Female Ectodermal Genitalia of the Taxa of the Kelisia Guttula

Total Page:16

File Type:pdf, Size:1020Kb

Female Ectodermal Genitalia of the Taxa of the Kelisia Guttula Female ectodermal genitalia of the taxa of theKelisia guttula - group (Homoptera Fulgoromorpha Delphacidae): not only an example for specialized coorganization with male genitalia without obvious reasons, but also a character set apt for species discrimination in westpalaearctic taxa? R e in h a r d R e m a n e & Ad a l g is a G u g l ie l m in o Keywords: Kelisiinae, evolutionary coorganization, “hypertrophic” specialisation, “orthogenetic evolution”, biogeography (Spain, France, Central Europe), taxonomy, Kelisia occirrega n. sp. Abstract: In the course of evolution male and female external and internal ectodermal genitalic structures in the taxa of the monophyletic Kelisia gwffw/a-group have been enlarged and differentiated in a very special way in comparison to plesiomoiphic taxa of Kelisiinae. Functional reasons for this “orthogenetic” evolution are not yet known, as it seems. In evolutory “coorganization” the evolution of a proportionally very large genital segment and an extremely long, thin and flexible aedeagus in the males is “answered” (for there seem to be - other than in some other insect taxa, e. i. Diptera Tephritidae - no special “female” functions like oviposition or “sperm handling” which may act as “selective forces” on these structures, by this changing their morphology) by the females with the development of a special duct of approximately “edeagal length” guiding and keeping the male aedeagus during copulation. This “edeagal duct”, which morphologically is “folded off’ from the genital room, starts at the dorsal base of the female’s genital room and ends opposite the depart of the oviductus communis (leading to the spermatheca as well as to the ovaries). It is much longer than the genital room, but it remains connected with it by a thin ligament. It is provided with a variety of sclerotized structures. This could be interpreted as a “lock and key” mechanism to prevent successful mating between specimens belonging to different species, but such matings are prohibited already by species-specific vibratory signals acting as “premating isolating mechanism”. As in the K. guttula-group there exist several species-groups containing externally very similar species, in which the females could not be identified down to species up to now (resulting in “handicaps” for biogeographical and ecological analyses), we examined these structures looking for species-specific characters enabling the safe identification not only of males, but of females, too. As a result all females of this group now may be safely identified due to such species-specific characters present in their internal ectodermal genitalia. The populations of “Kelisia irregulata Haupt” from Spain and western France have shown to be that different from the allopatrically distributed central european populations, that they seem to be a genpool of their own. So we decided to describe these populations as a species of its own: Kelisia occirrega n. sp. (Type locality: Spain, Prov. Pamplona, Isaba in the Valle del Roncal in the southwestern Pyrenees). This taxon ought to keep its species rank unless intermediate, transitional specimens will be discovered in the “gap” between the two taxa (situated in eastern France) indicating the existence of a “hybrid belt”. As known, one of the aims of taxonomic research is to detect character states, which enable a researcher safely to decide to which of two or more otherwise very similar species a certain specimen belongs. Most favourable are those character states, which may be easily seen and persist even if the specimen is dead and conserved by appropriate techniques. Unfortunately, in many groups of animals this aim has not yet been achieved: one of the sexes and/or juvenile specimens have to remain unidentified. This situation exists also in the “guttula-group” of the planthopper genus Kelisia Fieber. The number of species recognized in this species-group has not only increased during the past years, but the characters used for species recognition and discrimination have changed, too: while in former times (R ib a u t 1934; W a g n e r 1939) it was possible to recognize the alleged “species” not only by characters of the male genitalia but also by external characters like size, shape, proportions, colour and markings, more recently species have been established or described (R e m a n e & Ju n g 1995, G u g l ie l m in o & R e m a n e 2002) which could be discriminated from their nearest relatives no longer by external characters but by the structure of the male genitalia only. In most of these cases their females had to remain unidentified. As such a situation is unfavourable for ecological as well as for biogeographical research, we started an examination of the internal ectodermal parts of the female genitalia in order to find out, whether there might exist species-specific characters or not. In the monophyletic “ Kelisia gwtfw/a-group” (consisting up to now of 10-11 species: 3 in the eastern part of the Palaearctic Region only: xiphura Vilbaste, bispinifera Dlabola and asahinai Hori, and 8 confined to or reaching into the western Palaearctic: guttula Germar sensu Wagner, sima Ribaut, italica Guglielmino & Remane, irregulata Haupt, vittipennis J. Sahlberg, haupti Wagner, halpina Remane & Jung, hagemini Remane & Jung) the internal female genitalia are very specially constructed1. Directly at the dorsocephal side of the genital-opening following the “Atrium-Platte” there is developed a special duct accompanying the basal part of the “Genitalraum”, i. e. the part extending between the cephalodorsal basis of the GVIII and the origin of the duct leading to the ovaries and the receptaculum seminis. This special duct “directs” and “keeps” the male aedeagus during copulation. To succeed in this, it is provided with more or less extended sclerotized walls: some of these sclerotizations are located on its dorsal side, and one at the "end” directly before this duct enters again the genital room. The male of the taxa of the K guttula-group possess not only an absolutely and relatively to the size of the body very enlarged genital segment but also a thin, flexible and extremely elongated aedeagus (see amongst others W a g n e r 1963 and Asc h e 1985), which at rest lies curved in a semicircle in the distal half of the male abdomen. “Coorganized” with the length of the aedeagus, the duct in the female genitalia (but not the corresponding part of the genital room!) is considerably elongated and by this is forced to “depart” from the genital room, forming in some taxa a large, undulated, asymmetrically situated lobe. This lobe always stays connected over its complete length with the genital room by a thin, membraneous ligament. By this a kind of separation 1 The non-westpalaearctic taxa K. xiphura Vilbaste, K. bispinifera Dlabola and K. asahinai Hori, 1982 have not yet been investigated due to the lack o f material. The description oK. f asahinai Hori unfortunately lacks important details of the structure o f the male genitalia (only tip of the aedeagus shown, subanal appendages neither figured nor described) which render the placement of this species somewhat doubtful. between “copulation duct” and “oviduct” results, which reminds the ditrysic constructions found in other taxa (e.g. Stenocraninae). This character complex - thin, long and curved aedeagus and detached special “edeagal duct” in the females - is a special feature of the taxa of the “ K gwtfw/a-group” not present in any other palaearctic or nearctic groups of Kelisiinae. It may be considered as a special synapomorphy “proving” the monophyly of this group of taxa2. To observe the aforementioned characters, it is necessary to macerate the female abdomen in K(OH)/potassium hydroxid (ca. 10%) and after that using a binocular microscope to wash and dissect it in water. After that it may be transferred either as usual into glycerol for detailed observations or (if parts like genital room, oviduct, and bursa copulatrix are to be kept inflated) in water to which formaldehyd has been added (ca. 1:15, see Asche 1985: 27). To examine the details, a magnification of ca. lOOx is recommended. The results of our investigations have to be considered preliminary, for from many species we have examined a rather small number of specimens only: the range of variation of these characters within a population as well as within the geographical range of each taxon thus might be larger than shown here and than known up to now. Nevertheless, the results obtained so far seemed that promising with respect to the aim of species discrimination in this K. guttula-gcoup, that we decided to publish them already now: so these our results presented here may be corroborated, or corrected by other homopterologist. The characters, in which we think to have found differences between the species of this group mainly are: 1st The absolute and relative length of the edeagal duct. This length apparently (and as expected) is ± correlated with the length of the aedeagus. But exact measuring is difficult (and time-consuming), as this duct is bent and twisted in all directions especially in those taxa, in which it is very long. In addition the way in which this duct is bent differs between specimens of the same species (even if these specimens were caught at the same data in the same place). Nevertheless - as shown by the figures - there is a very short duct in K. hagemini Remane & Jung (Fig. 1), this duct is distinctly longer in K. haupti Wagner (Fig. 2) and much longer in K. halpina Remane & Jung (Fig. 3). These three species were separated in 1995 only (R emane & Jung ) by morphometric examination of their male genitalia, they are very similar in size, proportions and markings and at that time their females could not be reliably separated.
Recommended publications
  • A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)L
    Pacific Science (1997), vol. 51, no. 4: 366-376 © 1997 by University of Hawai'i Press. All rights reserved A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)l MANFRED ASCHE2 ABSTRACT: With 206 endemic species, the phytophagous Fulgoroidea, or planthop­ pers, are among the most important elements of the native Hawaiian fauna. These principally monophagous or oligophagous insects occur in nearly all Hawaiian terrestrial ecosystems. Species of two of the 18 planthopper families occurring worldwide have successfully colonized and subsequently radiated in Hawai'i. Based on collections made mainly by Perkins, Kirkaldy, Muir, Giffard, and Swezey, more than 95% of these species were described in the first three decades of this century. The systematics of the Hawaiian planthoppers has changed little in the past 60 yr and is not based on any phylogenetic analyses. This paper attempts a preliminary phylogenetic evaluation ofthe native Hawaiian p1anthoppers on the basis ofcompara­ tive morphology to recognize monophyletic taxa and major evolutionary lines. The following taxa are each descendants of single colonizing species: in Cixiidae, the Hawaiian Oliarus and Iolania species; in De1phacidae, Aloha partim, Dictyophoro­ delphax, Emoloana, Leialoha + Nesothoe, Nesodryas, and at least four groups within Nesosydne. Polyphyletic taxa are the tribe "Alohini," Aloha s.l., Nesorestias, Nesosydne s.l., and Nothorestias. Non-Hawaiian species currently placed in Iolania, Oliarus, Aloha, Leialoha, and Nesosydne are not closely allied to the Hawaiian taxa. The origin of the Hawaiian planthoppers is obscure. The Hawaiian Oliorus appear to have affinities to (North) American taxa. ALTHOUGH THE HAWAIIAN ISLANDS are the most Other groups of Hawaiian insects have isolated islands on earth, they house a remark­ received far less attention, although they are ably rich flora and fauna.
    [Show full text]
  • Habitat Persistence Underlies Intraspecific Variation in the Dispersal Strategies of Planthoppers Author(S): Robert F
    Habitat Persistence Underlies Intraspecific Variation in the Dispersal Strategies of Planthoppers Author(s): Robert F. Denno, George K. Roderick, Merrill A. Peterson, Andrea F. Huberty, Hartmut G. Dobel, Micky D. Eubanks, John E. Losey, Gail A. Langellotto Source: Ecological Monographs, Vol. 66, No. 4 (Nov., 1996), pp. 389-408 Published by: Ecological Society of America Stable URL: http://www.jstor.org/stable/2963487 Accessed: 26/03/2010 10:14 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=esa. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. Ecological Society of America is collaborating with JSTOR to digitize, preserve and extend access to Ecological Monographs.
    [Show full text]
  • Additions to the Fauna of Planthoppers and Leafhoppers (Hemiptera: Auchenorrhyncha) of the Czech Republic
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/259757406 Additions to the fauna of planthoppers and leafhoppers (Hemiptera: Auchenorrhyncha) of the Czech Republic ARTICLE · JULY 2010 CITATION READS 1 56 2 AUTHORS, INCLUDING: Igor Malenovsky Masaryk University 47 PUBLICATIONS 219 CITATIONS SEE PROFILE Available from: Igor Malenovsky Retrieved on: 04 January 2016 ISSN 1211-8788 Acta Musei Moraviae, Scientiae biologicae (Brno) 95(1): 49–122, 2010 Additions to the fauna of planthoppers and leafhoppers (Hemiptera: Auchenorrhyncha) of the Czech Republic IGOR MALENOVSKÝ 1 & PAVEL LAUTERER 1, 2 1Department of Entomology, Moravian Museum, Hviezdoslavova 29a, CZ-627 00 Brno, Czech Republic; e-mail: [email protected] 2 e-mail: [email protected] MALENOVSKÝ I. & LAUTERER P. 2010: Additions to the fauna of planthoppers and leafhoppers (Hemiptera: Auchenorrhyncha) of the Czech Republic. Acta Musei Moraviae, Scientiae biologicae (Brno) 95(1): 49–122. – Faunistic data on 56 species of planthoppers and leafhoppers (Hemiptera: Auchenorrhyncha) from the Czech Republic are provided and discussed. Twenty-two species are recorded from the Czech Republic for the first time: Cixius (Acanthocixius) sticticus Rey, 1891, Trigonocranus emmeae Fieber, 1876, Chloriona clavata Dlabola, 1960, Chloriona dorsata Edwards, 1898, Chloriona sicula Matsumura, 1910, Gravesteiniella boldi (Scott, 1870), Kelisia confusa Linnavuori, 1957, Kelisia sima Ribaut, 1934, Ribautodelphax imitans (Ribaut, 1953), Ribautodelphax pallens (Stål, 1854), Empoasca ossiannilssoni Nuorteva, 1948, Eupteryx decemnotata Rey, 1891, Kyboasca maligna (Walsh, 1862), Allygidius mayri (Kirschbaum, 1868), Allygus maculatus Ribaut, 1952, Eohardya fraudulenta (Horváth, 1903), Metalimnus steini (Fieber, 1869), Orientus ishidae (Matsumura, 1902), Phlepsius intricatus (Herrich-Schäffer, 1866), Psammotettix nardeti Remane, 1965, Psammotettix poecilus (Flor, 1861), and Psammotettix slovacus Dlabola, 1948.
    [Show full text]
  • An Invasive Plant Promotes Unstable Host–Parasitoid
    Ecology, 85(10), 2004, pp. 2772±2782 q 2004 by the Ecological Society of America AN INVASIVE PLANT PROMOTES UNSTABLE HOST±PARASITOID PATCH DYNAMICS JAMES T. C RONIN1 AND KYLE J. HAYNES Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803-1715 USA Abstract. In theory, the rate of interpatch dispersal signi®cantly in¯uences the pop- ulation dynamics of predators and their prey, yet there are relatively few ®eld experiments that provide a strong link between these two processes. In tallgrass prairies of North America, the planthopper, Prokelisia crocea, and its specialist parasitoid, Anagrus columbi, exist among discrete host-plant patches (prairie cordgrass, Spartina pectinata). In many areas, the matrix, or habitat between patches, has become dominated by the invasive exotic grass, smooth brome (Bromus inermis). We performed a landscape-level ®eld study in which replicate cordgrass networks (identical in number, size, quality, and distribution of cordgrass patches) were embedded in a matrix composed of either mud¯at (a native matrix habitat) or smooth brome. Mark±recapture experiments with the planthopper and parasitoid revealed that the rate of movement among cordgrass patches for both species was 3±11 times higher in smooth brome than in mud¯at. Within three generations, planthopper and parasitoid densities per patch were on average ;50% lower and spatially 50±87% more variable for patches embedded in a brome as compared to a mud¯at matrix. A brome-dominated land- scape also promoted extinction rates per patch that were 4±5 times higher than the rates per patch in native mud¯at habitat.
    [Show full text]
  • Supporting References for Nelson & Ellis
    Supplemental Data for Nelson & Ellis (2018) The citations below were used to create Figures 1 & 2 in Nelson, G., & Ellis, S. (2018). The History and Impact of Digitization and Digital Data Mobilization on Biodiversity Research. Publication title by year, author (at least one ADBC funded author or not), and data portal used. This list includes papers that cite the ADBC program, iDigBio, TCNs/PENs, or any of the data portals that received ADBC funds at some point. Publications were coded as "referencing" ADBC if the authors did not use portal data or resources; it includes publications where data was deposited or archived in the portal as well as those that mention ADBC initiatives. Scroll to the bottom of the document for a key regarding authors (e.g., TCNs) and portals. Citation Year Author Portal used Portal or ADBC Program was referenced, but data from the portal not used Acevedo-Charry, O. A., & Coral-Jaramillo, B. (2017). Annotations on the 2017 Other Vertnet; distribution of Doliornis remseni (Cotingidae ) and Buthraupis macaulaylibrary wetmorei (Thraupidae ). Colombian Ornithology, 16, eNB04-1 http://asociacioncolombianadeornitologia.org/wp- content/uploads/2017/11/1412.pdf [Accessed 4 Apr. 2018] Adams, A. J., Pessier, A. P., & Briggs, C. J. (2017). Rapid extirpation of a 2017 Other VertNet North American frog coincides with an increase in fungal pathogen prevalence: Historical analysis and implications for reintroduction. Ecology and Evolution, 7, (23), 10216-10232. Adams, R. P. (2017). Multiple evidences of past evolution are hidden in 2017 Other SEINet nrDNA of Juniperus arizonica and J. coahuilensis populations in the trans-Pecos, Texas region.
    [Show full text]
  • Pennsylvania Planthoppers (Hemiptera: Auchenorrhyncha
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2018 Pennsylvania planthoppers (Hemiptera: Auchenorrhyncha: Fulgoroidea): relative abundance and incidental catch using novel trapping methods Lawrence Barringer pennsylvania department of agriculture, [email protected] Charles R. Bartlett Department of Entomology and Wildlife Ecology, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Barringer, Lawrence and Bartlett, Charles R., "Pennsylvania planthoppers (Hemiptera: Auchenorrhyncha: Fulgoroidea): relative abundance and incidental catch using novel trapping methods" (2018). Insecta Mundi. 1163. http://digitalcommons.unl.edu/insectamundi/1163 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. September 28 2018 INSECTA 0661 1–31 urn:lsid:zoobank.org:pub:3F35AC27-3582-4137-89CA- A Journal of World Insect Systematics 5009D50C3073 MUNDI 0661 Pennsylvania planthoppers (Hemiptera: Auchenorrhyncha: Fulgoroidea): relative abundance and incidental catch using novel trapping methods Lawrence E. Barringer Division of Entomology, Pennsylvania Department of Agriculture 2301 N
    [Show full text]
  • Evolutionary Patterns of Host Plant Use by Delphacid Planthoppers
    population dynamics. Plant de­ specificity are considered with 1 crop varieties resistant to del- plant architecture on the abun­ n Chapter 3 (Denno). Species­ Evolutionary Patterns of Host Plant ' geographic and plant patch Use by Delphacid Planthoppers and density and plant diversity on l. The causal mechanisms for Their Relatives 1 and persistence are discussed its such as dispersal ability and ization and persistence. Stephen W. Wilson, Charles Mitter, Robert F. Denno and Michael R. Wilson Introduction Planthoppers (Homoptera: Fulgoroidea) are found on every continent ex­ cept Antarctica and in all major biomes, including tropical rainforests, deserts, grasslands, and the arctic tundra (O'Brien and Wilson 1985). The more than 9000 described species are divided into 19 families (O'Brien and Wilson 1985; Wheeler and Wilson 1987). All species of Fulgoroidea are phytophagous, sucking fluids from leaves, stems, roots, or fungal hyphae. There are species which feed on woody plants (both angiosperms and gymnosperms), herbs, ferns, and even fungi (O'Brien and Wilson 1985). The largest and most studied family of planthoppers is the Delphacidae which includes more than 2000 species in approximately 300 genera and 6 subfamilies (Asche 1985, 1990). Most continental delphacids are associated with monocots, particularly grasses and sedges (Wilson and O'Brien 1987; Denno and Roderick 1990 ), whereas some species, especially those on oceanic archipelagos, have radiated on dicots as well (Giffard 1922; Zim­ merman 1948). Their predilection for monocots, phloem-feeding habit, oviposition behavior and ability to transmit pathogens have contributed to the severe pest status of several delphacid species on rice, corn, sugarcane, and several cereal crops (Wilson and O'Brien 1987).
    [Show full text]
  • ACHILIDAE Synecdoche Costata Van Duzee 1910 (Catonia) Synecdoche Dimidiata Van Duzee 1910 (Catonia) Catonia Dimidata Van Duzee 1917 Missp
    260 NOMINA INSECTA NEARCTICA Synecdoche constellata Ball 1933 (Catonia) ACHILIDAE Synecdoche costata Van Duzee 1910 (Catonia) Synecdoche dimidiata Van Duzee 1910 (Catonia) Catonia dimidata Van Duzee 1917 Missp. Synecdoche flavicosta O'Brien 1971 (Synecdoche) Catonia Uhler 1895 Synecdoche fusca Van Duzee 1908 (Catonia) Cotonia Valdes Ragues 1914 Missp. Synecdoche grisea Van Duzee 1908 (Catonia) Pyren Fennah 1950 Syn. Synecdoche helenae Van Duzee 1918 (Catonia) Synecdoche impunctatus Fitch 1851 (Cixius) Catonia arbutina Ball 1933 (Catonia) Synecdoche irrorata Van Duzee 1914 (Catonia) Catonia bicinctura Van Duzee 1915 (Catonia) Synecdoche necopina Van Duzee 1918 (Catonia) Catonia carolina Metcalf 1923 (Catonia) Synecdoche nemoralis Van Duzee 1916 (Catonia) Catonia cinctifrons Fitch 1856 (Cixius) Catonia memoralis Van Duzee 1917 Missp. Catonia lunata Metcalf 1923 (Catonia) Synecdoche nervata Van Duzee 1910 (Catonia) Catonia nava Say 1830 (Flata) Synecdoche ocellata O'Brien 1971 (Synecdoche) Poeciloptera [sic] naeva Schaum 1850 Missp. Synecdoche pseudonervata O'Brien 1971 (Synecdoche) Poeciloptera [sic] noeva Walker 1851 Missp. Synecdoche rubella Van Duzee 1910 (Catonia) Poeciloptera [sic] nova Smith 1890 Missp. Synecdoche tricolor O'Brien 1971 (Synecdoche) Catonia bifasciata Metcalf 1948 Syn. Catonia picta Van Duzee 1908 (Catonia) Uniptera Ball 1933 Catonia pini Metcalf 1923 (Catonia) Catonia pumila Van Duzee 1908 (Catonia) Uniptera ampliata Ball 1933 (Uniptera) Catonia texana O'Brien 1971 (Catonia) Xerbus O'Brien 1961 Epiptera Metcalf 1922 Xerbus brunella Ball 1933 (Catonia) Epiptera brittoni Metcalf 1923 (Epiptera) Epiptera colorata Van Duzee 1908 (Helicoptera) Epiptera fusca Walker 1851 (Monopsis) Monopsis floridae Walker 1851 Syn. ACLERDIDAE Epiptera fusiformis Van Duzee 1910 (Elidiptera) Epiptera henshawi Van Duzee 1910 (Elidiptera) Epiptera opaca Say 1830 (Flata) Aclerda Signoret 1874 Helicoptera vestita Provancher 1889 Syn.
    [Show full text]
  • A REVIEW of the GENUS KELISIA in AMERICA NORTH of MEXICO with FOUR NEW SPECIES (Homoptera-Fulgoridae-Delphacinae)
    Volume 24, No. 3, July, 1951 117 A REVIEW OF THE GENUS KELISIA IN AMERICA NORTH OF MEXICO WITH FOUR NEW SPECIES (Homoptera-Fulgoridae-Delphacinae) R. H. Beamer University of Kansas, Lawrence.* Key to the Species a or 1. Elytra with brown black, longitudinal stripe of regular width to from base tip.2 a Elytra without such stripe.7 across 2. Dark mark of elytra continued front.flagellata across Dark mark of elytra not continued front.3 on 3. Black spot on front beneath each ocellus and one lateral mar gin of pronotum above coxae.pectinata Usually without black spot in either of these positions.4 on 4. Stripe elytra very broad, occupying two-thirds area.spinosa Stripe narrow, occupying about one-third area.5 on at n. 5. Stripe elytra very light amber except tip.torquata sp. Stripe very much darker.6 6. Elytra of short wing form barely passing abdomen, median stripe n. light .parvicurvata sp. Elytra with almost one-third their length beyond abdomen, median stripe dark.curvata n. 7. Elytra without black marks.flava sp. Elytra with black marks.8 on 8. Black spot beneath each ocellus and lateral margin of pronotum above front coxae.bimaculata Without such black spots.,.9 to a in of 9. Black markings of elytra confined spot apex elytra.10 at Black markings of elytra heavy apex and base, usually narrowly following second sector.axialis on over 10. Dark stripe either side of abdomen continued ^iowoXxvci\....retrorsa on not over Dark stripe either side of abdomen usually continued pronotum.11 n.
    [Show full text]
  • Spider Effects on Planthopper Mortality, Dispersal, and Spatial Population Dynamics
    Ecology, 85(8), 2004, pp. 2134±2143 q 2004 by the Ecological Society of America SPIDER EFFECTS ON PLANTHOPPER MORTALITY, DISPERSAL, AND SPATIAL POPULATION DYNAMICS JAMES T. C RONIN,1 KYLE J. HAYNES, AND FORREST DILLEMUTH Department of Biological Sciences, 206 Life Sciences Building, Louisiana State University, Baton Rouge, Louisiana 70803-1715 USA Abstract. Nonlethal (trait-mediated) effects of predators on prey populations, partic- ularly with regard to prey dispersal, scarcely have been considered in spatial ecological studies. In this study, we report on the effects of spider predators on the mortality, dispersal, and spatial population dynamics of Prokelisia crocea planthoppers (Hemiptera: Delphac- idae) in a prairie landscape. Based on a three-generation survey of host-plant patches (Spartina pectinata; Poaceae), the density of cursorial and web-building spiders declined signi®cantly with increasing patch size (a pattern the opposite of that for the planthopper). Independent of patch size effects, an increase in the density of web-building and cursorial spiders had a negative effect on planthopper density in one of three generations each. Finally, the likelihood of extinction of local (patch) populations of planthoppers increased signi®cantly with an increase in the density of web-building spiders. Planthoppers in small host-plant patches with high densities of web-building spiders were especially at risk of extinction. To evaluate whether spider effects on planthopper spatial dynamics were me- diated by predation and/or spider-induced dispersal, we performed a ®eld experiment in which host-plant patches were either caged or left open and received one of three spider density treatments (removal, ambient levels, or high 5 triple ambient levels).
    [Show full text]
  • Leafhoppers (Hemiptera, Auchenorrhyncha) in Fragmented Habitats 523- 530 © Biologiezentrum Linz/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2002 Band/Volume: 0004 Autor(en)/Author(s): Biedermann Robert Artikel/Article: Leafhoppers (Hemiptera, Auchenorrhyncha) in fragmented habitats 523- 530 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Leafhoppers (Hemiptera, Auchenorrhyncha) in fragmented habitats R. BIEDERMANN Abstract The distribution of leafhoppers (inclu- patterns in the habitat patches, in most ding planthoppers, spittlebugs and tree- leafhopper species effects of area and iso- hoppers) largely depends on the distribu- lation on density and occupancy were tion of their host plants. Plants occur reported. Increasing patch area often more or less aggregated and frequently resulted in higher densities and higher form discrete patches. In natural as well as incidences. On the other hand, increasing in cultural landscapes these patches may isolation was found to reduce the inciden- be fragmented to some extent. A review of ce in the patches. The relevance of these existing studies on leafhopper populations results are discussed in the light of recent in fragmented landscapes summarises the metapopulation theory. current knowledge on the role of area and isolation on occurrence and density of Key words: Auchenorrhyncha, host leafhoppers. Whereas little information is plant, habitat fragmentation, area, isola- available on the dynamics of occupancy tion Denisia 04, zugleich Kataloge des OÖ. Landesmuseums, Neue Folge Nr. 176 (2002), 523-530 523 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Introduction The analysis of leafhopper communities may yield additional information on, for instance, The overall feature of leafhoppers (inclu- species richness or trophic interactions in rela- ding planthoppers, spittlebugs and treehop- tion to habitat configuration (e.g.
    [Show full text]
  • Bottom-Up Forces Mediate Natural-Enemy Impact in a Phytophagous Insect Community Claudio Gratton
    Western Washington University Western CEDAR Biology Faculty and Staff ubP lications Biology 5-2002 Bottom-Up Forces Mediate Natural-Enemy Impact in a Phytophagous Insect Community Claudio Gratton Robert F. Denno Merrill A. Peterson Western Washington University, [email protected] Gail A. Langellotto Deborah L. Finke See next page for additional authors Follow this and additional works at: https://cedar.wwu.edu/biology_facpubs Part of the Biology Commons Recommended Citation Gratton, Claudio; Denno, Robert F.; Peterson, Merrill A.; Langellotto, Gail A.; Finke, Deborah L.; and Huberty, Andrea F., "Bottom- Up Forces Mediate Natural-Enemy Impact in a Phytophagous Insect Community" (2002). Biology Faculty and Staff Publications. 21. https://cedar.wwu.edu/biology_facpubs/21 This Article is brought to you for free and open access by the Biology at Western CEDAR. It has been accepted for inclusion in Biology Faculty and Staff ubP lications by an authorized administrator of Western CEDAR. For more information, please contact [email protected]. Authors Claudio Gratton, Robert F. Denno, Merrill A. Peterson, Gail A. Langellotto, Deborah L. Finke, and Andrea F. Huberty This article is available at Western CEDAR: https://cedar.wwu.edu/biology_facpubs/21 Ecology, 83(5), 2002, pp. 1443±1458 q 2002 by the Ecological Society of America BOTTOM-UP FORCES MEDIATE NATURAL-ENEMY IMPACT IN A PHYTOPHAGOUS INSECT COMMUNITY ROBERT F. D ENNO,1,3 CLAUDIO GRATTON,1 MERRILL A. PETERSON,2 GAIL A. LANGELLOTTO,1 DEBORAH L. FINKE,1 AND ANDREA F. H UBERTY1 1Department of Entomology, University of Maryland, College Park, Maryland 20742 USA 2Biology Department, Western Washington University, Bellingham, Washington 98225 USA Abstract.
    [Show full text]