Heinrich&Candela TOG2 For
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Taylor Creek Tin Distrisl
tions such as Paramount Canyon, the veins TaylorCreek tin distrisl- may reach three to four centimeters in width and a few meters in height and length. A dis- seminated cassiterite halo has been noted stratigraphy,structure, around the veins in Squaw Creek. A recently discoveredrhyolite porphyry has andtiming of mineralizationintensely altered the surrounding country rock near NM-59 where the road crossesthe Conti- byTed L. Egglestonand David L Norman,New Mexico lnstitute of Miningand Technology, Socorro, NM nental Divide. This porphyry is locally quartz- sericite altered and contains as much as I go pyrite. Similar intrusives have been mapped Introduction The Taylor Creek tin district is located in by Woodard (1982) southeast of the Taylor Primary tin depositscommonly are found in the north-central Black Range some 80 km Creek region. granitic plutonic environments where the tin west of Truth or Consequences,New Mexico occurs as cassiterite in greisen veins and as (fig. l). Cassiteritenuggets were first found in Regional geology disseminations in altered granite (Taylor, placers (Fries, 1940a). in the district in 1909 The tin-bearing Taylor Creek Rhyolite is 1979).In southwest New Mexico, however, tin Shortly wood tin thereafter, cassiterite and located in the Mogollon-Datil volcanic field, a occurs as cassiterite in hematite-cassiterite were porphyritic found in vein depositsin rhy- mid-Tertiary volcanic field consisting of inter- veins which cut Tertiary rhyolite domes and placer (Hill, olite lavas as well as in deposits mediate to -
Supergene Mineralisation of the Boyongan Porphyry Copper-Gold Deposit, Surigao Del Norte, Philippines
Supergene Mineralisation of the Boyongan Porphyry Copper-Gold Deposit, Surigao del Norte, Philippines by Allan Maglaya Ignacio B.Sc. Geology, National Institute of Geological Sciences University of the Philippines Thesis submitted in partial fulfilment of the requirements of the Masters of Economic Geology Degree Centre for Ore Deposit Research, University of Tasmania December, 2005 DECLARATION OF ORIGINALITY This thesis contains no material which has been accepted for a degree of diploma by the University of Tasmania or any other institution, except by way of background information and duly acknowledged in the thesis, and contains no previous material previously pub- lished or written by another person except where due acknowledgement is given. Allan Maglaya Ignacio 01 December 2005 _________________________ STATEMENT OF AUTHORITY OF ACCESS This thesis may not to be made available for loan or copying for 1.5 years following the date this statement was signed. Following that time, the thesis may be available for loan and lim- ited copying in accordance with Copyright Act 1968. Allan Maglaya Ignacio 01 December 2005 _________________________ TABLE OF CONTENTS Page (s) LIST OF FIGURES …………………………………………………….. i - iii LIST OF APPENDICES ………………………………………………… iv ACKNOWLEDGMENTS ………………………………………………. v ABSTRACT ……………………………………………………………... vi - vii 1.0 INTRODUCTION ………………………………………………………. 1 - 8 1.1 Introduction …………………………………………………………. 1 1.2 Aims and Objectives ……………………………………………….. 1 1.3 Methods Employed …………………………………………………. 2 1.4 Location and Accessibility …………………………………………. 3 1.5 Climate ……………………………………………………………... 5 1.6 Previous Work ……………………………………………………… 5 2.0 GEOLOGICAL SETTING ………………………………………………. 9 - 37 2.1 Introduction ………………………………………………………. 9 2.2 Regional Tectonics …………….…………………………………. 9 2.3 Regional and Local Stratigraphy ………………………………... 11 2.3.1 Basement (Cretaceous-Paleogene) ………………………. 11 2.3.2 Bacuag Formation (Oliogocene-Miocene) .…………….. -
Geology and Beryl Deposits of the Peerless Pegmatite Pennington County South Dakota
Geology and Beryl Deposits of the Peerless Pegmatite Pennington County South Dakota GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-A This report concerns work done partly on behalj of the U. S. Atomic Energy Commission and is published with the permission of the , » Commission Geology and Beryl Deposits of the Peerless Pegmatite Pennington County South Dakota By DOUGLAS M. SHERllDAN, HAL G. STEPHENS, MORTIMER H. STAATZ and JAMES J. NORTON PEGMATITES AND OTHER PRECAMBRIAN ROCKS IN THE SOUTHERN BLACK HILLS GEOLOGICAL SURVEY PROFESSIONAL PAPER 297-A This report concerns work done partly on behalf of the U. S. Atomic Energy Commission and is published with the permission of the Commission UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1957 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director For sale by the Superintendent of Documents, U. S. Government Printing Office Washington 25, D. C. - Price $1.50 (paper cover) CONTENTS Page Page Abstract.__________________________________________ 1 Geology Continued Introduction _______________________________________ 1 Peerless pegmatite Continued Location_____________________________________ 1 Chemical composition......____________ 17 History and production________________________ 2 Origin________ ____________________ _. 18 Past and present investigations.__________________ 3 Mineral deposits_____________________________ 21 Acknowledgments__________________________ 4 Mica__ _________ _________________________ 21 Mine workings _____________________________________ -
Cassiterite Recovery from a Sulfide Ore Flotation Tailing by Combined Gravity and Flotation Separations
Physicochem. Probl. Miner. Process., 57(1), 2021, 206-215 Physicochemical Problems of Mineral Processing ISSN 1643-1049 http://www.journalssystem.com/ppmp © Wroclaw University of Science and Technology Received August 11, 2020; reviewed; accepted November 29, 2020 Cassiterite recovery from a sulfide ore flotation tailing by combined gravity and flotation separations Limin Zhang, Sultan an Khoso, Mengjie Tian, Wei Sun School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China Key Laboratory of Hunan Province for Clean and Efficient Utilization of Strategic Calcium-containing Mineral Resources, Central South University, Changsha 410083, China Corresponding author: [email protected] (Mengjie Tian) Abstract: Cassiterite (SnO2), which is the most important Sn-containing mineral, is extensively found in large quantities in discarded tailings. The recovery of cassiterite from discarded sulfide ore flotation tailings can reduce resource wastage and environmental pollution. The gravity separation technique can recover multiple valuable minerals, such as cassiterite, whose densities considerably differ from those of their associated gangue minerals. However, its recovery efficiency rapidly decreases as the mineral particle grain size decreases. To recover the finer valuable mineral particles from gravity separation tailings, flotation separation can be used as a supplementary method. In this study, the gravity and flotation separation techniques are combined to recover cassiterite from a sulfide ore tailing. The Sn grade and recovery of the final concentrate is 31.40% and 88.05%, respectively, thus indicating a highly efficient recovery of cassiterite by using the combined gravity and flotation separation technique. This study can be an important reference for recovering cassiterite from low-Sn-grade tailings. -
PORPHYRY CU DEPOSITS (MODEL 17; Cox, 1986) by Leslie J. Cox
PORPHYRY CU DEPOSITS (MODEL 17; Cox, 1986) by Leslie J. Cox, Maurice A. Chaffee, Dennis P. Cox, and Douglas P. Klein SUMMARY OF RELEVANT GEOLOGIC, GEOENVIRONMENTAL, AND GEOPHYSICAL INFORMATION Deposit geology Porphyry copper deposits contain copper, molybdenum, and gold minerals, disseminated or in a stockwork of small veinlets within a large mass of altered rock (Singer and Mosier, 1981). The host rock is commonly a pyrite-rich porphyry ranging in composition from granodiorite to tonalite, but alkalic porphyries are locally important. In the southwestern United States, where porphyry copper deposits are abundant, associated igneous rocks are mainly Mesozoic and Cenozoic. Older plutonic, volcanic, sedimentary, and metamorphic rocks intruded by these porphyries also host ore minerals; the highest grades are found in reactive rocks such as limestone, or rocks, such as diabase, which contain abundant iron-rich minerals prior to alteration. Porphyry deposits exhibit a characteristic pattern of hydrothermal alteration, which includes biotite and K-feldspar assemblages in the center and grades outward to chlorite, actinolite, and epidote assemblages. Most deposits have a late-stage alteration assemblage that contains abundant white mica, clay, and carbonate minerals. Examples Bingham, Utah (Lanier and others, 1978); San Manuel, Ariz. (Lowell and Guilbert, 1970); El Salvador, Chile (Gustafson and Hunt, 1975). Spatially and (or) genetically related deposit types Related deposit types (Cox and Singer, 1986) include porphyry copper, skarn-related (Model 18a), base-metal skarn (Model 18c), porphyry copper-gold (Model 20c), porphyry copper-molybdenum (Model 21a), polymetallic vein (Model 22c), polymetallic replacement (Model 19a), volcanic-hosted copper-arsenic-antimony (Model 22a), quartz- alunite gold (Model 25e), distal disseminated silver-gold (Model 19c; Cox, 1992), and gold-skarn deposits. -
Porphyry Deposits
PORPHYRY DEPOSITS W.D. SINCLAIR Geological Survey of Canada, 601 Booth St., Ottawa, Ontario, K1A 0E8 E-mail: [email protected] Definition Au (±Ag, Cu, Mo) Mo (±W, Sn) Porphyry deposits are large, low- to medium-grade W-Mo (±Bi, Sn) deposits in which primary (hypogene) ore minerals are dom- Sn (±W, Mo, Ag, Bi, Cu, Zn, In) inantly structurally controlled and which are spatially and Sn-Ag (±W, Cu, Zn, Mo, Bi) genetically related to felsic to intermediate porphyritic intru- Ag (±Au, Zn, Pb) sions (Kirkham, 1972). The large size and structural control (e.g., veins, vein sets, stockworks, fractures, 'crackled zones' For deposits with currently subeconomic grades and and breccia pipes) serve to distinguish porphyry deposits tonnages, subtypes are based on probable coproduct and from a variety of deposits that may be peripherally associat- byproduct metals, assuming that the deposits were econom- ed, including skarns, high-temperature mantos, breccia ic. pipes, peripheral mesothermal veins, and epithermal pre- Geographical Distribution cious-metal deposits. Secondary minerals may be developed in supergene-enriched zones in porphyry Cu deposits by weathering of primary sulphides. Such zones typically have Porphyry deposits occur throughout the world in a series significantly higher Cu grades, thereby enhancing the poten- of extensive, relatively narrow, linear metallogenic tial for economic exploitation. provinces (Fig. 1). They are predominantly associated with The following subtypes of porphyry deposits are Mesozoic to Cenozoic orogenic belts in western North and defined according to the metals that are essential to the eco- South America and around the western margin of the Pacific nomics of the deposit (metals that are byproducts or poten- Basin, particularly within the South East Asian Archipelago. -
Sediment-Hosted Copper Deposits of the World: Deposit Models and Database
Sediment-Hosted Copper Deposits of the World: Deposit Models and Database By Dennis P. Cox1, David A. Lindsey2 Donald A. Singer1, Barry C. Moring1, and Michael F. Diggles1 Including: Descriptive Model of Sediment-Hosted Cu 30b.1 by Dennis P. Cox1 Grade and Tonnage Model of Sediment-Hosted Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Reduced-Facies Cu 30b.2 By Dennis P. Cox1 Grade and Tonnage Model of Reduced Facies Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Redbed Cu 30b.3, by David A. Lindsey2 and Dennis P. Cox1 Grade and Tonnage Model of Redbed Cu by Dennis P. Cox1 and Donald A. Singer1 Descriptive Model of Revett Cu 30b.4, by Dennis P. Cox1 Grade and Tonnage Model of Revett Cu by Dennis P. Cox1 and Donald A. Singer1 Open-File Report 03-107 Version 1.3 2003, revised 2007 Available online at http://pubs.usgs.gov/of/2003/of03-107/ Any use of trade, product or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. U.S. DEPARTMENT OF THE INTERIOR U.S. GEOLOGICAL SURVEY 1 345 Middlefield Road, Menlo Park, CA 94025 2 Box 25046, Denver Federal Center, Denver, CO 80225 Introduction This publication contains four descriptive models and four grade-tonnage models for sediment hosted copper deposits. Descriptive models are useful in exploration planning and resource assessment because they enable the user to identify deposits in the field and to identify areas on geologic and geophysical maps where deposits could occur. -
Tungsten Minerals and Deposits
DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance................................. -
Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits Within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (A Review)
minerals Review Paleozoic–Mesozoic Porphyry Cu(Mo) and Mo(Cu) Deposits within the Southern Margin of the Siberian Craton: Geochemistry, Geochronology, and Petrogenesis (a Review) Anita N. Berzina *, Adel P. Berzina and Victor O. Gimon V.S. Sobolev Institute of Geology and Mineralogy, Siberian Branch of the RAS, Koptyug Ave. 3, Novosibirsk 630090, Russia; [email protected] (A.P.B.); [email protected] (V.O.G.) * Correspondence: [email protected]; Tel.: +7-383-333-2304 Academic Editor: Maria Economou-Eliopoulos Received: 31 July 2016; Accepted: 21 November 2016; Published: 29 November 2016 Abstract: The southern margin of the Siberian craton hosts numerous Cu(Mo) and Mo(Cu) porphyry deposits. This review provides the first comprehensive set of geological characteristics, geochronological data, petrochemistry, and Sr–Nd isotopic data of representative porphyry Cu(Mo) and Mo(Cu) deposits within the southern margin of the Siberian craton and discusses the igneous processes that controlled the evolution of these magmatic systems related to mineralization. Geochronological data show that these porphyry deposits have an eastward-younging trend evolving from the Early Paleozoic to Middle Mesozoic. The western part of the area (Altay-Sayan segment) hosts porphyry Cu and Mo–Cu deposits that generally formed in the Early Paleozoic time, whereas porphyry Cu–Mo deposits in the central part (Northern Mongolia) formed in the Late Paleozoic–Early Mesozoic. The geodynamic setting of the region during these mineralizing events is consistent with Early Paleozoic subduction of Paleo-Asian Ocean plate with the continuous accretion of oceanic components to the Siberian continent and Late Paleozoic–Early Mesozoic subduction of the west gulf of the Mongol–Okhotsk Ocean under the Siberian continent. -
Trace-Element Geochemistry of Molybdenite from Porphyry Cu Deposits of the Birgilda-Tomino Ore Cluster (South Urals, Russia)
Mineralogical Magazine, May 2018, Vol. 82(S1), pp. S281–S306 Trace-element geochemistry of molybdenite from porphyry Cu deposits of the Birgilda-Tomino ore cluster (South Urals, Russia) 1,* 1 1,2 3 OLGA Y. P LOTINSKAYA ,VERA D. ABRAMOVA ,ELENA O. GROZNOVA ,SVETLANA G. TESSALINA , 4 4 REIMAR SELTMANN AND JOHN SPRATT 1 Institute of Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry Russian Academy of Sciences (IGEM RAS), Staromonetny per. 35, Moscow 119017, Russia 2 Institute of Experimental Mineralogy Russian Academy of Sciences (IEM RAS), Chernogolovka, Moscow region 142432, Russia 3 John de Laeter Centre for Isotope Research & The Institute for Geoscience Research (TIGeR), Curtin University, Kent St, Bentley, WA 6102, Australia 4 Natural History Museum, London SW7 5BD, UK [Received 16 January 2017; Accepted 23 December 2017; Associate Editor: Krister Sundblad] ABSTRACT Mineralogical, electron microprobe analysis and laser ablation-inductively coupled plasma-mass spectrometry data from molybdenite within two porphyry copper deposits (Kalinovskoe and Birgilda) of the Birgilda-Tomino ore cluster (South Urals) are presented.† The results provide evidence that molybdenites from these two sites have similar trace-element chemistry. Most trace elements (Si, Fe, Co, Cu, Zn, Ag, Sb, Te, Pb, Bi, Au, As and Se) form mineral inclusions within molybdenite. The Re contents in molybdenite vary from 8.7 ppm to 1.13 wt.%. The Re distribution within single molybdenite flakes is always extremely heterogeneous. It is argued that a temperature decrease favours the formation of Re-rich molybdenite. The high Re content of molybdenite observed points to a mantle-derived source. K EYWORDS: molybdenite, LA-ICP-MS, porphyry copper deposits, Urals. -
The Genetic Association Between Quartz Vein- and Greisen-Type
minerals Article The Genetic Association between Quartz Vein- and Greisen-Type Mineralization at the Maoping W–Sn Deposit, Southern Jiangxi, China: Insights from Zircon and Cassiterite U–Pb Ages and Cassiterite Trace Element Composition Li-Li Chen, Pei Ni *, Bao-Zhang Dai *, Wen-Sheng Li, Zhe Chi and Jun-Yi Pan State Key Laboratory for Mineral Deposits Research, Institute of Geo–Fluids, School of Earth Sciences and Engineering, Nanjing University, Nanjing 210023, China * Correspondence: [email protected] (P.N.); [email protected] (B.-Z.D.); Tel.: +86-25-8968-0883 (P.N.); +86-25-8368-6649 (B.-Z.D.) Received: 28 May 2019; Accepted: 3 July 2019; Published: 4 July 2019 Abstract: The large-scale Maoping W–Sn deposit in the Gannan metallogenic belt of the eastern Nanling Range, South China, spatially associated with the Maoping granite pluton, hosts total ore reserves of 103,000 t WO3 and 50,000 t Sn. Two different types of mineralization developed in this deposit: Upper quartz vein-type mineralization, mostly within the Cambrian metamorphosed sandstone and slate, and underneath greisen-type mineralization within the Maoping granite. Cassiterites from both types of mineralization coexist with wolframite. Here we report for the first time in situ U–Pb data on cassiterite and zircon of the Maoping deposit obtained by LA-ICP-MS. Cassiterite from quartz vein and greisen yielded weighted average 206Pb/238U ages of 156.8 1.5 Ma ± and 156.9 1.4 Ma, respectively, which indicates that the two types of mineralization formed roughly ± at the same time. In addition, the two mineralization ages are consistent with the emplacement age of the Maoping granite (159.0 1.5 Ma) within error, suggesting a close temporal and genetic link ± between W–Sn mineralization and granitic magmatism. -
Magmatic Arc and Associated Gold, Copper, Silver, and Barite Deposits in the State of Goiás, Central Brazil: Characteristics and Speculations
Revista Brasileira de Geociências 30(2):285-288, junho de 2000 MAGMATIC ARC AND ASSOCIATED GOLD, COPPER, SILVER, AND BARITE DEPOSITS IN THE STATE OF GOIÁS, CENTRAL BRAZIL: CHARACTERISTICS AND SPECULATIONS RAUL MINAS KUYUMJIAN1 ABSTRACT In the western portion of the State of Goiás, Central Brazil, base-metal deposits typical of volcanic-plutonic arcs occur. Up- to-date studies suggest that porphyry Cu-Au, (volcanogenic ?) hydrothermal exhalative Cu-Au and stratiform, submarine exhalative Au-Ag-Ba are present. Although restricted, the present state of knowledge on the geology and mineralizations of the magmatic arc indicates potential resources for metallic mineral deposits in the Brasília Belt. Keywords: mineral deposits, magmatic arc, Goiás, Central Brazil. INTRODUCTION The Magmatic Arc of western Goiás is located during the Brasiliano orogeny, and is associated with recumbent within the Brasilia Belt, a complex fold-and thrust belt of more than isoclinal, open and normal folds. Younger crosscutting foliations one episode of deformation during the Brasiliano orogeny, in the cen- generate crenulations. Shear zones display NS, N100-200W and N200- tral part of the Tocantins Province. The Tocantins Province is a large 400Ed trends. Brasiliano deformation places the Mara Rosa volcanic- Neoproterozoic orogen in Central Brazil (Richardson et al. 1988, sedimentary sequence in the hangingwall of the Rio dos Bois thrust Pimentel et al. 1997, 1998). The magmatic arc is prevalently formed fault, whose footwall consists of Paleoproterozoic Santa Terezinha by Neoproterozoic island-arc terranes consisting of tonalitic to volcanic-sedimentary sequence that occurs to the east (Kuyumjian granodioritic orthogneisses, volcanic-sedimentary associations and 1995). This fault has a dextral oblique and reverse sense of shear late- to post-orogenic intrusions of granites and gabbros.