metabolites needed for the electron transport chain and oxidative phosphorylation, but also the ions required for maintaining the mitochondrial membrane polarization and potential important for ATP synthesis. Metabolism and energy production are not the only functions of mitochondria.
    [Show full text]
  • Supplementary Table 5. Functional Annotation of the Largest Gene Cluster(221 Element)
    Annotation Tool AFFYID VALUE SYMBOL LOCUSLINK OMIM GENENAME GENEONTOLOGY SUMMARY [Proteome FUNCTION:] Expressed 203054_s_at TCTA 6988 600690 T-cell leukemia translocation altered gene tumor suppressor ubiquitously [Proteome FUNCTION:] May be involved in protein-protein interactions; contains five WD 44563_at FLJ10385 55135 hypothetical protein FLJ10385 domains (WD-40 repeats) [Proteome FUNCTION:] Weakly similarity to 212261_at TNRC15 26058 trinucleotide repeat containing 15 a region of rat nestin (Rn.9701) [SUMMARY:] Actin alpha 1 which is expressed in skeletal muscle is one of six different actin isoforms which have been identified. Actins are highly conserved proteins that are involved in cell motility, actin filament; motor activity; muscle structure and integrity. Alpha actins are a contraction; muscle development; structural major constituent of the contractile 203872_at ACTA1 58 102610 actin, alpha 1, skeletal muscle constituent of cytoskeleton apparatus. [SUMMARY:] Annexin VIII belong to the family of Ca (2+) dependent phospholipid binding proteins (annexins), and has a high 56% identity to annexin V (vascular anticoagulant-alpha). It was initially isolated as 2.2 kb vascular anticoagulant-beta transcript from human placenta, a Ca (2+) dependent phospholipid binding protein that inhibits coagulation and phospholipase A2 activity. However, the fact that annexin VIII is neither an extracellular protein nor associated with the cell surface suggests that it may not play a role in blood coagulation in vivo and its physiological role remains unknown. It is expressed at low levels in human placenta and shows restricted expression in lung endothelia, skin, liver, and kidney. The gene is also found to be selectively overexpressed in acute 203074_at ANXA8 244 602396 annexin A8 myelocytic leukemia.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2009/0297536A1 Chin Et Al
    US 20090297536A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2009/0297536A1 Chin et al. (43) Pub. Date: Dec. 3, 2009 (54) COMPOSITIONS, KITS, AND METHODS FOR Related U.S. Application Data IDENTIFICATION, ASSESSMENT, (60) Provisional application No. 60/575,795, filed on May PREVENTION AND THERAPY OF CANCER 28, 2004, provisional application No. 60/580,337, filed on Jun. 15, 2004. (75) Inventors: Lynda Chin, Brookline, MA (US); Publication Classification Cameron W. Brennan, New York, NY (US); Ronald A. DePinho, (51) Int. Cl. Brookline, MA (US); Andrew J. A 6LX 39/395 (2006.01) Aguirre, Boston, MA (US) CI2O I/68 (2006.01) C40B 30/00 (2006.01) AOIK 67/00 (2006.01) Correspondence Address: A 6LX 3L/7052 (2006.01) FOLEY HOAG, LLP A638/02 (2006.01) PATENT GROUP, WORLD TRADE CENTER A638/16 (2006.01) WEST C07K I4/00 (2006.01) 155 SEAPORT BLVD C7H 2L/00 (2006.01) BOSTON, MA 02110 (US) C07K 6/00 (2006.01) A6IP35/00 (2006.01) (73) Assignee: Dana-Farber Cancer Institute, (52) U.S. Cl. ................ 424/172.1; 435/6:506/7; 800/10: Inc., Boston, MA (US) 424/183.1; 424/178.1: 514/44 A: 514/2: 514/12: 530/350:536/23.1; 530/389.1 (21) Appl. No.: 11/597,825 (57) ABSTRACT The invention relates to compositions, kits, and methods for (22) PCT Filed: May 27, 2005 detecting, characterizing, preventing, and treating human cancer. A variety of chromosomal regions (MCRs) and mark (86). PCT No.: PCT/US05/18850 ers corresponding thereto, are provided, wherein alterations in the copy number of one or more of the MCRs and/or S371 (c)(1), alterations in the amount, structure, and/or activity of one or (2), (4) Date: Jun.
    [Show full text]
  • Association of Imputed Prostate Cancer Transcriptome with Disease Risk Reveals Novel Mechanisms
    Corrected: Author Correction ARTICLE https://doi.org/10.1038/s41467-019-10808-7 OPEN Association of imputed prostate cancer transcriptome with disease risk reveals novel mechanisms Nima C. Emami1,2, Linda Kachuri2, Travis J. Meyers2, Rajdeep Das3,4, Joshua D. Hoffman2, Thomas J. Hoffmann 2,5, Donglei Hu 5,6,7, Jun Shan8, Felix Y. Feng3,4,7, Elad Ziv5,6,7, Stephen K. Van Den Eeden 3,8 & John S. Witte1,2,3,5,7 1234567890():,; Here we train cis-regulatory models of prostate tissue gene expression and impute expression transcriptome-wide for 233,955 European ancestry men (14,616 prostate cancer (PrCa) cases, 219,339 controls) from two large cohorts. Among 12,014 genes evaluated in the UK Biobank, we identify 38 associated with PrCa, many replicating in the Kaiser Permanente RPGEH. We report the association of elevated TMPRSS2 expression with increased PrCa risk (independent of a previously-reported risk variant) and with increased tumoral expression of the TMPRSS2:ERG fusion-oncogene in The Cancer Genome Atlas, suggesting a novel germline-somatic interaction mechanism. Three novel genes, HOXA4, KLK1, and TIMM23, additionally replicate in the RPGEH cohort. Furthermore, 4 genes, MSMB, NCOA4, PCAT1, and PPP1R14A, are associated with PrCa in a trans-ethnic meta-analysis (N = 9117). Many genes exhibit evidence for allele-specific transcriptional activation by PrCa master-regulators (including androgen receptor) in Position Weight Matrix, Chip-Seq, and Hi-C experimental data, suggesting common regulatory mechanisms for the associated genes. 1 Program in Biological and Medical Informatics, University of California San Francisco, San Francisco, CA 94158, USA.
    [Show full text]
  • (P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
    Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds.
    [Show full text]
  • Human CLPB) Is a Potent Mitochondrial Protein Disaggregase That Is Inactivated By
    bioRxiv preprint doi: https://doi.org/10.1101/2020.01.17.911016; this version posted January 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Skd3 (human CLPB) is a potent mitochondrial protein disaggregase that is inactivated by 3-methylglutaconic aciduria-linked mutations Ryan R. Cupo1,2 and James Shorter1,2* 1Department of Biochemistry and Biophysics, 2Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, U.S.A. *Correspondence: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.01.17.911016; this version posted January 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. ABSTRACT Cells have evolved specialized protein disaggregases to reverse toxic protein aggregation and restore protein functionality. In nonmetazoan eukaryotes, the AAA+ disaggregase Hsp78 resolubilizes and reactivates proteins in mitochondria. Curiously, metazoa lack Hsp78. Hence, whether metazoan mitochondria reactivate aggregated proteins is unknown. Here, we establish that a mitochondrial AAA+ protein, Skd3 (human CLPB), couples ATP hydrolysis to protein disaggregation and reactivation. The Skd3 ankyrin-repeat domain combines with conserved AAA+ elements to enable stand-alone disaggregase activity. A mitochondrial inner-membrane protease, PARL, removes an autoinhibitory peptide from Skd3 to greatly enhance disaggregase activity. Indeed, PARL-activated Skd3 dissolves α-synuclein fibrils connected to Parkinson’s disease. Human cells lacking Skd3 exhibit reduced solubility of various mitochondrial proteins, including anti-apoptotic Hax1.
    [Show full text]
  • Skd3 (Human CLPB) Is a Potent Mitochondrial Protein Disaggregase That Is Inactivated By
    bioRxiv preprint first posted online Jan. 18, 2020; doi: http://dx.doi.org/10.1101/2020.01.17.911016. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. Skd3 (human CLPB) is a potent mitochondrial protein disaggregase that is inactivated by 3-methylglutaconic aciduria-linked mutations Ryan R. Cupo1,2 and James Shorter1,2* 1Department of Biochemistry and Biophysics, 2Pharmacology Graduate Group, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, U.S.A. *Correspondence: [email protected] 1 bioRxiv preprint first posted online Jan. 18, 2020; doi: http://dx.doi.org/10.1101/2020.01.17.911016. The copyright holder for this preprint (which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. All rights reserved. No reuse allowed without permission. ABSTRACT Cells have evolved specialized protein disaggregases to reverse toxic protein aggregation and restore protein functionality. In nonmetazoan eukaryotes, the AAA+ disaggregase Hsp78 resolubilizes and reactivates proteins in mitochondria. Curiously, metazoa lack Hsp78. Hence, whether metazoan mitochondria reactivate aggregated proteins is unknown. Here, we establish that a mitochondrial AAA+ protein, Skd3 (human CLPB), couples ATP hydrolysis to protein disaggregation and reactivation. The Skd3 ankyrin-repeat domain combines with conserved AAA+ elements to enable stand-alone disaggregase activity. A mitochondrial inner-membrane protease, PARL, removes an autoinhibitory peptide from Skd3 to greatly enhance disaggregase activity. Indeed, PARL-activated Skd3 dissolves α-synuclein fibrils connected to Parkinson’s disease.
    [Show full text]
  • Transdifferentiation of Human Mesenchymal Stem Cells
    Transdifferentiation of Human Mesenchymal Stem Cells Dissertation zur Erlangung des naturwissenschaftlichen Doktorgrades der Julius-Maximilians-Universität Würzburg vorgelegt von Tatjana Schilling aus San Miguel de Tucuman, Argentinien Würzburg, 2007 Eingereicht am: Mitglieder der Promotionskommission: Vorsitzender: Prof. Dr. Martin J. Müller Gutachter: PD Dr. Norbert Schütze Gutachter: Prof. Dr. Georg Krohne Tag des Promotionskolloquiums: Doktorurkunde ausgehändigt am: Hiermit erkläre ich ehrenwörtlich, dass ich die vorliegende Dissertation selbstständig angefertigt und keine anderen als die von mir angegebenen Hilfsmittel und Quellen verwendet habe. Des Weiteren erkläre ich, dass diese Arbeit weder in gleicher noch in ähnlicher Form in einem Prüfungsverfahren vorgelegen hat und ich noch keinen Promotionsversuch unternommen habe. Gerbrunn, 4. Mai 2007 Tatjana Schilling Table of contents i Table of contents 1 Summary ........................................................................................................................ 1 1.1 Summary.................................................................................................................... 1 1.2 Zusammenfassung..................................................................................................... 2 2 Introduction.................................................................................................................... 4 2.1 Osteoporosis and the fatty degeneration of the bone marrow..................................... 4 2.2 Adipose and bone
    [Show full text]
  • Glucocorticoid-Induced Alterations in Mitochondrial Membrane Properties and Respiration in Childhood Acute Lymphoblastic Leukemia☆
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Biochimica et Biophysica Acta 1807 (2011) 719–725 Contents lists available at ScienceDirect Biochimica et Biophysica Acta journal homepage: www.elsevier.com/locate/bbabio Glucocorticoid-induced alterations in mitochondrial membrane properties and respiration in childhood acute lymphoblastic leukemia☆ Karin Eberhart a,c, Johannes Rainer b,c, Daniel Bindreither b, Ireen Ritter a, Erich Gnaiger d, Reinhard Kofler b,c, Peter J. Oefner a, Kathrin Renner a,⁎ a Institute of Functional Genomics, University of Regensburg, Josef-Engert-Str. 9, 93053 Regensburg, Germany b Division of Molecular Pathophysiology, Biocenter, Medical University of Innsbruck, Innrain 52, 6020 Innsbruck, Austria c Tyrolean Cancer Research Institute, Innrain 66, 6020 Innsbruck, Austria d D. Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innrain 66, 6020 Innsbruck, Austria article info abstract Article history: Mitochondria are signal-integrating organelles involved in cell death induction. Mitochondrial alterations and Received 26 July 2010 reduction in energy metabolism have been previously reported in the context of glucocorticoid (GC)- Received in revised form 13 December 2010 triggered apoptosis, although the mechanism is not yet clarified. We analyzed mitochondrial function in a GC- Accepted 18 December 2010 sensitive precursor B-cell acute lymphoblastic leukemia (ALL) model as well as in GC-sensitive and GC- Available online 13 January 2011 resistant T-ALL model systems. Respiratory activity was preserved in intact GC-sensitive cells up to 24 h under treatment with 100 nM dexamethasone before depression of mitochondrial respiration occurred. Severe Keywords: Glucocorticoid repression of mitochondrial respiratory function was observed after permeabilization of the cell membrane Acute lymphoblastic leukemia and provision of exogenous substrates.
    [Show full text]
  • BRAZILIAN SYMPOSIUM on BIOINFORMATICS August, 29 - 31, 2007 Angra Dos Reis – Rio De Janeiro Brasil
    BRAZILIAN SYMPOSIUM ON BIOINFORMATICS August, 29 - 31, 2007 Angra dos Reis – Rio de Janeiro Brasil BSB 2007 Poster Proceedings Conference Chair Sérgio Lifschtiz Department of Informatics - Pontificial Catholic University/Rio de Janeiro Brazil Volume Editors Marie-France Sagot – INRIA – France Maria Emília M. T. Walter – University of Brasília – Brazil Promotion Brazilian Computer Society – SBC Brazilian Symposium on Bioinformatics (2007 : Angra dos Reis, RJ) B827 BSB 2007 poster proceedings, August, 29-31, 2007, Angra dos Reis, Rio de Janeiro, Brasil / conference chair Sérgio Lifschtiz ; volume editors Marie-France Sagot, Maria Emília M. T. Walter. -- [Angra dos Reis] : Brazilian Computer Society, [2007]. 1 CD-ROM. ISBN 978-85-7669-123-5 1. Bioinformática – Congresso. I. Lifschtiz , Sérgio. II. Sagot, Marie-France. III. Walter, Maria Emília M. T. IV. Título. CDD21 004 CDD21 570 Preface The Brazilian Symposium on Bioinformatics (BSB 2007) was held in Angra dos Reis (Rio de Janeiro), Brazil, August 29-31, 2007, on the Portogalo Suite Hotel. It is an event promoted by the Brazilian Computer Society’s (SBC) special committee for computational biology (CEBioComp). BSB 2007 was the second BSB symposium, though BSB is a new name for a predecessor event called Brazilian Workshop on Bioinformatics (WOB). This previous event had three consecutive editions in 2002 (Gramado, Rio Grande do Sul), 2003 (Maca´e,Rio de Janeiro), and 2004 (Brasilia, Distrito Federal). The change from workshop to symposium reflects the increased quality and interest of the meeting. BSB 2007 was held co-located with the International Workshop on Genomic Databases (IWGD 2007). For BSB 2007, we had 60 submissions: 36 full papers and 24 extended ab- stracts, submitted to two tracks, computational biology/bioinformatics and ap- plications.
    [Show full text]
  • Function of Htim8a in Complex IV Assembly in Neuronal Cells
    RESEARCH ARTICLE Function of hTim8a in complex IV assembly in neuronal cells provides insight into pathomechanism underlying Mohr-Tranebjærg syndrome Yilin Kang1,2, Alexander J Anderson1,2, Thomas Daniel Jackson1,2, Catherine S Palmer1,2, David P De Souza3, Kenji M Fujihara4,5, Tegan Stait6,7, Ann E Frazier6,7, Nicholas J Clemons4,5, Deidreia Tull3, David R Thorburn6,7,8, Malcolm J McConville3, Michael T Ryan9, David A Stroud1,2, Diana Stojanovski1,2* 1Department of Biochemistry and Molecular Biology, The University of Melbourne, Melbourne, Australia; 2The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia; 3Metabolomics Australia, The Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Australia; 4Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia; 5Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Australia; 6Murdoch Children’s Research Institute, Royal Children’s Hospital, Melbourne, Australia; 7Department of Paediatrics, University of Melbourne, Melbourne, Australia; 8Victorian Clinical Genetic Services, Royal Children’s Hospital, Melbourne, Australia; 9Department of Biochemistry and Molecular Biology, Monash Biomedicine Discovery Institute, Monash University, Melbourne, Australia Abstract Human Tim8a and Tim8b are members of an intermembrane space chaperone network, known as the small TIM family. Mutations in TIMM8A cause a neurodegenerative disease, *For correspondence: Mohr-Tranebjærg syndrome (MTS), which is characterised by sensorineural hearing loss, dystonia [email protected] and blindness. Nothing is known about the function of hTim8a in neuronal cells or how mutation of Competing interests: The this protein leads to a neurodegenerative disease. We show that hTim8a is required for the authors declare that no assembly of Complex IV in neurons, which is mediated through a transient interaction with competing interests exist.
    [Show full text]
  • Transcriptome Profiling Reveals the Complexity of Pirfenidone Effects in IPF
    ERJ Express. Published on August 30, 2018 as doi: 10.1183/13993003.00564-2018 Early View Original article Transcriptome profiling reveals the complexity of pirfenidone effects in IPF Grazyna Kwapiszewska, Anna Gungl, Jochen Wilhelm, Leigh M. Marsh, Helene Thekkekara Puthenparampil, Katharina Sinn, Miroslava Didiasova, Walter Klepetko, Djuro Kosanovic, Ralph T. Schermuly, Lukasz Wujak, Benjamin Weiss, Liliana Schaefer, Marc Schneider, Michael Kreuter, Andrea Olschewski, Werner Seeger, Horst Olschewski, Malgorzata Wygrecka Please cite this article as: Kwapiszewska G, Gungl A, Wilhelm J, et al. Transcriptome profiling reveals the complexity of pirfenidone effects in IPF. Eur Respir J 2018; in press (https://doi.org/10.1183/13993003.00564-2018). This manuscript has recently been accepted for publication in the European Respiratory Journal. It is published here in its accepted form prior to copyediting and typesetting by our production team. After these production processes are complete and the authors have approved the resulting proofs, the article will move to the latest issue of the ERJ online. Copyright ©ERS 2018 Copyright 2018 by the European Respiratory Society. Transcriptome profiling reveals the complexity of pirfenidone effects in IPF Grazyna Kwapiszewska1,2, Anna Gungl2, Jochen Wilhelm3†, Leigh M. Marsh1, Helene Thekkekara Puthenparampil1, Katharina Sinn4, Miroslava Didiasova5, Walter Klepetko4, Djuro Kosanovic3, Ralph T. Schermuly3†, Lukasz Wujak5, Benjamin Weiss6, Liliana Schaefer7, Marc Schneider8†, Michael Kreuter8†, Andrea Olschewski1,
    [Show full text]