Leafhoppers (Hemiptera, Auchenorrhyncha) in Fragmented Habitats 523- 530 © Biologiezentrum Linz/Austria; Download Unter

Total Page:16

File Type:pdf, Size:1020Kb

Leafhoppers (Hemiptera, Auchenorrhyncha) in Fragmented Habitats 523- 530 © Biologiezentrum Linz/Austria; Download Unter ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Denisia Jahr/Year: 2002 Band/Volume: 0004 Autor(en)/Author(s): Biedermann Robert Artikel/Article: Leafhoppers (Hemiptera, Auchenorrhyncha) in fragmented habitats 523- 530 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Leafhoppers (Hemiptera, Auchenorrhyncha) in fragmented habitats R. BIEDERMANN Abstract The distribution of leafhoppers (inclu- patterns in the habitat patches, in most ding planthoppers, spittlebugs and tree- leafhopper species effects of area and iso- hoppers) largely depends on the distribu- lation on density and occupancy were tion of their host plants. Plants occur reported. Increasing patch area often more or less aggregated and frequently resulted in higher densities and higher form discrete patches. In natural as well as incidences. On the other hand, increasing in cultural landscapes these patches may isolation was found to reduce the inciden- be fragmented to some extent. A review of ce in the patches. The relevance of these existing studies on leafhopper populations results are discussed in the light of recent in fragmented landscapes summarises the metapopulation theory. current knowledge on the role of area and isolation on occurrence and density of Key words: Auchenorrhyncha, host leafhoppers. Whereas little information is plant, habitat fragmentation, area, isola- available on the dynamics of occupancy tion Denisia 04, zugleich Kataloge des OÖ. Landesmuseums, Neue Folge Nr. 176 (2002), 523-530 523 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Introduction The analysis of leafhopper communities may yield additional information on, for instance, The overall feature of leafhoppers (inclu- species richness or trophic interactions in rela- ding planthoppers, spittlebugs and treehop- tion to habitat configuration (e.g. DENNO & pers) is their close relation to plants. The host RODERICK 1991). plants provide nutrition (e.g. BACKUS 1985, There a two major theoretical concepts COBBEN 1988), shelter for eggs (e.g. CLARIDGE dealing with the explanation of animal distri- et al. 1977) and transmission channels for bio- butions on islands or habitat patches. The acoustic signals (e.g. MlCHELSEN et al. 1982). theory of island biogeography (MACARTHUR Accordingly, one major requisite of leafhopper & WILSON 1967) predicts species numbers on habitats is the presence of the host plants. In particular in host plant specialists among leaf- islands or habitat patches in relation to isola- hoppers the habitat is principally given by the tion and area. In leafhoppers, the theory of distribution of the host plants. island biogeography was studied, for instance, by NlEDRINGHAUS (1991) on dune islands in Plants frequently occur aggregated to some the North Sea. The application of island bio- extent and form discrete patches. The amount geography theory is confined to communities and physiology of the host plant may largely and seems not suitable for the analysis of determine the quality of such host plant pat- populations of single species (see HANSKI ches (e.g. PRESTIDGE 1982, MOON et al. 2000). 2001). Further, it assumes a mainland as a However, some leafhopper species exhibit source of colonising individuals. In fragmen- more complex habitat requirements. Additio- ted landscapes there is not necessarily a main- nal factors like host plant architecture, vege- land, but a situation with a large number of tation structure or microclimate may be rele- patches of similar area may occur. The corre- vant (e.g. CLARIDGE 1986, DENNO & RODE- sponding theory for populations on regional RICK 1991) and therefore the habitat may be scales is the metapopulation theory (HANSKI not primarily defined by the occurrence of the 1998). Recent metapopulation theory is a spa- host plants. In these species as well as in more tially explicit attempt to describe the dyna- generalist species with a broader range of host mics of a regional population with its members plants, the habitat patches may not be clearly distributed over a set of habitat patches. The delimited in the field. In contrast, in host main feature of metapopulation dynamics is plant specialists among the leafhoppers the the occurrence of extinction and colonisation survey of the distribution of the host plant was events in the habitat patches. found to be a very feasible way to determine all potential habitats of a certain species in a The objective of this review is to make a landscape (DENNO et al. 1981, BIEDERMANN survey on existing studies on leafhopper popu- 2000). lations in fragmented habitats and to discuss In natural as well as in cultural landscapes the results in regard to metapopulation theory. the habitats of leafhoppers are frequently frag- According to recent theory, the occurrence mented to some extent. In the recent two and density of leafhoppers in a particular habi- decades there is increasing concern about tat patch may depend on area, isolation, qua- ongoing habitat fragmentation by human lity and surrounding landscape structure of the activities, especially in cultural landscapes patch. The quality of a patch is the funda- (SETTELE et al. 1996). Fragmentation is sugge- mental factor for the survival and reproduc- sted to be one major cause of the extinction of tion of leafhoppers and is not a particular issue species and thereby declining biodiversity of fragmented habitats. The role of surroun- (MORRIS 1995). Looking at existing results on ding landscape structure on leafhopper distri- leafhoppers in fragmented habitats there are bution in habitat patches is largely unknown two levels of consideration, the population (but see JONSEN & FAHRIG 1997). Thus, in the level and the community level. At the popu- following the current knowledge on the role of lation level the occurrence, abundance and area and isolation on occurrence and density dynamics of particular species is of interest. of leafhoppers will be summarised. 524 © Biologiezentrum Linz/Austria; download unter www.biologiezentrum.at Habitat fragmentation and MANN 1997, BIEDERMANN 1998, ZABEL &. metapopulation theory TSCHARNTKE 1998, BIEDERMANN 2000, BLE- DERMANN unpubl. data). The main focus of Habitat fragmentation describes the these studies was on the dependency of the decrease in number and size of suitable habi- incidence (= probability of occurrence) and tats for species (e.g. HARRISON & BRUNA density of a particular species on area and iso- 1999, HUXEL &. HASTINGS 1999). The proces- lation of patches. In nearly all studies the first ses which lead to habitat fragmentation are step was a complete survey of the host plant decreasing area of patches up to their comple- patches in the study area providing the area te elimination and consequently increasing and isolation of the patches. This step was fol- isolation of patches. The term fragmentation lowed by a survey of the leafhopper occurren- describes both the processes and the outcome. ce or density in these patches. In order to It often implies a loss of habitat due to human quantify extinction or colonisation events in activities. As in natural landscapes suitable some studies the survey for the occurrence of habitat may be patchy without anthropogenic species has been repeated for several years or influence, here the term patchiness may be generations. more appropriate. However, in the following the term fragmentation will be used for both Incidence and area fragmented and patchy habitats. The first study on the relationship bet- Living in such a set of patches animals ween the occurrence of leafhoppers and the build up structured populations (HARRISON area of their habitats was performed by HALK- 1991), with its members distributed over a KA et al. (1971) on the spittlebug Philaenus number of habitats. In recent years the analy- spumarius (Aphrophoridae). They were analy- sis of spatial population structure has made a sing the distribution of Philaenus spumarius in rapid development, both in theoretical (e.g. island habitats in an archipelago of 135 islands HANSKI 2001) and empirical studies (e.g. in the Baltic Sea. GUTIERREZ et al. 2001). The results suggest A method to analyse the role of patch area that animals build up a wide continuous range on the occurrence of leafhoppers in host plant of spatial population structures from isolated patches is the use of incidence functions patches with virtually no immigration, over metapopulations with a limitation in the (ADLER & WILSON 1985, TAYLOR 1991). Incidence functions quantify the relationship dispersal between patches, up to patchy popu- between species presence and area in a set of lations with high colonisation and thus low patches of various area. In order to calculate extinction rates (HARRISON 1991, THOMAS & incidence functions, in each patch the presence KUNIN 1999). According to metapopulation or absence of the species is recorded. The theory (HANSKI 1998) the dynamics of the resulting occupancy patterns are related to occurrence of a species in its habitat patches is patch area using logistic regression (HOSMER determined by local extinction and colonisa- & LEMESHOW 2000). Logistic regression is a tion. The extinction rate is assumed to decrease statistical method which detects relationships with increasing patch area and the colonisa- between a dependent binary variable and one tion rate depends on the degree of isolation of or more independent variables. Here, the a patch. For the long-term
Recommended publications
  • Additional Notes on the Some Aphrophorid Spittlebugs of Eastern Anatolia (Hemiptera: Cercopoidea: Aphrophoridae)*
    I. Ozgen 1 et al. ISSN 2587-1943 ADDITIONAL NOTES ON THE SOME APHROPHORID SPITTLEBUGS OF EASTERN ANATOLIA (HEMIPTERA: CERCOPOIDEA: APHROPHORIDAE)* İnanç Özgen 1, Aykut Topdemir 2, Fariba Mozaffarian 3 scientific note The study was carried out to determine Aphrophoridae species in Eastern Anatolia in 2018. Five species were collected by sweeping net on herbs. The collected specimens were identified as: Aphrophora salicina (Goeze, 1778), Lepyronia coleoptrata (Linnaeus, 1758), Paraphilaenus notatus (Mulsant & Rey, 1855), Philaenus spumarius (Linnaeus, 1758) and Neophilaenus campestris (Fallén, 1805). The species P. spumarius and L. coleoptrata were the most abundant species and the others were rather rare. The species of family Aphrophoridae are xylem feeders so they are considered as candidates for transmitting bacteria Xylella fastidiosa. Therefore, the role of the identified species in the agricultural ecosystems in the collecting sites needs to be studied. Key words: Hemiptera, Aphrophoridae, Fauna, Eastern Anatolia 1 Introduction The Aphrophoridae or spittlebugs are a family of Note: N. campestris prefer mostly grasslands, insects belonging to the order Hemiptera. Nymphs of Neophilaenus campestris Fallén showed harbour the Aphrophoridae secrete a frothy saliva-like mass, which bacterium in their body (Elbeaino et al.,2014; Moussa et al., gives the name “spittlebugs” for insects in the superfamily. 2017). The species of family Aphrophoridae are xylem feeders so Paraphilaenus notatus (Mulsant & Rey, 1855), they are considered as candidates for transmitting bacteria Xylella fastidiosa. In this study were carried out to Material examined: Elazığ, Aşağı çakmak village, determine of Aphrophorid fauna in Eastern Anatolia of 18.V.2018, 6 exs. Turkey. Note: It was determined to potential vector of Xylella 2 Material and Method fastidiosa.
    [Show full text]
  • Biodiversity Climate Change Impacts Report Card Technical Paper 12. the Impact of Climate Change on Biological Phenology In
    Sparks Pheno logy Biodiversity Report Card paper 12 2015 Biodiversity Climate Change impacts report card technical paper 12. The impact of climate change on biological phenology in the UK Tim Sparks1 & Humphrey Crick2 1 Faculty of Engineering and Computing, Coventry University, Priory Street, Coventry, CV1 5FB 2 Natural England, Eastbrook, Shaftesbury Road, Cambridge, CB2 8DR Email: [email protected]; [email protected] 1 Sparks Pheno logy Biodiversity Report Card paper 12 2015 Executive summary Phenology can be described as the study of the timing of recurring natural events. The UK has a long history of phenological recording, particularly of first and last dates, but systematic national recording schemes are able to provide information on the distributions of events. The majority of data concern spring phenology, autumn phenology is relatively under-recorded. The UK is not usually water-limited in spring and therefore the major driver of the timing of life cycles (phenology) in the UK is temperature [H]. Phenological responses to temperature vary between species [H] but climate change remains the major driver of changed phenology [M]. For some species, other factors may also be important, such as soil biota, nutrients and daylength [M]. Wherever data is collected the majority of evidence suggests that spring events have advanced [H]. Thus, data show advances in the timing of bird spring migration [H], short distance migrants responding more than long-distance migrants [H], of egg laying in birds [H], in the flowering and leafing of plants[H] (although annual species may be more responsive than perennial species [L]), in the emergence dates of various invertebrates (butterflies [H], moths [M], aphids [H], dragonflies [M], hoverflies [L], carabid beetles [M]), in the migration [M] and breeding [M] of amphibians, in the fruiting of spring fungi [M], in freshwater fish migration [L] and spawning [L], in freshwater plankton [M], in the breeding activity among ruminant mammals [L] and the questing behaviour of ticks [L].
    [Show full text]
  • The Planthopper Genus Trypetimorpha: Systematics and Phylogenetic Relationships (Hemiptera: Fulgoromorpha: Tropiduchidae)
    JOURNAL OF NATURAL HISTORY, 1993, 27, 609-629 The planthopper genus Trypetimorpha: systematics and phylogenetic relationships (Hemiptera: Fulgoromorpha: Tropiduchidae) J. HUANG and T. BOURGOINt* Pomological Institute of Shijiazhuang, Agricultural and Forestry Academy of Sciences of Hebei, 5-7 Street, 050061, Shijiazhuang, China t Mus#um National d'Histoire Naturelle, Laboratoire d'Entomologie, 45 rue Buffon, F-75005, Paris, France (Accepted 28 January 1993) The genus Trypetimorpha is revised with the eight currently recognized species described or re-described. Four new species are described and seven new synonymies are proposed. Within Trypetimorphini sensu Fennah (1982), evidences for the monophyly of each genus are selected, but Caffrommatissus is transferred to the Cixiopsini. Monophyly of Trypetimorphini, restricted to Trypetimorpha and Ommatissus, is discussed. A key is given for the following Trypetimorpha species: (1) T. fenestrata Costa ( = T. pilosa Horvfith, syn. n.); (2) T. biermani Dammerman (= T. biermani Muir, syn. n.; = T. china (Wu), syn. n.; = T. formosana Ishihara, syn. n.); (3) T. japonica Ishihara ( = T. koreana Kwon and Lee, syn. n.); (4) T. canopus Linnavuori; (5) T. occidentalis, sp. n. (= T. fenestrata Costa, sensu Horvfith); (6) T. aschei, sp. n., from New Guinea; (7) T. wilsoni, sp. n., from Australia; (8) T. sizhengi, sp. n., from China and Viet Nam. Study of the type specimens of T. fenestrata Costa shows that they are different from T. fenestrata sensu Horvfith as usually accepted, which one is redescribed here as T. occidentalis. KEYWORDS: Hemiptera, Fulgoromorpha, Tropiduchidae, Trypetimorpha, Ommatissus, Cafrommatissus, systematics, phylogeny. Downloaded by [University of Delaware] at 10:13 13 January 2016 Introduction This revision arose as the result of a study of the Chinese Fulgoromorpha of economic importance (Chou et al., 1985) and the opportunity for J.H.
    [Show full text]
  • Penestragania Apicalis (Osborn & Ball, 1898), Another Invasive
    ©Arbeitskreis Zikaden Mitteleuropas e.V. - download unter www.biologiezentrum.at Cicadina 13 (2013): 5‐15 Penestragania apicalis (Osborn & Ball, 1898), another invasive Nearctic leafhopper found in Europe (Hemiptera: Cicadellidae, Iassinae) Herbert Nickel*, Henry Callot, Eva Knop, Gernot Kunz, Klaus Schrameyer, Peter Sprick, Tabea Turrini‐Biedermann, Sabine Walter Summary: In 2010 the Nearctic leafhopper Penestragania apicalis (Osb. & Ball) was found for the first time in Europe. Altogether there are now 16 known localities in France, Switzerland, Germany and Austria indicating that the species is well es‐ tablished for a rather long period and more widespread in Europe and perhaps worldwide. As in North America it lives on honeylocust (Gleditsia triacanthos L.), overwinters in the egg stage and probably has one or two generations a year, with adults at least from late June until early October. It is yet unclear if it causes relevant damage to the host plant in Europe. Keywords: alien species, neozoa, plant pests, Iassinae, Gleditsia 1. Introduction In 2012 a leafhopper was found in several localities in central Europe that was hitherto unknown to European hemipterists. Extensive search in taxonomic litera‐ ture from all around the world revealed that it was Penestragania apicalis (Osborn & Ball, 1898). This species was originally described from Iowa and Nebraska as a member of the genus Macropsis Lewis, 1834 (see Osborn & Ball 1898a), later placed into Bythoscopus Germar, 1833, Stragania Stål, 1862 (see Metcalf 1966a), and finally Penestragania Beamer & Lawson, 1945. The latter was originally erected as a subge‐ nus only and later raised to genus level by Blocker (1979) who limited the genus Stragania to the type species St.
    [Show full text]
  • Correlation of Stylet Activities by the Glassy-Winged Sharpshooter, Homalodisca Coagulata (Say), with Electrical Penetration Graph (EPG) Waveforms
    ARTICLE IN PRESS Journal of Insect Physiology 52 (2006) 327–337 www.elsevier.com/locate/jinsphys Correlation of stylet activities by the glassy-winged sharpshooter, Homalodisca coagulata (Say), with electrical penetration graph (EPG) waveforms P. Houston Joosta, Elaine A. Backusb,Ã, David Morganc, Fengming Yand aDepartment of Entomology, University of Riverside, Riverside, CA 92521, USA bUSDA-ARS Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648, USA cCalifornia Department of Food and Agriculture, Mt. Rubidoux Field Station, 4500 Glenwood Dr., Bldg. E, Riverside, CA 92501, USA dCollege of Life Sciences, Peking Univerisity, Beijing, China Received 5 May 2005; received in revised form 29 November 2005; accepted 29 November 2005 Abstract Glassy-winged sharpshooter, Homalodisca coagulata (Say), is an efficient vector of Xylella fastidiosa (Xf), the causal bacterium of Pierce’s disease, and leaf scorch in almond and oleander. Acquisition and inoculation of Xf occur sometime during the process of stylet penetration into the plant. That process is most rigorously studied via electrical penetration graph (EPG) monitoring of insect feeding. This study provides part of the crucial biological meanings that define the waveforms of each new insect species recorded by EPG. By synchronizing AC EPG waveforms with high-magnification video of H. coagulata stylet penetration in artifical diet, we correlated stylet activities with three previously described EPG pathway waveforms, A1, B1 and B2, as well as one ingestion waveform, C. Waveform A1 occured at the beginning of stylet penetration. This waveform was correlated with salivary sheath trunk formation, repetitive stylet movements involving retraction of both maxillary stylets and one mandibular stylet, extension of the stylet fascicle, and the fluttering-like movements of the maxillary stylet tips.
    [Show full text]
  • A New and Serious Leafhopper Pest of Plumeria in Southern California
    PALMARBOR Hodel et al.: Leafhopper Pest on Plumeria 2017-5: 1-19 A New and Serious Leafhopper Pest of Plumeria in Southern California DONALD R. HODEL, LINDA M. OHARA, GEVORK ARAKELIAN Plumeria, commonly plumeria or sometimes frangipani, are highly esteemed and popular large shrubs or small trees much prized for their showy, colorful, and deliciously fragrant flowers used for landscape ornament and personal adornment as a lei (in Hawaii around the neck or head), hei (in Tahiti on the head), or attached in the hair. Although closely associated with Hawaii, plumerias are actually native to tropical America but are now intensely cultivated worldwide in tropical and many subtropical regions, where fervent collectors and growers have developed many and diverse cultivars and hybrids, primarily of P. rubra and P. obtusa. In southern California because of cold intolerance, plumerias have mostly been the domain of a group of ardent, enthusiastic if not fanatical collectors; however, recently plumerias, mostly Plumeria rubra, have gained in popularity among non-collectors, and now even the big box home and garden centers typically offer plants during the summer months. The plants, once relegated to potted specimens that can be moved indoors or under cover during cold weather are now found rather commonly as outdoor landscape shrubs and trees in coastal plains, valleys, and foothills (Fig. 1). Over the last three years, collectors in southern California are reporting and posting on social media about a serious and unusual malady of plumerias, primarily Plumeria rubra, where leaves become discolored and deformed (Fig. 2). These symptoms have been attributed to excessive rain, wind, and heat potassium or other mineral deficiencies; disease; Eriophyid mites; and improper pH, among others, without any supporting evidence.
    [Show full text]
  • Tracking Vectors of Bacteria and Phytoplasmas Threatening Europe’S Major Crops (VECTRACROP)
    Euphresco Final Report Tracking vectors of bacteria and phytoplasmas threatening Europe’s major crops (VECTRACROP) Topic area Phloem and xylem feeding insect vectors, fruit and field crops, bacteria and phytoplasmas of phytosanitary concern - Topic Description 2015-D-168 Topic title Tracking vectors of bacteria and phytoplasmas threatening Europe’s major crops (VECTRACROP) 1. Administrative Details . Applicant / Coordinator – Partner 1 Organisation Institute for AgriculturaI and Fisheries Research - ILVO Name of contact Kris De Jonghe, Ph.D. Gender: M (incl. Title) Postal address Burg. Van Gansberghelaan 96, B- 9820 Merelbeke, Belgium E-mail [email protected]; [email protected] Phone ++32 9/ 272 24 48 Applicant – Partner 2 Organisation CRA-W Name of contact Thibaut Olivier, Ir Gender: M (incl. Title) Département Sciences du Vivant (CRAW), Unité Biologie des Postal address nuisibles et Biovigilance, Bâtiment Marchal, Rue de Liroux 4, B- 5030 Gembloux, Belgium E-mail [email protected] Phone ++32 81/ 62 03 39 Applicant – Partner 3 Organisation ANSES Name of contact Reynaud Philippe, Ph.D. Gender: M (incl. Title) Anses Laboratoire de la Santé des Végétaux [Plant Health Laboratory] Postal address 755 avenue du campus Agropolis CS 30016 FR-34988 Montferrier-sur-Lez Cedex E-mail [email protected] Phone + 33 (0)4 67 02 25 10 Applicant – Partner 4 Organisation INIAV Name of contact Célia Mateus- Researcher, Ph.D.; Esmeraldina Gender F (incl. Title) Sousa- Researcher, Ph.D. : Av. da República, Quinta do Marquês Postal address 2780-157 Oeiras – Portugal E-mail [email protected]; [email protected] Phone (+351) 214 403 500 Applicant – Partner 5 Organisation INRA-MOROCCO Name of contact Afechtal Mohamed, Ph.D.; Bouharroud Rachid, Gender: M (incl.
    [Show full text]
  • The Leafhoppers of Minnesota
    Technical Bulletin 155 June 1942 The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station The Leafhoppers of Minnesota Homoptera: Cicadellidae JOHN T. MEDLER Division of Entomology and Economic Zoology University of Minnesota Agricultural Experiment Station Accepted for publication June 19, 1942 CONTENTS Page Introduction 3 Acknowledgments 3 Sources of material 4 Systematic treatment 4 Eurymelinae 6 Macropsinae 12 Agalliinae 22 Bythoscopinae 25 Penthimiinae 26 Gyponinae 26 Ledrinae 31 Amblycephalinae 31 Evacanthinae 37 Aphrodinae 38 Dorydiinae 40 Jassinae 43 Athysaninae 43 Balcluthinae 120 Cicadellinae 122 Literature cited 163 Plates 171 Index of plant names 190 Index of leafhopper names 190 2M-6-42 The Leafhoppers of Minnesota John T. Medler INTRODUCTION HIS bulletin attempts to present as accurate and complete a T guide to the leafhoppers of Minnesota as possible within the limits of the material available for study. It is realized that cer- tain groups could not be treated completely because of the lack of available material. Nevertheless, it is hoped that in its present form this treatise will serve as a convenient and useful manual for the systematic and economic worker concerned with the forms of the upper Mississippi Valley. In all cases a reference to the original description of the species and genus is given. Keys are included for the separation of species, genera, and supergeneric groups. In addition to the keys a brief diagnostic description of the important characters of each species is given. Extended descriptions or long lists of references have been omitted since citations to this literature are available from other sources if ac- tually needed (Van Duzee, 1917).
    [Show full text]
  • Rare Leafhopper Species in Polish Fauna – Distributional Maps (Hemiptera: Fulgoromorpha Et Cicadomorpha)
    CHEMISTRY, ENVIRONMENT, BIOTECHNOLOGY 2010, X IV, 41–99 Dariusz Świerczewski a, Paweł Gruca b a Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University of Cz ęstochowa, 42-200 Cz ęstochowa, Armii Krajowej 13/15 e-mail: [email protected] b 44 892 Bochum-Langendreer, Wittkampstrasse 39, Germany Rare leafhopper species in Polish fauna – distributional maps (Hemiptera: Fulgoromorpha et Cicadomorpha) Abstract The paper presents detailed localities for 137 rare leafhopper species record- ed in Poland supplemented by distributional maps. Chorological and ecologi- cal data are also provided for each species. Keywords: Insecta, Hemiptera, Fulgoromorpha, Cicadomorpha, Poland, rare species, distributional maps Introduction Leafhoppers represent a group of herbivorous insects belonging to the He- miptera ordo, which includes two separate developmental lineages as suborders – Fulgoromorpha and Cicadomorpha. They are an important component of ter- restrial or semi-aquatic ecosystems, where specimens and species can be found in large numbers 1. They are exclusively phytophagous with many species feed- ing on a certain plant genus or even on one single plant species thus ecological- ly forming a homogenous group known also as 'Auchenorrhyncha'. Phloem sap is their usual food but some families like Cicadidae, Cercopidae and some Ci- cadellidae utilize xylem sap instead, and most Typhlocybinae cicadellids feed on the content of mesophyll cells 2. According to Nickel and Hildebrandt, leaf- hoppers are a useful tool for monitoring the biotic conditions of grassland habi- tats since: i) the numerous species occur in high population densities, ii) being primary consumers they interact with both plants and predators, iii) they show specific life strategies and occupy specific spatial and temporal niches, iv) they respond rapidly to the management regime and v) whole assemblages can be described quickly by sampling several times a year 3.
    [Show full text]
  • Electrophysiological and Behavioural Response of Philaenus Spumarius To
    www.nature.com/scientificreports OPEN Electrophysiological and behavioural response of Philaenus spumarius to essential oils and aromatic plants Sonia Ganassi1,5, Pasquale Cascone2,5, Carmela Di Domenico1, Marco Pistillo3, Giorgio Formisano2, Massimo Giorgini2, Pasqualina Grazioso4, Giacinto S. Germinara3, Antonio De Cristofaro 1* & Emilio Guerrieri 2 The meadow spittlebug, Philaenus spumarius, is a highly polyphagous widespread species, playing a major role in the transmission of the bacterium Xylella fastidiosa subspecies pauca, the agent of the “Olive Quick Decline Syndrome”. Essential oils (EOs) are an important source of bio-active volatile compounds that could interfere with basic metabolic, biochemical, physiological, and behavioural functions of insects. Here, we report the electrophysiological and behavioural responses of adult P. spumarius towards some EOs and related plants. Electroantennographic tests demonstrated that the peripheral olfactory system of P. spumarius females and males perceives volatile organic compounds present in the EOs of Pelargonium graveolens, Cymbopogon nardus and Lavandula ofcinalis in a dose- dependent manner. In behavioral bioassays, evaluating the adult responses towards EOs and related plants, both at close (Y-tube) and long range (wind tunnel), males and females responded diferently to the same odorant. Using EOs, a clear attraction was noted only for males towards lavender EO. Conversely, plants elicited responses that varied upon the plant species, testing device and adult sex. Both lavender and geranium repelled females at any distance range. On the contrary, males were attracted by geranium and repelled by citronella. Finally, at close distance, lavender and citronella were repellent for females and males, respectively. Our results contribute to the development of innovative tools and approaches, alternative to the use of synthetic pesticides, for the sustainable control of P.
    [Show full text]
  • A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)L
    Pacific Science (1997), vol. 51, no. 4: 366-376 © 1997 by University of Hawai'i Press. All rights reserved A Review of the Systematics of Hawaiian Planthoppers (Hemiptera: Fulgoroidea)l MANFRED ASCHE2 ABSTRACT: With 206 endemic species, the phytophagous Fulgoroidea, or planthop­ pers, are among the most important elements of the native Hawaiian fauna. These principally monophagous or oligophagous insects occur in nearly all Hawaiian terrestrial ecosystems. Species of two of the 18 planthopper families occurring worldwide have successfully colonized and subsequently radiated in Hawai'i. Based on collections made mainly by Perkins, Kirkaldy, Muir, Giffard, and Swezey, more than 95% of these species were described in the first three decades of this century. The systematics of the Hawaiian planthoppers has changed little in the past 60 yr and is not based on any phylogenetic analyses. This paper attempts a preliminary phylogenetic evaluation ofthe native Hawaiian p1anthoppers on the basis ofcompara­ tive morphology to recognize monophyletic taxa and major evolutionary lines. The following taxa are each descendants of single colonizing species: in Cixiidae, the Hawaiian Oliarus and Iolania species; in De1phacidae, Aloha partim, Dictyophoro­ delphax, Emoloana, Leialoha + Nesothoe, Nesodryas, and at least four groups within Nesosydne. Polyphyletic taxa are the tribe "Alohini," Aloha s.l., Nesorestias, Nesosydne s.l., and Nothorestias. Non-Hawaiian species currently placed in Iolania, Oliarus, Aloha, Leialoha, and Nesosydne are not closely allied to the Hawaiian taxa. The origin of the Hawaiian planthoppers is obscure. The Hawaiian Oliorus appear to have affinities to (North) American taxa. ALTHOUGH THE HAWAIIAN ISLANDS are the most Other groups of Hawaiian insects have isolated islands on earth, they house a remark­ received far less attention, although they are ably rich flora and fauna.
    [Show full text]
  • Leafhoppers, Planthoppers and Psyllids (Hemiptera: Cicadomorpha, Fulgoromorpha, Psylloidea)
    ISSN 1211-8788 Acta Musei Moraviae, Scientiae biologicae (Brno) 90: 195–207, 2005 Leafhoppers, planthoppers and psyllids (Hemiptera: Cicadomorpha, Fulgoromorpha, Psylloidea) in ruderal habitats: material attracted by light in the suburbs of Brno (Czech Republic) IGOR MALENOVSKÝ & PAVEL LAUTERER Department of Entomology, Moravian Museum, Hviezdoslavova 29a, 627 00 Brno, Czech Republic; e-mail: [email protected], [email protected] MALENOVSKÝ I. & LAUTERER P. 2005: Leafhoppers, planthoppers and psyllids (Hemiptera: Cicadomorpha, Fulgoromorpha, Psylloidea) in ruderal habitats: material attracted by light in the suburbs of Brno (Czech Republic). Acta Musei Moraviae, Scientiae biologicae (Brno) 90: 195–207. – Leafhoppers, planthoppers and psyllids light-trapped into streetlamps were examined at two sites in complex ruderal habitats (fields, annual and perennial ruderal vegetation, scrub with ruderal and alien species) in Slatina, on the periphery of the city of Brno in South Moravia. A total of 1628 specimens and 61 species were found. Among the dominant species were Empoasca vitis, E. decipiens, E. pteridis, Macrosteles laevis, Psammotettix alienus, Javesella pellucida, Laodelphax striatella, Zyginidia pullula, Kybos lindbergi, and Edwardsiana rosae. Noteworthy are records of Kybos calyculus and Oncopsis appendiculata (both new for the Czech Republic), several rare species living in dry ruderal grassland (Recilia horvathi, Macrosteles quadripunctulatus, Balclutha saltuella), and hygrophilous species caught on dispersal flight (Pentastiridius leporinus, Calamotettix taeniatus, Cicadula placida, Limotettix striola, and Paramesus major). Key words. Hemiptera, Auchenorrhyncha, Psylloidea, ruderal habitats, city fauna, light traps, streetlamps, Czech Republic, South Moravia, faunistics, new records. Introduction Leafhoppers (Cicadomorpha), planthoppers (Fulgoromorpha) and psyllids (Sternorrhyncha: Psylloidea) are phytophagous insects belonging to the order Hemiptera. They suck plant sap, mostly from phloem vessels, some groups feed on xylem or mesophyll tissues.
    [Show full text]