Distribution of in and Other Rare Metals in Cassiterite and Associated
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Fundamental Flotation Behaviors of Chalcopyrite and Galena Using O-Isopropyl-N-Ethyl Thionocarbamate As a Collector
minerals Article Fundamental Flotation Behaviors of Chalcopyrite and Galena Using O-Isopropyl-N-Ethyl Thionocarbamate as a Collector Yongjie Bu ID , Yuehua Hu *, Wei Sun *, Zhiyong Gao ID and Runqing Liu School of Mineral Processing and Bioengineering, Central South University, Changsha 410083, China; [email protected] (Y.B.); [email protected] (Z.G.); [email protected] (R.L.) * Correspondence: [email protected] (Y.H.); [email protected] (W.S.); Tel.: +86-731-8830-482 (Y.H.); +86-0731-8883-6873 (W.S.) Received: 31 January 2018; Accepted: 12 March 2018; Published: 13 March 2018 Abstract: Copper and lead are two important and widely used metals in industry. Chalcopyrite (CuFeS2) is associated with galena (PbS) in ore, and it has been a research hotspot in separating galena from chalcopyrite by flotation. In this study, the flotation behaviors of chalcopyrite and galena were studied through flotation tests, adsorption measurements, solution chemistry calculation, Fourier transform infrared spectroscopy (FTIR) and molecular dynamics (MD) simulations. The results show that the floatability of chalcopyrite is better than that of galena in the presence of O-isopropyl-N-ethyl thionocarbamate (IPETC), and the recovery difference between chalcopyrite and galena is about 20% when IPETC is 7 × 10−4 mol/L at pH 9.5, while the floatability difference between the two minerals is significant. Competitive adsorption of OH− and IPETC on mineral surfaces leads to lower floatability of galena than that of chalcopyrite. IPETC is able to remove the hydration layer on mineral surfaces and then adsorb on active sites. The floatability of minerals is enhanced with the increase of their hydrophobicity. -
A Column Leaching Model of Low-Grade Chalcopyrite Ore: Mineral Preferences and Chemical Reactivity
minerals Article A Column Leaching Model of Low-Grade Chalcopyrite Ore: Mineral Preferences and Chemical Reactivity Heike Bostelmann and Gordon Southam * School of Earth and Environmental Sciences, The University of Queensland, St Lucia 4072, Australia; [email protected] * Correspondence: [email protected]; Tel.: +61-07-3365-8505 Received: 16 November 2020; Accepted: 8 December 2020; Published: 17 December 2020 Abstract: Bioleaching models to examine copper extraction from low-grade chalcopyrite ores were set up to identify the influence of pyrite on leaching efficacy. A combination of scanning electron microscopy and geochemical analysis showed that extraction was marginally enhanced by the addition of pyrite when using a combination of Leptospirillum ferrooxidans, an iron oxidiser, Acidithiobacillus thiooxidans, a sulphur oxidising species and Acidithiobacillus ferrooxidans, an iron and sulphur oxidiser. Extensive biofilms formed on the pyrite surfaces (>106 cells/mm2) but were severely limited on chalcopyrite, possessing approximately the same number of cells as quartz grains, an internal non-nutrient control “substrate” (with ca. 2 103 cells/mm2). The presence of dissolved copper did × not inhibit the growth of this consortium. Indirect “bioleaching” of chalcopyrite appears to be limited by proton activity at the chalcopyrite surface. Keywords: bioleaching; chalcopyrite; pyrite; low-grade ore 1. Introduction Economic processing of chalcopyrite ores through bioleaching, i.e., the mobilisation of metals from ore by microorganisms, has not been as successful as secondary copper sulphide leaching operations [1]. This chalcopyrite “problem” needs to be solved, as it is the dominant copper mineral in many low-grade copper deposits. This has resulted in large quantities of low-grade waste material being stockpiled or discarded in mining operations, as they are not economic to process, though they do contain massive quantities of metals (i.e., copper) simply due to their combined volume [1–3]. -
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
The Electrical Resistivity of Galena, Pyrite, and Chalcopyrite
American Mineralogist, Volume61, pages248-259, 1976 The electricalresistivity of galena,pyrite, and chalcopyrite Doneln F. PnlorrronreNn RnlpH T. Suurv Departmentof Geologyand Geophysics,Uniuersity of Utah Salt Lake Cily, Utah 84112 Abstract. The sulfidesgalena, chalcopyrite, and pyrite are semiconductorswhose electrical resistivity and type are controlled by deviationsfrom stoichiometryand impurity content,and henceby their geochemicalenvironment. We measuredelectrical resistivity,type, and the impurity content (emissionspectrograph and microprobe) on small volumesof sample.Our results, together with those obtained from a comprehensiveliterature analysis, are usedto construct histogramsof the natural variability in carrier density and resistivity. Sulfur deficiency is the dominant defect in chalcopyrite and hence almost all natural samplesare n-type. lt appearsthat the copper/iron ratio is also important electrically,the copper-richsamples being the more resistive. lmportant donor deiectsin galena(z-type samples)are antimony and bismuth impurities, and sulfur vacancies;acceptor defects(p-type samples) include silver impurities and lead 'Mississippi vacancies.P-type samplesappear to be restrictedto Valley' and argentiferous deposits. In pyrite, electricallyactive impurities include cobalt, nickel, and copper as donors, and arsenicas an acceptor.Deviations from stoichiometry,in the same senseas galena,may be important. Pyritesfrom sedimentaryand epithermaldeposits are usuallyp-type if cupriferous sulfidesare not present.Samples from hypothermaldeposits -
Taylor Creek Tin Distrisl
tions such as Paramount Canyon, the veins TaylorCreek tin distrisl- may reach three to four centimeters in width and a few meters in height and length. A dis- seminated cassiterite halo has been noted stratigraphy,structure, around the veins in Squaw Creek. A recently discoveredrhyolite porphyry has andtiming of mineralizationintensely altered the surrounding country rock near NM-59 where the road crossesthe Conti- byTed L. Egglestonand David L Norman,New Mexico lnstitute of Miningand Technology, Socorro, NM nental Divide. This porphyry is locally quartz- sericite altered and contains as much as I go pyrite. Similar intrusives have been mapped Introduction The Taylor Creek tin district is located in by Woodard (1982) southeast of the Taylor Primary tin depositscommonly are found in the north-central Black Range some 80 km Creek region. granitic plutonic environments where the tin west of Truth or Consequences,New Mexico occurs as cassiterite in greisen veins and as (fig. l). Cassiteritenuggets were first found in Regional geology disseminations in altered granite (Taylor, placers (Fries, 1940a). in the district in 1909 The tin-bearing Taylor Creek Rhyolite is 1979).In southwest New Mexico, however, tin Shortly wood tin thereafter, cassiterite and located in the Mogollon-Datil volcanic field, a occurs as cassiterite in hematite-cassiterite were porphyritic found in vein depositsin rhy- mid-Tertiary volcanic field consisting of inter- veins which cut Tertiary rhyolite domes and placer (Hill, olite lavas as well as in deposits mediate to -
Selective Separation of Chalcopyrite from Galena Using a Green Reagent Scheme
minerals Article Selective Separation of Chalcopyrite from Galena Using a Green Reagent Scheme Kaile Zhao 1,2,3, Chao Ma 1,4, Guohua Gu 1,* and Zhiyong Gao 1,* 1 School of Minerals Processing and Bio-Engineering, Central South University, Changsha 410083, China; [email protected] (K.Z.); [email protected] (C.M.) 2 State Key Laboratory of Mineral Processing, Beijing 100162, China 3 Institute of Multipurpose Utilization of Mineral Resources, Chinese Academy of Geological Sciences, Chengdu 610041, China 4 Hunan Research Academy of Environmental Sciences, Changsha 410004, China * Correspondence: [email protected] (G.G.); [email protected] (Z.G.) Abstract: The study of the depression effect of non-toxic depressants on the flotation separation of chalcopyrite from galena is of great importance for both industrial applications and theoretical research. The mixed depressant (DFinal) of four common inhibitors—sodium carboxymethyl cellulose, sodium silicate, sodium sulfite, and zinc sulfate—exhibited high selectivity during the separation of chalcopyrite from galena. Flotation tests on an industrial copper–lead bulk concentrate showed that using this depressant mixture can achieve highly efficient separation of chalcopyrite from galena at the natural pH of the pulp. Copper and lead concentrates were produced at grades of 21.88% (Cu) and 75.53% (Pb), with recoveries of 89.07% (Cu) and 98.26% (Pb). This showed a similar performance of DFinal with dichromate, which is a depressant that is widely used in industry, but without the environmental risks or the need for pH control. Zeta potential and Fourier transform infrared (FT-IR) results showed that interaction between the surface of the chalcopyrite and the mixed depressant Citation: Zhao, K.; Ma, C.; Gu, G.; was prevented by pre-treatment with a composite thiophosphate collector (CSU11), while the mixed Gao, Z. -
Stannoidite Cu8(Fe, Zn)3Sn2s12 C 2001-2005 Mineral Data Publishing, Version 1 Crystal Data: Orthorhombic
Stannoidite Cu8(Fe, Zn)3Sn2S12 c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 222. Massive, in veinlets, to 1 mm. Physical Properties: Fracture: Uneven to subconchoidal. Hardness = ∼4 VHN = 181–274 (100 g load). D(meas.) = n.d. D(calc.) = [4.68] Optical Properties: Opaque. Color: Brass-brown; in polished section, pinkish brown. Streak: Dark brown-gray. Luster: Metallic. Pleochroism: Distinct, pale salmon-brown to brown. Anisotropism: Strong; dark orange-red to yellow-gray. R1–R2: (400) 17.5–18.9, (420) 17.4–19.2, (440) 18.2–20.3, (460) 19.5–21.7, (480) 20.8–23.0, (500) 21.8–24.2, (520) 22.8–25.3, (540) 23.7–26.3, (560) 24.6–27.1, (580) 25.4–27.8, (600) 26.2–28.4, (620) 27.1–29.1, (640) 27.8–29.5, (660) 28.7–30.0, (680) 29.6–30.5, (700) 30.3–30.8 Cell Data: Space Group: I222. a = 10.767 b = 5.411 c = 16.118 Z = [2] X-ray Powder Pattern: Konjo mine, Japan. 3.11 (100), 1.906 (70), 1.621 (20b), 2.70 (16), 4.83 (10), 5.40 (5), 4.13 (4) Chemistry: (1) (2) (1) (2) Cu 37.2 38.2 Zn 1.2 0.8 Ag 0.1 Sn 16.5 18.7 Fe 12.5 11.9 S 31.2 29.9 Total 98.7 99.5 (1) Konjo mine, Japan; by electron microprobe, corresponding to (Cu7.22Ag0.01)Σ=7.23 (Fe2.76Zn0.23)Σ=2.99Sn1.71S12.00. -
CHALCOPYRITE Visiting
communication, 2000). The quarry is privately owned and permission must be obtained before CHALCOPYRITE visiting. 13. Groveland mine, near Felch. CuFeS2 Common as attractive microcrystals (DeMark, A widespread and common copper ore mineral 2000). occurring in veins, disseminations, or as replacement deposits. Northern Peninsula. Alpena County: 1. Lafarge Corporation, Great Lakes Region (formerly National Gypsum Company) quarry, Alpena: Rare, with calcite, dolomite, barite, sphalerite, marcasite, pyrite, and strontianite (Morris, 1983). 2. Paxton quarry, Paxton: With calcite, dolomite, quartz, sphalerite, pyrite, and marcasite (Morris, 1983). Baraga County: Ohio mines (Webster and Imperial mines), Imperial Heights near Michigamme: Associates are apatite, goethite, grunerite, graphite, palygorskite, carbonates, and Figure 56: A 1.3 mm chalcopyrite crystal on dolomite other sulfides (Morris, 1983; DeMark, 2000). from the Groveland mine, Dickinson County. Ramon Crystals on calcite rhombohedra. DeMark specimen, Dan Behnke photograph. Dickinson County: 1. Metronite quarry, 4 km east-northeast of Felch: In tremolite marble Gogebic County: 1. Eureka mine near Ramsay, (Randville Dolomite) along contact of aplite- sections 12 and 13, T47N, R46W: With pyrite and pegmatite dike and in marginal parts of the dike gold in quartz veins at contact between granite and itself (Heinrich, 1962b). 2. Rian’s quarry southeast the Palms slate (Dickey and Young, 1938). 2. of Felch: Similar occurrence (Pratt, 1954). 3. In Copp’s mine 10 km north of Marenisco: With iron formation of the Menominee iron range and galena, sphalerite, pyrite, and dolomite (Dana, also just north of Felch: Rare, usually associated 1892). 3. Roadside exposure on south side of with secondary pyrite (Pratt, 1954; Brower, 1968). -
Geology and Beryl Deposits of the Peerless Pegmatite Pennington County South Dakota
Geology and Beryl Deposits of the Peerless Pegmatite Pennington County South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-A This report concerns work done partly on behalj of the U. S. Atomic Energy Commission and is published with the permission of the , » Commission Geology and Beryl Deposits of the Peerless Pegmatite Pennington County South Dakota By DOUGLAS M. SHERllDAN, HAL G. STEPHENS, MORTIMER H. STAATZ and JAMES J. NORTON PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-A This report concerns work done partly on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1.50 (paper cover) CONTENTS Page Page Abstract.__________________________________________ 1 Geology Continued Introduction _______________________________________ 1 Peerless pegmatite Continued Location_____________________________________ 1 Chemical composition......____________ 17 History and production________________________ 2 Origin________ ____________________ _. 18 Past and present investigations.__________________ 3 Mineral deposits_____________________________ 21 Acknowledgments__________________________ 4 Mica__ _________ _________________________ 21 Mine workings _____________________________________ -
Cassiterite Recovery from a Sulfide Ore Flotation Tailing by Combined Gravity and Flotation Separations
Physicochem. Probl. Miner. Process., 57(1), 2021, 206-215 Physicochemical Problems of Mineral Processing ISSN 1643-1049 http://www.journalssystem.com/ppmp © Wroclaw University of Science and Technology Received August 11, 2020; reviewed; accepted November 29, 2020 Cassiterite recovery from a sulfide ore flotation tailing by combined gravity and flotation separations Limin Zhang, Sultan an Khoso, Mengjie Tian, Wei Sun School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China Corresponding author: [email protected] (Mengjie Tian) Abstract: Cassiterite (SnO2), which is the most important Sn-containing mineral, is extensively found in large quantities in discarded tailings. The recovery of cassiterite from discarded sulfide ore flotation tailings can reduce resource wastage and environmental pollution. The gravity separation technique can recover multiple valuable minerals, such as cassiterite, whose densities considerably differ from those of their associated gangue minerals. However, its recovery efficiency rapidly decreases as the mineral particle grain size decreases. To recover the finer valuable mineral particles from gravity separation tailings, flotation separation can be used as a supplementary method. In this study, the gravity and flotation separation techniques are combined to recover cassiterite from a sulfide ore tailing. The Sn grade and recovery of the final concentrate is 31.40% and 88.05%, respectively, thus indicating a highly efficient recovery of cassiterite by using the combined gravity and flotation separation technique. This study can be an important reference for recovering cassiterite from low-Sn-grade tailings. -
Porphyry Deposits
PORPHYRY DEPOSITS W.D. SINCLAIR Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, K1A 0E8 E-mail: [email protected] Definition Au (±Ag, Cu, Mo) Mo (±W, Sn) Porphyry deposits are large, low- to medium-grade W-Mo (±Bi, Sn) deposits in which primary (hypogene) ore minerals are dom- Sn (±W, Mo, Ag, Bi, Cu, Zn, In) inantly structurally controlled and which are spatially and Sn-Ag (±W, Cu, Zn, Mo, Bi) genetically related to felsic to intermediate porphyritic intru- Ag (±Au, Zn, Pb) sions (Kirkham, 1972). The large size and structural control (e.g., veins, vein sets, stockworks, fractures, 'crackled zones' For deposits with currently subeconomic grades and and breccia pipes) serve to distinguish porphyry deposits tonnages, subtypes are based on probable coproduct and from a variety of deposits that may be peripherally associat- byproduct metals, assuming that the deposits were econom- ed, including skarns, high-temperature mantos, breccia ic. pipes, peripheral mesothermal veins, and epithermal pre- Geographical Distribution cious-metal deposits. Secondary minerals may be developed in supergene-enriched zones in porphyry Cu deposits by weathering of primary sulphides. Such zones typically have Porphyry deposits occur throughout the world in a series significantly higher Cu grades, thereby enhancing the poten- of extensive, relatively narrow, linear metallogenic tial for economic exploitation. provinces (Fig. 1). They are predominantly associated with The following subtypes of porphyry deposits are Mesozoic to Cenozoic orogenic belts in western North and defined according to the metals that are essential to the eco- South America and around the western margin of the Pacific nomics of the deposit (metals that are byproducts or poten- Basin, particularly within the South East Asian Archipelago. -
The University of Manitoba
THE OCCURRH\ICE OF TTN AT THE DtcKsroNE No. 2 oRBODY, NORTHmN IfANTTOBA by Marti:: Gray }4crcice Trliruli-peg, Manitoba Iftarcln, l97l+ A Thesis Submitted to the Faculty of Graduate SbudÍes and Research The University of Manitoba I:i Part,ial Fït]-fillrnent of the Requirements for the Degree of Master of Science ABSIRACT The Dickstone No. 2 Orebody, a sna1l massive sulphide deposít situated i¡r northern Ïvlanitoba, contain" lirl i¡ amou::ts averaging O"O8/" or 1o6 pounds per ton. ' Most of the tin occurs-as the oxide cassiterite. The cassiterite shows a considerable size range from (.OOI fiÍn. to 0o6 tmno, with approxÍ:nately 99% of a-ll cassiterite present Ín graÍns larger than Oo1 nm. acrossc_ The larger cassiterite grains e:dribit subhedral crystal forms, Some of which show the e'ffects of abrasion. Quafr'zt calcite and ' pyrite are most closely associated with the cassiterite u A microprobe study of the'cassiterites shows that the most connnon trace elem.e=nts are jndium, siJver, neod¡rmium, tur:gsten, iodine and lutetium. Ca1cíum, anti-rnony, and ytterbium occur moderately, whi-le titan-iran, iron, zi:rrc, tantalurn and iridium occur infrequently. Another tin-bearing rnineral was encour:teredo .Llthough not posÍtively identified, this mjneral ís a calcium-titanium silicate, possibly sphene" l-l_ ACKNOTìILEDGEMH\TS The uriter would like to thank Dro H. Du Bo lniilson for his help and supervision durirrg the preparation of this thesi-s. Aclcrow- ledgements are al-so exbended to Mro Ku RamJ-al- whose guidance dwi:rg the electron rnícroprobe phase of this study proved invaluable.