High Temperature So2 Chemisorption on Model Systems
Total Page:16
File Type:pdf, Size:1020Kb
HIGH TEMPERATURE SO2 CHEMISORPTION ON MODEL SYSTEMS IMPLICATIONS FOR IN-PLUME PROCESSES PAUL MARTIN AYRIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY ENVIRONMENT DEPARTMENT, UNIVERSITY OF YORK SUBMITTED MAY, 2010 For my family. And for the wizard. Because of the wonderful things he does. ABSTRACT ABSTRACT Volcanic volatile species are scavenged by silicate ash during transition through eruption plumes. Scavenging may form S, F and Cl salts and acids on ash surfaces, though the mechanisms and controlling variables remain poorly understood. A limited mechanistic understanding impedes estimation of volcanic volatile budgets and may also prevent assessment of environmental impacts resulting from volatile scavenging. Limited assessment of these impacts may have implications for local communities affected by ashfall onto vegetation, soils and into water bodies, and ashfall from very large eruptions may have global impacts. Through experimental techniques, this study examined SO2 scavenging mechanisms on silicate ash surfaces. SO2 uptake experiments were conducted on model Ca-aluminosilicate xerogels and on glasses with chemical compositions of common ash types. The materials were characterised using bulk and surface-sensitive techniques to gain insight into the mechanisms of scavenging and the reaction products formed. SO2 chemisorption onto glass surfaces may occur on non- bridging oxygens of network modifying cations (Ca), forming sulphate salts (CaSO4) and initiates diffusion mechanisms which resupplies the surface with Ca. The chemisorption-diffusion mechanism may be most efficient at high temperature, and may become significant after a few minutes of SO2 exposure. The proposed scavenging mechanism may occur during the eruption within the high temperature volcanic conduit and in the core of the plume. High temperature SO2 scavenging could deposit the soluble S salts inferred to exist on ash and may dictate its surface chemistry for later reactions during transport through the plume and dispersion in the atmosphere and/or environment. It is not yet possible to quantify this mechanism or compare it to other scavenging mechanisms (aqueous acid condensation, high temperature salt condensation), and so future studies should attempt to constrain all volatile scavenging mechanisms occurring on ash surfaces, with particular focus on high temperatures, even in the subterranean environment. 2 CONTENTS TABLE OF CONTENTS LIST OF FIGURES ........................................................................................... 8 LIST OF TABLES .......................................................................................... 14 LIST OF SYMBOLS USED .............................................................................. 18 LIST OF ABBREVIATIONS USED ................................................................... 20 FOREWORD ................................................................................................. 22 AUTHOR’S DECLARATION ........................................................................... 23 CHAPTER ONE. INTRODUCTION ................................................................. 25 1.1. OVERVIEW ........................................................................................................ 25 1.2. VOLCANIC ACTIVITY AND ITS PRODUCTS ........................................................ 27 1.2.1 OVERVIEW OF A VOLCANIC ERUPTION .................................................... 27 1.2.2. ASH PARTICLES: PHYSICAL AND CHEMICAL PROPERTIES ........................ 30 1.2.3. VOLATILES IN THE ERUPTION PLUME ...................................................... 34 1.3. THESIS RATIONALE ........................................................................................... 37 1.3.1. RATIONALE FOR STUDY OF SO2 .............................................................. 37 1.3.1.1. MITIGATION OF SO2 ATMOSPHERIC IMPACT BY ASH SCAVENGING ............ 37 1.3.1.2. THE ROLE OF SO2 SCAVENGING IN VOLCANIC S BUDGETS ........................ 40 1.3.1.3. MECHANISMS OF VOLATILE SCAVENGING BY ASH .................................... 41 1.3.1.4. SO2 SCAVENGING BY ADSORPTION ON ASH PARTICLE SURFACES .............. 43 1.4. SELECTING EXPERIMENTAL VARIABLES .......................................................... 46 1.4.1. ADSORPTION .......................................................................................... 46 1.4.1.1. PRINCIPLES OF ADSORPTION ..................................................................... 46 1.4.1.2. SIGNIFICANCE OF ADSORPTION IN SO2 SCAVENGING ................................ 48 1.5. RESEARCH QUESTIONS AND PROJECT SCOPE .................................................. 51 1.6. THESIS OUTLINE ............................................................................................... 52 1 CONTENTS CHAPTER TWO. ENVIRONMENTAL EFFECTS OF ASH EMISSION ................ 54 2.1. INTRODUCTION ................................................................................................. 54 2.2. ENVIRONMENTAL SIGNIFICANCE OF THE VOLCANIC ASH SURFACE ............... 56 2.3. ASH RESIDENCE TIME IN RECEIVING ENVIRONMENTS .................................... 59 2.3.1. RESIDENCE TIME IN THE ATMOSPHERE ................................................... 59 2.3.2. RESIDENCE TIME ON VEGETATION .......................................................... 61 2.3.3. RESIDENCE TIME ON SOIL AND SNOW ..................................................... 63 2.3.4. RESIDENCE TIME IN LAKES, RIVERS AND OCEANS ................................... 66 2.4. ASH PHYSICAL AND CHEMICAL PROPERTIES IN THE ENVIRONMENT .............. 69 2.4.1. IMPACTS IN THE ATMOSPHERE ................................................................ 69 2.4.2. IMPACTS ON VEGETATION SURFACES ..................................................... 74 2.4.3. IMPACTS ON SOILS .................................................................................. 82 2.4.4. IMPACT IN WATER COLUMNS AND AQUATIC SEDIMENTS ......................... 90 2.5. CONCLUSION .................................................................................................... 96 CHAPTER THREE. EXPERIMENTAL AND ANALYTICAL METHODOLOGY.. 102 3.1. INTRODUCTION ............................................................................................... 102 3.2. EXPERIMENTAL METHODOLOGY ................................................................... 103 3.2.1. EXPERIMENT DESIGN AND METHODOLOGY ........................................... 103 3.2.2. MODEL SYSTEMS FOR STUDY ............................................................... 104 3.2.3. EXPERIMENTAL TEMPERATURE RANGE ................................................ 104 3.2.4. EXPERIMENTAL EXPOSURE TIME .......................................................... 104 3.2.5. EXPERIMENTAL ATMOSPHERE .............................................................. 105 3.3. ANALYTICAL TECHNIQUES - LEACHING ........................................................ 106 3.3.1. PRINCIPLES OF AQUEOUS LEACHING ..................................................... 106 3.3.2. LEACHING PROTOCOL .......................................................................... 107 3.3.3. LEACHATE ANALYSIS ........................................................................... 107 3.3.3.1. LEACHATE ANALYSIS – ION CHROMATOGRAPHY .................................... 108 3.3.3.2. LEACHATE ANALYSIS – ATOMIC ABSORPTION SPECTROPHOTOMETRY ... 110 3.3.3.3. LEACHATE ANALYSIS – OPTICAL EMISSION SPECTROSCOPY ................... 113 3.4. SURFACE ANALYSIS ........................................................................................ 114 3.4.1. X-RAY PHOTOELECTRON SPECTROSCOPY ............................................. 114 2 CONTENTS 3.4.2. NITROGEN ADSORPTION POROSIMETRY ................................................ 119 3.4.3. SCANNING ELECTRON MICROSCOPY ..................................................... 120 3.4.4. TRANSMISSION ELECTRON MICROSCOPY .............................................. 121 3.5. BULK ANALYTICAL TECHNIQUES ................................................................... 122 3.5.1. X-RAY FLUORESCENCE SPECTROSCOPY ............................................... 122 3.5.2. X-RAY POWDER DIFFRACITON ............................................................. 123 3.5.3. TOTAL SULPHUR ANALYSIS .................................................................. 124 3.5.4. GLASS TRANSITION TEMPERATURE .................................................................. 124 CHAPTER FOUR. SO2 CHEMISORPTION ON SYNTHETIC MODEL ASH SYSTEMS ............................................................................. 127 4.1. INTRODUCTION ............................................................................................... 127 4.1.1. OVERVIEW ........................................................................................... 127 4.1.2. THE ALUMINOSILICATE GLASS SURFACE .............................................. 127 4.1.2. SO2 CHEMISORPTION ON ASH SURFACES STUDIED THROUGH MODEL SYSTEMS ............................................................................................................. 130 4.1.3. EXPERIMENTAL RATIONALE ................................................................. 131 4.2. SAMPLE SYNTHESIS ........................................................................................ 132 4.2.1. SOL-GEL TECHNIQUE ............................................................................ 132 4.2.2. SOL-GEL SYNTHESIS AND CA DOPING