Volume 2, Chapter 12-6: Terrestrial Insects: Hemimetabola–Hemiptera
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(Pentatomidae) DISSERTATION Presented
Genome Evolution During Development of Symbiosis in Extracellular Mutualists of Stink Bugs (Pentatomidae) DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Alejandro Otero-Bravo Graduate Program in Evolution, Ecology and Organismal Biology The Ohio State University 2020 Dissertation Committee: Zakee L. Sabree, Advisor Rachelle Adams Norman Johnson Laura Kubatko Copyrighted by Alejandro Otero-Bravo 2020 Abstract Nutritional symbioses between bacteria and insects are prevalent, diverse, and have allowed insects to expand their feeding strategies and niches. It has been well characterized that long-term insect-bacterial mutualisms cause genome reduction resulting in extremely small genomes, some even approaching sizes more similar to organelles than bacteria. While several symbioses have been described, each provides a limited view of a single or few stages of the process of reduction and the minority of these are of extracellular symbionts. This dissertation aims to address the knowledge gap in the genome evolution of extracellular insect symbionts using the stink bug – Pantoea system. Specifically, how do these symbionts genomes evolve and differ from their free- living or intracellular counterparts? In the introduction, we review the literature on extracellular symbionts of stink bugs and explore the characteristics of this system that make it valuable for the study of symbiosis. We find that stink bug symbiont genomes are very valuable for the study of genome evolution due not only to their biphasic lifestyle, but also to the degree of coevolution with their hosts. i In Chapter 1 we investigate one of the traits associated with genome reduction, high mutation rates, for Candidatus ‘Pantoea carbekii’ the symbiont of the economically important pest insect Halyomorpha halys, the brown marmorated stink bug, and evaluate its potential for elucidating host distribution, an analysis which has been successfully used with other intracellular symbionts. -
Monitoring and Sampling Manual 2018
Monitoring and Sampling Manual Environmental Protection (Water) Policy 2009 Prepared by: Water Quality and Investigation, Department of Environment and Science (DES) © State of Queensland, 2018. The Queensland Government supports and encourages the dissemination and exchange of its information. The copyright in this publication is licensed under a Creative Commons Attribution 3.0 Australia (CC BY) licence. Under this licence you are free, without having to seek our permission, to use this publication in accordance with the licence terms. You must keep intact the copyright notice and attribute the State of Queensland as the source of the publication. For more information on this licence, visit http://creativecommons.org/licenses/by/3.0/au/deed.en Disclaimer If you need to access this document in a language other than English, please call the Translating and Interpreting Service (TIS National) on 131 450 and ask them to telephone Library Services on +61 7 3170 5470. This publication can be made available in an alternative format (e.g. large print or audiotape) on request for people with vision impairment; phone +61 7 3170 5470 or email <[email protected]>. Citation DES. 2018. Monitoring and Sampling Manual: Environmental Protection (Water) Policy. Brisbane: Department of Environment and Science Government. Acknowledgements The revision and update of this manual was led by Dr Suzanne Vardy, with the valued assistance of Dr Phillipa Uwins, Leigh Anderson and Brenda Baddiley. Thanks are given to many experts who reviewed and contributed to the documents relating to their field of expertise. This includes government staff from within the Department of Environment and Science, Department of Agriculture and Fisheries, Department of Natural Resources, Mines and Energy and many from outside government. -
Arthropod Diversity and Conservation in Old-Growth Northwest Forests'
AMER. ZOOL., 33:578-587 (1993) Arthropod Diversity and Conservation in Old-Growth mon et al., 1990; Hz Northwest Forests complex litter layer 1973; Lattin, 1990; JOHN D. LATTIN and other features Systematic Entomology Laboratory, Department of Entomology, Oregon State University, tural diversity of th Corvallis, Oregon 97331-2907 is reflected by the 14 found there (Lawtt SYNOPSIS. Old-growth forests of the Pacific Northwest extend along the 1990; Parsons et a. e coastal region from southern Alaska to northern California and are com- While these old posed largely of conifer rather than hardwood tree species. Many of these ity over time and trees achieve great age (500-1,000 yr). Natural succession that follows product of sever: forest stand destruction normally takes over 100 years to reach the young through successioi mature forest stage. This succession may continue on into old-growth for (Lattin, 1990). Fire centuries. The changing structural complexity of the forest over time, and diseases, are combined with the many different plant species that characterize succes- bances. The prolot sion, results in an array of arthropod habitats. It is estimated that 6,000 a continually char arthropod species may be found in such forests—over 3,400 different ments and habitat species are known from a single 6,400 ha site in Oregon. Our knowledge (Southwood, 1977 of these species is still rudimentary and much additional work is needed Lawton, 1983). throughout this vast region. Many of these species play critical roles in arthropods have lx the dynamics of forest ecosystems. They are important in nutrient cycling, old-growth site, tt as herbivores, as natural predators and parasites of other arthropod spe- mental Forest (HJ cies. -
Cytogenetics of the True Bug Infraorder Cimicomorpha (Hemiptera, Heteroptera): a Review
A peer-reviewed open-access journal ZooKeysCytogenetics 154: 31–70 (2011) of the true bug infraorder Cimicomorpha (Hemiptera, Heteroptera): a review 31 doi: 10.3897/zookeys.154.1953 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Cytogenetics of the true bug infraorder Cimicomorpha (Hemiptera, Heteroptera): a review Valentina G. Kuznetsova1, Snejana M. Grozeva2, Seppo Nokkala3, Christina Nokkala3 1 Zoological Institute RAS, Universitetskaya emb. 1, St Petersburg 199034, Russia 2 Institute of Biodiversity and Ecosystem research, BAS, Tsar Osvoboditel blvd, 1, Sofia 1000, Bulgaria 3 Laboratory of Genetics, De- partment of Biology, University of Turku, 20500 Turku, Finland Corresponding author: Valentina G. Kuznetsova ([email protected]) Academic editor: Pavel Štys | Received 23 August 2011 | Accepted 5 December 2011 | Published 12 December 2011 Citation: Kuznetsova VG, Grozeva SM, Nokkala S, Nokkala C (2011) Cytogenetics of the true bug infraorder Cimicomorpha (Hemiptera, Heteroptera): a review. ZooKeys 154: 31–70. doi: 10.3897/zookeys.154.1953 Abstract The Cimicomorpha is one of the largest and highly diversified infraorders of the Heteroptera. This group is also highly diversified cytogenetically and demonstrates a number of unusual cytogenetic characters such as holokinetic chromosomes; m-chromosomes; multiple sex chromosome systems; post-reduction of sex chromosomes in meiosis; variation in the presence/absence of chiasmata in spermatogenesis; different types of achiasmate meiosis. We present here a review of -
Ecology of the Acalypta Species Occurring in Hungary (Insecta: Heteroptera: Tingidae) Data to the Knowledge on the Ground-Living Heteroptera of Hungary, № 3
Rédei et al.: Ground-living Heteroptera of Hungary, № 3. - 73 - ECOLOGY OF THE ACALYPTA SPECIES OCCURRING IN HUNGARY (INSECTA: HETEROPTERA: TINGIDAE) DATA TO THE KNOWLEDGE ON THE GROUND-LIVING HETEROPTERA OF HUNGARY, № 3. D. RÉDEI1,* – B. HARMAT2 – L. HUFNAGEL3 *e-mail: [email protected] 1 Department of Entomology, Corvinus University of Budapest, H-1118 Budapest, Ménesi út 44, Hungary (*phone / fax: +36-1-372-0125) 2 Natural History Museum of Bakony Mountains, H-8420 Zirc, Rákóczi tér 1., Hungary 3 Department of Mathematics and Informatics, Corvinus University of Budapest, H-1118 Budapest, Villányi út 29–33, Hungary (Received 4th August 2004; accepted 22nd October 2004) Abstract. As a third part of a series of papers on the ground-living true bugs of Hungary, the species belonging to the lace bug genus Acalypta Westwood, 1840 (Insecta: Heteroptera: Tingidae) were studied. Extensive materials collected with Berlese funnels during about 20 years all over Hungary were identified. Based on these sporadic data of many years, faunistic notes are given on some Hungarian species. The seasonal occurrence of the species are discussed. The numbers of specimens of different Acalypta species collected in diverse plant communities are compared with multivariate methods. Materials collected with pitfall traps between 1979–1982 at Bugac, Kiskunság National Park were also processed. In this area, only A. marginata and A. gracilis occurred, both in great number. The temporal changes of the populations are discussed. Significant differences could be observed between the microhabitat distribution of the two species: both species occurred in very low number in traps placed out in patches colonized by dune-slack purple moorgrass meadow; Acalypta gracilis preferred distinctly the Pannonic dune open grassland patches; A. -
Proceedings of the United States National Museum
Proceedings of the United States National Museum SMITHSONIAN INSTITUTION • WASHINGTON, D.C. Volume 112 I960 Number 3431 LACE-BUG GENERA OF THE WORLD (HEMIPTERA: TINGIDAE) « By Carl J. Drake and Florence A. Ruhoff Introduction A treatise of the generic names of the family Tingidae from a global standpoint embodies problems similar to those frequently encountered in corresponding studies in other animal groups. The more im- portant criteria, including such basic desiderata as fixation of type species, synonyms, priority, and dates of technical publications implicate questions concomitant with recent trends toward the clarification and stabilization of zoological nomenclature. Zoogeography, predicated and authenticated on the generic level by the distribution of genera and species, is portrayed here by means of tables, charts, and maps of the tingifauna of the world. This visual pattern of distribution helps one to form a more vivid concept of the family and its hierarchic levels of subfamilies and genera. To a limited extent the data indicate distributional concentrations and probable centers of evolution and dispersal paths of genera. The phylogenetic relationship of genera is not discussed. The present treatise recognizes 216 genera (plus 79 synonyms, homonyms, and emendations) of the Tingidae of the world and gives 1 Research for this paper was supported In part by the National Science Foundation, grant No. 4095. 2 PROCEEDINGS OF THE NATIONAL MUSEUM vol. 112 the figure of 1,767 as the approximate number of species now recog- nized. These figures, collated with similar categories in Lethierry and Severin (1896), show that there has been an increase of many genera and hundreds of species of Tingidae during the past three- quarters of a century. -
The Publication of “A Preliminary Catalogue of the Heíeropíera of the Canary Islands” by HEISS & BAEZ (1990) As a Comp
ADDITIONS TO THE HETEROPTERA-FAUNA OF THE CANARY ISLANDS 1 By E. HEISS & J. RIBES ** ABSTRACT: The present paper is a first addition to tbe preliminary cataloguo Jf the Heteropteru-fauna of the Canary Islands (HEISS & BAEZ.1990) and includes corrections, new taxonomic assignmcnts and further citations from literature and several new records. 29 species are reported as new to the Canarian fauna, but one species is a synonym (Geocoris pvbescens Jak. = G.timidus Put.) and 8 spccies are regarded as doubtíidspccies inquirenda which should be deleted from the list. This brings the total number of species known to date from Canary Islands to 333. Key words: Heteropteru, catalogue, new additions, Canary Islands RESUMEN: La presente aportación es una primera addenda al catálogo preliminar de los Heterópferos des las islas Canarias (HEISS & BAEZ, 1990). Incluye enmiendas, nuevos cambios taxonómicos, datos complementarios y numerosas citas inéditas. Todo ello se desglosa en cuatro secciones distintas dentro del segundo capítulo: referencias adicionales y cambios en la literatura, citas canarias nuevas, citas isleñas nuevas y specics inquirenda. De este acervo hay que entresacar 29 especies para incorporar a la fauna canaria, con relación a lar 3 13 inventariadas, pero una es una sinonimia (Geocoris pvbescem lak. = G.rimidus Put.) y 8 especies más se consideran dudosas, por lo que se eliminan de la lista, quedando pues un total de 333 especies que se estiman válidas. Toda la bibliografía es nueva. 1.1 N TRO D UC TI ON The publication of “A preliminary catalogue of the Heíeropíera of the Canary Islands” by HEISS & BAEZ (1990) as a compilation of the then available data from literature was an attempt to provide a kind of practica1 “check-list” without pretension of completeness. -
Influence of Plant Parameters on Occurrence and Abundance Of
HORTICULTURAL ENTOMOLOGY Influence of Plant Parameters on Occurrence and Abundance of Arthropods in Residential Turfgrass 1 S. V. JOSEPH AND S. K. BRAMAN Department of Entomology, College of Agricultural and Environmental Sciences, University of Georgia, 1109 Experiment Street, GrifÞn, GA 30223-1797 J. Econ. Entomol. 102(3): 1116Ð1122 (2009) ABSTRACT The effect of taxa [common Bermuda grass, Cynodon dactylon (L.); centipedegrass, Eremochloa ophiuroides Munro Hack; St. Augustinegrass, Stenotaphrum secundatum [Walt.] Kuntze; and zoysiagrass, Zoysia spp.], density, height, and weed density on abundance of natural enemies, and their potential prey were evaluated in residential turf. Total predatory Heteroptera were most abundant in St. Augustinegrass and zoysiagrass and included Anthocoridae, Lasiochilidae, Geocoridae, and Miridae. Anthocoridae and Lasiochilidae were most common in St. Augustinegrass, and their abundance correlated positively with species of Blissidae and Delphacidae. Chinch bugs were present in all turf taxa, but were 23Ð47 times more abundant in St. Augustinegrass. Anthocorids/lasiochilids were more numerous on taller grasses, as were Blissidae, Delphacidae, Cicadellidae, and Cercopidae. Geocoridae and Miridae were most common in zoysiagrass and were collected in higher numbers with increasing weed density. However, no predatory Heteroptera were affected by grass density. Other beneÞcial insects such as staphylinids and parasitic Hymenoptera were captured most often in St. Augustinegrass and zoysiagrass. These differences in abundance could be in response to primary or alternate prey, or reßect the inßuence of turf microenvironmental characteristics. In this study, SimpsonÕs diversity index for predatory Heteroptera showed the greatest diversity and evenness in centipedegrass, whereas the herbivores and detritivores were most diverse in St. Augustinegrass lawns. These results demonstrate the complex role of plant taxa in structuring arthropod communities in turf. -
Preliminary List of Auchenorrhyncha with Notes on Distribution and Impnrtanee of Saecles in .Iurkey, XIII
Türk. mt. Kor. Derg. (1984) 8: 33-44 Preliminary list of Auchenorrhyncha with notes on distribution and impnrtanee of saecles in .Iurkey, XIII. Family Gicadellidae Typhlocybinae : Typhlocybini ( Part i ) Nlyazd LODOS* Ayla KALKANDELEN** Summary Turkish fauna of Typhloeybini, excluding Eupteryx species, is represented by 19 species of 9 genera as a re su lt of this study. Seven newly recorded species are: Edwardsiana avellanae (Edw.), E. flavescens (F.), E. sallcioola (Edw.), Eupteryeyba jueunda (H.S.), Ficoeyba fiearia (Horv.) , Typhloeyba quereus (F.) and Aguriahana germart (Zett.). Distribution, abundanee and the plants on which the specimens were eolleeted of eaeh species are given. Introduction Turkish T!yphlocilbini was not studied as a whole up to date. Howe ver, only 12 species of this group have been reported previouslv by se veral workers, The Hrst record made by Fahringer (1922) was Ed wardsiana Iethierryi (Edw.). Metcalf (1968) also Iisted this species from Turkeyaccording to Fahringer (1.c.). Dlabola (1957) reported Ribautiana ognevi (Zach.) trom Turkey tınder the name of 'Iyphlocyba horvathiana Dlab, Linnavuori (1965) also recorded such species as Linnavuoriana sexmaculata (Hardy), Youngiada tarsalis Linn. and Zygineı1la pulchra (Löw) from Turkey. Ural et al. (1973) recorded Edwardsiana spinigera (Edw.) during the taunistic study in hazel orchards in eastern Black Sea Coast. Dlabola (1971, 1981) reported Edwardsiana rosae (L,.) , E. tshlrıari Zach., Ribautiana alces (Rıb.), R. tenerrima (RS.) and Younglada pandellei (Leth.) addrtionally in his publicatdons, * University of Ege, Faculty of Agriculture, Plant Protection Department, Bornova, İzmir-Turkey. ** Plant Proteetion Researeh Institute, Plant Protection Museum, Kalaba, Ankara Turkey. Almış (Received) : 16.9.1982 33 In this group of typhlocybids, especially E. -
High Tunnel Pest Management - Aphids
Published by Utah State University Extension and Utah Plant Pest Diagnostic Laboratory ENT-225-21-PR March 2021 High Tunnel Pest Management - Aphids Nick Volesky, Vegetable IPM Associate • Zachary Schumm, Arthropod Diagnostician Winged Aphids Quick Facts • Aphids are small, pear-shaped insects with Thorax green; no abdominal Thorax darker piercing-sucking mouthparts that feed on plant dorsal markings; large (4 mm) than abdomen tissue. They can be found inside high tunnels all season long. • Various species of aphids have a broad host range and can vector several viruses. Potato Aphid Therefore, management in high tunnels can be Macrosipu euphorbiae challenging. • Monitor for aphids in high tunnels by visually inspecting plants for colonies and feeding symptoms. Irregular patch on No abdominal patch; dorsal abdomen; abdomen light to dark • Aphids can be managed in high tunnels through antennal tubercles green; small (<2 mm) cultural, mechanical, biological, and chemical swollen; medium to practices. large (> 3 mm) phids are a common pest that can be found on high Atunnel crops such as fruits, vegetables, ornamentals, Melon Cotton Aphid grasses, and weeds. Four aphid species commonly Aphis gossypii Green Peach Aphid found in Utah in high tunnels are green peach aphid Myzus persicae (Myzus persicae), melon aphid (Aphis gossypii), potato Wingless Aphids aphid (Macrosiphum euphorbiae), and cabbage aphid (Brevicoryne brassicae) (Fig. 1). Cornicles short (same as Cornicles longer than cauda); head flattened; small cauda; antennal insertions (2 mm), rounded body DESCRIPTION developed; medium to large (> 3mm) Aphids are small plant feeding insects in the order Hemiptera (the “true bugs”). Like all true bugs, aphids Melon Cotton Aphid have a piercing-sucking mouthpart (“proboscis”) that Aphis gossypii is used for feeding on plant structures. -
Hemiptera: Heteroptera: Pentatomoidea
VIVIANA CAUDURO MATESCO SISTEMÁTICA DE THYREOCORIDAE AMYOT & SERVILLE (HEMIPTERA: HETEROPTERA: PENTATOMOIDEA): REVISÃO DE ALKINDUS DISTANT, MORFOLOGIA DO OVO DE DUAS ESPÉCIES DE GALGUPHA AMYOT & SERVILLE E ANÁLISE CLADÍSTICA DE CORIMELAENA WHITE, COM CONSIDERAÇÕES SOBRE A FILOGENIA DE THYREOCORIDAE, E MORFOLOGIA DO OVO DE 16 ESPÉCIES DE PENTATOMIDAE COMO EXEMPLO DO USO DE CARACTERES DE IMATUROS EM FILOGENIAS Tese apresentada ao Programa de Pós-Graduação em Biologia Animal, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, como requisito parcial à obtenção do Título de Doutor em Biologia Animal. Área de concentração: Biologia Comparada Orientadora: Profa. Dra. Jocelia Grazia Co-Orientador: Prof. Dr. Cristiano F. Schwertner UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL PORTO ALEGRE 2014 “Sistemática de Thyreocoridae Amyot & Serville (Hemiptera: Heteroptera: Pentatomoidea): revisão de Alkindus Distant, morfologia do ovo de duas espécies de Galgupha Amyot & Serville e análise cladística de Corimelaena White, com considerações sobre a filogenia de Thyreocoridae, e morfologia do ovo de 16 espécies de Pentatomidae como exemplo de uso de caracteres de imaturos em filogenias” VIVIANA CAUDURO MATESCO Tese apresentada como parte dos requisitos para obtenção de grau de Doutor em Biologia Animal, área de concentração Biologia Comparada. ________________________________________ Prof. Dr. Augusto Ferrari (UFRGS) ________________________________________ Dra. Caroline Greve (CNPq ex-bolsista PDJ) ________________________________________ Prof. Dr. Cláudio José Barros de Carvalho (UFPR) ________________________________________ Profa. Dra. Jocelia Grazia (Orientadora) Porto Alegre, 05 de fevereiro de 2014. AGRADECIMENTOS À minha orientadora, Profa. Dra. Jocelia Grazia, pelos ensinamentos e por todas as oportunidades que me deu durante os treze anos em que estive no Laboratório de Entomologia Sistemática. Ao meu co-orientador, Prof. -
Identifying British Insects and Arachnids: an Annotated Bibliography of Key Works Edited by Peter C
Cambridge University Press 0521632412 - Identifying British Insects and Arachnids: An Annotated Bibliography of Key Works Edited by Peter C. Barnard Index More information Index This index includes all the higher taxonomic categories mentioned in the book, from orders down to families, but page numbers are given only for the main occurrences of those names. It therefore also acts as a complete alphabetic list of the higher taxa of British insects and arachnids (except for the numerous families of mites). Acalyptratae 173, 188 Anyphaenidae 327 Acanthosomatidae 55 Aphelinidae 198, 293, 308 Acari 320, 330 Aphelocheiridae 55 Acartophthalmidae 173, 191 Aphididae 56, 62 Acerentomidae 23 Aphidoidea 56, 61 Acrididae 39 Aphrophoridae 56 Acroceridae 172, 180, 181 Apidae 198, 217 Aculeata 197, 206 Apioninae 83, 134 Adelgidae 56, 62, 64 Apocrita 197, 198, 206, 227 Adelidae 146 Apoidea 198, 214 Adephaga 82, 91 Arachnida 320 Aderidae 83, 126, 127 Aradidae 55 Aeolothripidae 52 Araneae 320, 326 Aepophilidae 55 Araneidae 327 Aeshnidae 31 Araneomorphae 327 Agelenidae 327 Archaeognatha 21, 25, 26 Agromyzidae 173, 188, 193 Arctiidae 146, 162 Alexiidae 83 Argidae 197, 201 Aleyrodidae 56, 67, 68 Argyronetidae 327 Aleyrodoidea 56, 66 Arthropleona 22 Alucitidae 146 Aschiza 173, 184 Alucitoidea 146 Asilidae 172, 180, 181, 182 Alydidae 55, 58 Asiloidea 172, 181 Amaurobiidae 327 Asilomorpha 172, 180, 182 Amblycera 48 Asteiidae 173, 189 Anisolabiidae 41 Asterolecaniidae 56, 70 Anisopodidae 172, 175, 177 Atelestidae 172, 183, 185 Anisopodoidea 172 Athericidae 172, 181 Anisoptera 31 Attelabidae 83, 134 Anobiidae 82, 119 Atypidae 327 Anoplura 48 Auchenorrhyncha 54, 55, 59 Anthicidae 83, 90, 126 Aulacidae 198, 228 Anthocoridae 55, 57, 58 Aulacigastridae 173, 192 Anthomyiidae 173, 174, 186, 187 Anthomyzidae 173, 188 Baetidae 28 Anthribidae 83, 88, 133, 134 Beraeidae 142 © Cambridge University Press www.cambridge.org Cambridge University Press 0521632412 - Identifying British Insects and Arachnids: An Annotated Bibliography of Key Works Edited by Peter C.