Function of Htim8a in Complex IV Assembly in Neuronal Cells
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RT² Profiler PCR Array (384-Well Format) Human Apoptosis 384HT
RT² Profiler PCR Array (384-Well Format) Human Apoptosis 384HT Cat. no. 330231 PAHS-3012ZE For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 7900HT (384-well block), Format E ViiA™ 7 (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (384-well block) Format G Description The Human Apoptosis RT² Profiler PCR Array profiles the expression of 370 key genes involved in apoptosis, or programmed cell death. The array includes the TNF ligands and their receptors; members of the bcl-2 family, BIR (baculoviral IAP repeat) domain proteins, CARD domain (caspase recruitment domain) proteins, death domain proteins, TRAF (TNF receptor-associated factor) domain proteins and caspases. These 370 genes are also grouped by their functional contribution to apoptosis, either anti-apoptosis or induction of apoptosis. Using real-time PCR, you can easily and reliably analyze expression of a focused panel of genes related to apoptosis with this array. For further details, consult the RT² Profiler PCR Array Handbook. Sample & Assay Technologies Shipping and storage RT² Profiler PCR Arrays in formats E and G are shipped at ambient temperature, on dry ice, or blue ice packs depending on destination and accompanying products. For long term storage, keep plates at –20°C. Note: Ensure that you have the correct RT² Profiler PCR Array format for your real-time cycler (see table above). Note: Open the package and store the products appropriately immediately -
A Small De Novo 16Q24.1 Duplication in a Woman with Severe Clinical Features
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by HAL-Université de Bretagne Occidentale A small de novo 16q24.1 duplication in a woman with severe clinical features. Sylvia Qu´em´ener-Redon,Caroline B´enech, S´everine Audebert-Bellanger, Ga¨elleFriocourt, Marc Planes, Philippe Parent, Claude F´erec To cite this version: Sylvia Qu´em´ener-Redon, Caroline B´enech, S´everine Audebert-Bellanger, Ga¨elle Friocourt, Marc Planes, et al.. A small de novo 16q24.1 duplication in a woman with severe clini- cal features.. European Journal of Medical Genetics, Elsevier, 2013, epub ahead of print. <10.1016/j.ejmg.2013.01.001>. <inserm-00788405> HAL Id: inserm-00788405 http://www.hal.inserm.fr/inserm-00788405 Submitted on 14 Feb 2013 HAL is a multi-disciplinary open access L'archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destin´eeau d´ep^otet `ala diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publi´esou non, lished or not. The documents may come from ´emanant des ´etablissements d'enseignement et de teaching and research institutions in France or recherche fran¸caisou ´etrangers,des laboratoires abroad, or from public or private research centers. publics ou priv´es. A small de novo 16q24.1 duplication in a woman with severe clinical features Sylvia Quéméner-Redon1,2, Caroline Bénech1,3, Séverine Audebert-Bellanger4, Gaëlle Friocourt1, Marc Planes4, Philippe Parent4 and Claude Férec1,2,3 1 Institut National de la Santé et de la Recherche Médicale (INSERM), UMR1078, Brest, France, 2 Laboratoire de Génétique Moléculaire et d’Histocompatibilité, Centre Hospitalier Universitaire (CHU), Hôpital Morvan, Brest, France, 3 Etablissement Français du Sang (EFS) – Bretagne, Brest, France, 4Service de Pédiatrie et de Génétique Médicale, Centre Hospitalier Universitaire de Brest, Brest, France. -
A Minimal Set of Internal Control Genes for Gene Expression Studies in Head
bioRxiv preprint doi: https://doi.org/10.1101/108381; this version posted February 14, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. 1 A minimal set of internal control genes for gene expression studies in head 2 and neck squamous cell carcinoma. 1 1 1 2 3 Vinayak Palve , Manisha Pareek , Neeraja M Krishnan , Gangotri Siddappa , 2 2 1,3* 4 Amritha Suresh , Moni Abraham Kuriakose and Binay Panda 5 1 6 Ganit Labs, Bio-IT Centre, Institute of Bioinformatics and Applied Biotechnology, 7 Bangalore 560100 2 8 Mazumdar Shaw Cancer Centre and Mazumdar Shaw Centre for Translational 9 Research, Bangalore 560096 3 10 Strand Life Sciences, Bangalore 560024 11 * Corresponding author: [email protected] 12 13 Abstract: 14 Background: Selection of the right reference gene(s) is crucial in the analysis and 15 interpretation of gene expression data. In head and neck cancer, studies evaluating 16 the efficacy of internal reference genes are rare. Here, we present data for a minimal 17 set of candidates as internal control genes for gene expression studies in head and 18 neck cancer. 19 Methods: We analyzed data from multiple sources (in house whole-genome gene 20 expression microarrays, n=21; TCGA RNA-seq, n=42, and published gene 21 expression studies in head and neck tumors from literature) to come up with a set of 22 genes (discovery set) for their stable expression across tumor and normal tissues. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
A Genetic Dissection of Mitochondrial Respiratory Chain Biogenesis
A GENETIC DISSECTION OF MITOCHONDRIAL RESPIRATORY CHAIN BIOGENESIS An Undergraduate Research Scholars Thesis by AARON GRIFFIN, SARAH THERIAULT, SHRISHIV TIMBALIA Submitted to Honors and Undergraduate Research Texas A&M University in partial fulfillment of the requirements for the designation as an UNDERGRADUATE RESEARCH SCHOLAR Approved by Research Advisor: Dr. Vishal Gohil May 2014 Major: Biochemistry, Genetics Biochemistry Biochemistry TABLE OF CONTENTS Page ABSTRACT .....................................................................................................................................1 CHAPTER I INTRODUCTION ...............................................................................................................3 II MATERIALS AND METHODS .........................................................................................7 Yeast strains, plasmids, and culture conditions .......................................................7 Yeast growth measurements ..................................................................................10 Yeast oxygen consumption and mitochondrial isolation .......................................11 SDS-PAGE and Western blotting ..........................................................................11 Sporulation, tetrad dissection, and genotyping ......................................................12 High-throughput phenotypic analysis of yeast strains ...........................................15 III RESULTS ..........................................................................................................................16 -
RT² Profiler PCR Array (96-Well Format and 384-Well [4 X 96] Format)
RT² Profiler PCR Array (96-Well Format and 384-Well [4 x 96] Format) Human Mitochondria Cat. no. 330231 PAHS-087ZA For pathway expression analysis Format For use with the following real-time cyclers RT² Profiler PCR Array, Applied Biosystems® models 5700, 7000, 7300, 7500, Format A 7700, 7900HT, ViiA™ 7 (96-well block); Bio-Rad® models iCycler®, iQ™5, MyiQ™, MyiQ2; Bio-Rad/MJ Research Chromo4™; Eppendorf® Mastercycler® ep realplex models 2, 2s, 4, 4s; Stratagene® models Mx3005P®, Mx3000P®; Takara TP-800 RT² Profiler PCR Array, Applied Biosystems models 7500 (Fast block), 7900HT (Fast Format C block), StepOnePlus™, ViiA 7 (Fast block) RT² Profiler PCR Array, Bio-Rad CFX96™; Bio-Rad/MJ Research models DNA Format D Engine Opticon®, DNA Engine Opticon 2; Stratagene Mx4000® RT² Profiler PCR Array, Applied Biosystems models 7900HT (384-well block), ViiA 7 Format E (384-well block); Bio-Rad CFX384™ RT² Profiler PCR Array, Roche® LightCycler® 480 (96-well block) Format F RT² Profiler PCR Array, Roche LightCycler 480 (384-well block) Format G RT² Profiler PCR Array, Fluidigm® BioMark™ Format H Sample & Assay Technologies Description The Human Mitochondria RT² Profiler PCR Array profiles the expression of 84 genes involved in the biogenesis and function of the cell's powerhouse organelle. The genes monitored by this array include regulators and mediators of mitochondrial molecular transport of not only the metabolites needed for the electron transport chain and oxidative phosphorylation, but also the ions required for maintaining the mitochondrial membrane polarization and potential important for ATP synthesis. Metabolism and energy production are not the only functions of mitochondria. -
4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4). -
Mitochondrial Protein Quality Control Mechanisms
G C A T T A C G G C A T genes Review Mitochondrial Protein Quality Control Mechanisms Pooja Jadiya * and Dhanendra Tomar * Center for Translational Medicine, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA * Correspondence: [email protected] (P.J.); [email protected] (D.T.); Tel.: +1-215-707-9144 (D.T.) Received: 29 April 2020; Accepted: 15 May 2020; Published: 18 May 2020 Abstract: Mitochondria serve as a hub for many cellular processes, including bioenergetics, metabolism, cellular signaling, redox balance, calcium homeostasis, and cell death. The mitochondrial proteome includes over a thousand proteins, encoded by both the mitochondrial and nuclear genomes. The majority (~99%) of proteins are nuclear encoded that are synthesized in the cytosol and subsequently imported into the mitochondria. Within the mitochondria, polypeptides fold and assemble into their native functional form. Mitochondria health and integrity depend on correct protein import, folding, and regulated turnover termed as mitochondrial protein quality control (MPQC). Failure to maintain these processes can cause mitochondrial dysfunction that leads to various pathophysiological outcomes and the commencement of diseases. Here, we summarize the current knowledge about the role of different MPQC regulatory systems such as mitochondrial chaperones, proteases, the ubiquitin-proteasome system, mitochondrial unfolded protein response, mitophagy, and mitochondria-derived vesicles in the maintenance of mitochondrial proteome and health. The proper understanding of mitochondrial protein quality control mechanisms will provide relevant insights to treat multiple human diseases. Keywords: mitochondria; proteome; ubiquitin; proteasome; chaperones; protease; mitophagy; mitochondrial protein quality control; mitochondria-associated degradation; mitochondrial unfolded protein response 1. Introduction Mitochondria are double membrane, dynamic, and semiautonomous organelles which have several critical cellular functions. -
Structural Bases of the Altered Catalytic Properties of a Pathogenic Variant of Apoptosis Inducing Factor
Structural bases of the altered catalytic properties of a pathogenic variant of apoptosis inducing factor Luca Sorrentinoa, b , Federica Cossua, b , Mario Milania, b, Alessandro Alivertib *, Eloise Mastrangeloa, b ** aBiophysics Institute, National Research Council c/o Department of Biosciences, Università degli Studi di Milano, Via Celoria 26, 20133 Milano, Italy; bDepartment of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milano, Italy. LS and FC contributed equally to this work. * To whom correspondence should be addressed: Phone: +39 0250314897. Fax: +39 0250314895. E-mail: [email protected] ** To whom correspondence should be addressed: Phone: +39 0250314898. Fax: +39 0250314895. E-mail: [email protected] 1 Abbreviations AIFCT, AIF forms in CT complex with NAD+; AIFOX, AIF forms harboring oxidized FAD; CHCHD4, coiled-coil-helix-coiled-coil-helix domain-containing protein 4; CT, charge transfer; DCIP, 2,6-dichlorophenolindophenol; FADH-, anionic dihydroquinone form of FAD; OXPHOS, oxidative phosphorylation. 2 Abstract The apoptosis-inducing factor (AIF) is a FAD-containing protein playing critical roles in caspase-independent apoptosis and mitochondrial respiratory chain biogenesis and maintenance. While its lethal role is well known, the details of its mitochondrial function remain elusive. So far, nineteen allelic variants of AIF have been associated to human diseases, mainly affecting the nervous system. A strict correlation is emerging between the degree of impairment of its ability to stabilize the charge- transfer (CT) complex between FAD and NAD+ and the severity of the resulting pathology. Recently, we demonstrated that the G307E replacement in murine AIF (equivalent to the pathogenic G308E in the human protein) dramatically decreases the rate of CT complex formation through the destabilization of the flavoprotein interaction with NAD(H). -
Mutation in the COX4I1 Gene Is Associated with Short Stature, Poor Weight Gain and Increased Chromosomal Breaks, Simulating Fanconi Anemia
European Journal of Human Genetics (2017) 25, 1142–1146 & 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved 1018-4813/17 www.nature.com/ejhg ARTICLE Mutation in the COX4I1 gene is associated with short stature, poor weight gain and increased chromosomal breaks, simulating Fanconi anemia Bassam Abu-Libdeh*,1,4, Liza Douiev2,3,4, Sarah Amro1, Maher Shahrour1, Asaf Ta-Shma2, Chaya Miller2,3, Orly Elpeleg2 and Ann Saada*,2,3 We describe a novel autosomal recessive form of mitochondrial disease in a child with short stature, poor weight gain, and mild dysmorphic features with highly suspected Fanconi anemia due to a mutation in COX4I1 gene. Whole Exome Sequencing was performed then followed by Sanger confirmation, identified a K101N mutation in COX4I1, segregating with the disease. This nuclear gene encodes the common isoform of cytochrome c oxidase (COX) subunit 4 (COX 4-1), an integral regulatory part of COX (respiratory chain complex IV) the terminal electron acceptor of the mitochondrial respiratory chain. The patient’s fibroblasts disclosed decreased COX activity, impaired ATP production, elevated ROS production, decreased expression of COX4I1 mRNA and undetectable (COX4) protein. COX activity and ATP production were restored by lentiviral transfection with the wild-type gene. Our results demonstrate the first human mutation in the COX4I1 gene linked to diseases and confirm its role in the pathogenesis. Thus COX4I1 mutations should be considered in any patient with features suggestive of this diagnosis. European Journal of Human Genetics (2017) 25, 1142–1146; doi:10.1038/ejhg.2017.112; published online 2 August 2017 INTRODUCTION normal vaginal delivery with birth weight of 2.8 kg after an uneventful Mitochondrial cytochrome c oxidase (COX, complex IV) is the terminal pregnancy. -
Identification of P.A684V Missense Mutation in the WFS1 Gene As a Frequent Cause of Autosomal Dominant Optic Atrophy and Hearing
RESEARCH ARTICLE Identification of p.A684V Missense Mutation in the WFS1 Gene as a Frequent Cause of Autosomal Dominant Optic Atrophy and Hearing Impairment Nanna D. Rendtorff,1 Marianne Lodahl,1 Houda Boulahbel,2 Ida R. Johansen,1 Arti Pandya,3 Katherine O. Welch,4 Virginia W. Norris,4 Kathleen S. Arnos,4 Maria Bitner-Glindzicz,5 Sarah B. Emery,6 Marilyn B. Mets,7 Toril Fagerheim,8 Kristina Eriksson,9 Lars Hansen,1 Helene Bruhn,10 Claes M€oller,11 Sture Lindholm,12 Stefan Ensgaard,13 Marci M. Lesperance,6 and Lisbeth Tranebjaerg1,14*,† 1Wilhelm Johannsen Centre for Functional Genome Research, Department of Cellular and Molecular Medicine (ICMM), The Panum Institute, University of Copenhagen, Copenhagen, Denmark 2Biotech Research & Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark 3Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, Virginia 4Department of Biology, Gallaudet University, Washington DC 5UCL Institute of Child Health, London, UK 6Division of Pediatric Otolaryngology, Department of Otolaryngology-Head and Neck Surgery, UniversityofMichiganHealthSystem,AnnArbor,Michigan 7Departments of Ophthalmology and Surgery, Feinberg School of Medicine, Northwestern University, Evanston, Illinois 8Division of Child and Adolescent Health, Department of Medical Genetics, University Hospital of North Norway, Tromsø, Norway 9Department of Ophthalmology, Lundby Hospital, Gothenburg, Sweden 10Division of Metabolic Diseases, Department of Laboratory Medicine, Karolinska Institute, Karolinska University Hospital, Stockholm, Sweden 11Department of Audiology/Disability Research (SIDR), O¨rebro University, Sweden 12Department of Audiology, County Hospital, Kalmar, Sweden 13Department of Psychiatrics, Stockholm, Sweden 14Department of Audiology, Bispebjerg Hospital, Copenhagen, Denmark Received 19 July 2010; Accepted 2 February 2011 Optic atrophy (OA) and sensorineural hearing loss (SNHL) are these additional eight families. -
Dominant Optic Atrophy
Lenaers et al. Orphanet Journal of Rare Diseases 2012, 7:46 http://www.ojrd.com/content/7/1/46 REVIEW Open Access Dominant optic atrophy Guy Lenaers1*, Christian Hamel1,2, Cécile Delettre1, Patrizia Amati-Bonneau3,4,5, Vincent Procaccio3,4,5, Dominique Bonneau3,4,5, Pascal Reynier3,4,5 and Dan Milea3,4,5,6 Abstract Definition of the disease: Dominant Optic Atrophy (DOA) is a neuro-ophthalmic condition characterized by a bilateral degeneration of the optic nerves, causing insidious visual loss, typically starting during the first decade of life. The disease affects primary the retinal ganglion cells (RGC) and their axons forming the optic nerve, which transfer the visual information from the photoreceptors to the lateral geniculus in the brain. Epidemiology: The prevalence of the disease varies from 1/10000 in Denmark due to a founder effect, to 1/30000 in the rest of the world. Clinical description: DOA patients usually suffer of moderate visual loss, associated with central or paracentral visual field deficits and color vision defects. The severity of the disease is highly variable, the visual acuity ranging from normal to legal blindness. The ophthalmic examination discloses on fundoscopy isolated optic disc pallor or atrophy, related to the RGC death. About 20% of DOA patients harbour extraocular multi-systemic features, including neurosensory hearing loss, or less commonly chronic progressive external ophthalmoplegia, myopathy, peripheral neuropathy, multiple sclerosis-like illness, spastic paraplegia or cataracts. Aetiology: Two genes (OPA1, OPA3) encoding inner mitochondrial membrane proteins and three loci (OPA4, OPA5, OPA8) are currently known for DOA. Additional loci and genes (OPA2, OPA6 and OPA7) are responsible for X-linked or recessive optic atrophy.