Riparian Vegetation and the Fluvial Environment: a Biogeographic Perspective

Total Page:16

File Type:pdf, Size:1020Kb

Riparian Vegetation and the Fluvial Environment: a Biogeographic Perspective Provided for non-commercial research and educational use only. Not for reproduction, distribution or commercial use. This chapter was originally published in the Treatise on Geomorphology, the copy attached is provided by Elsevier for the author’s benefit and for the benefit of the author’s institution, for non-commercial research and educational use. This includes without limitation use in instruction at your institution, distribution to specific colleagues, and providing a copy to your institution’s administrator. All other uses, reproduction and distribution, including without limitation commercial reprints, selling or licensing copies or access, or posting on open internet sites, your personal or institution’s website or repository, are prohibited. For exceptions, permission may be sought for such use through Elsevier’s permissions site at: http://www.elsevier.com/locate/permissionusematerial Bendix J., and Stella J.C. Riparian Vegetation and the Fluvial Environment: A Biogeographic Perspective. In: John F. Shroder (Editor-in-chief), Butler, D.R., and Hupp, C.R. (Volume Editors). Treatise on Geomorphology, Vol 12, Ecogeomorphology, San Diego: Academic Press; 2013. p. 53-74. © 2013 Elsevier Inc. All rights reserved. 12.5 Riparian Vegetation and the Fluvial Environment: A Biogeographic Perspective J Bendix, Syracuse University, Syracuse, NY, USA JC Stella, State University of New York College of Environmental Science and Forestry, Syracuse, NY, USA r 2013 Elsevier Inc. All rights reserved. 12.5.1 Introduction 53 12.5.2 Early History: Pattern and Process in Riparian Zones 54 12.5.3 Influence of Hydrogeomorphology on Vegetation: Evolution from Descriptive to Quantitative Studies 55 12.5.4 Specific Mechanisms of Hydrogeomorphic Impact 56 12.5.4.1 Flood Energy 56 12.5.4.2 Sedimentation 56 12.5.4.3 Prolonged Inundation 57 12.5.4.4 Water-Table Depth and Dynamics 57 12.5.4.5 Soil Chemistry 58 12.5.4.6 Propagule Dispersal 58 12.5.5 Influence of Vegetation on Geomorphology 59 12.5.6 Feedbacks between Vegetation and Hydrogeomorphology 60 12.5.7 Patterns in Published Literature 62 12.5.7.1 The Sample and Coding 63 12.5.7.2 General Characteristics of the Sampled Literature 64 12.5.7.3 Differences among Biomes 65 12.5.7.4 Scale-Related Differences 66 12.5.7.5 Hydrogeomorphic Mechanisms in the Context of Scale and Biogeography 67 12.5.8 Patterns and Perceptions Revealed in the Literature 68 References 69 Abbreviations LWD Large woody debris CHILD Channel–hillslope integrated landscape TN Total nitrogen development TOC Total organic carbon Abstract In this chapter, we review the historical arc of research on biogeomorphic interactions between fuvial geomorphology and riparian vegetation. We then report on an examination of the past 20 years of published research on this topic. Having classifed studies according to the key relationships they have identifed, we map those relationships to seek spatial patterns that emerge in terms of either physiographic environment or actual geographic location. We also consider the varied patterns of causal interactions that emerge at different spatial scales. 12.5.1 Introduction understanding of the linked physical and biotic processes that sustain them (Osterkamp and Hupp, 1984; Gregory et al., The recognition of riparian zones as biogeomorphic units in 1991; Naiman and Decamps, 1997; Naiman et al., 2005). For the landscape is critical both for theoretical understanding and much of this time, emphasis was placed on the importance of for conservation of these high-value habitats. Since the middle understanding hydrogeomorphic infuences on riparian vege- of the twentieth century, study of the systematic patterns of tation, because fuvial forces set the physical template for vegetation communities in riparian zones has led to a greater ecological communities. Recently, there has been greater study of the reciprocal infuence of biological organisms and pro- cesses on geomorphic processes, leading to a biogeomorphic Bendix, J., Stella, J.C., 2013. Riparian vegetation and the fuvial understanding of fuvial/riparian ecosystems (Corenblit et al., environment: a biogeographic perspective. In: Shroder, J. (Editor in Chief), Butler, D.R., Hupp, C.R. (Eds.), Treatise on Geomorphology. Academic 2007). This view recognizes the substantial infuence Press, San Diego, CA, vol. 12, Ecogeomorphology, pp. 53–74. that vegetation pattern and structure can have in altering the Treatise on Geomorphology, Volume 12 http://dx.doi.org/10.1016/B978-0-12-374739-6.00322-5 53 Author's personal copy 54 Riparian Vegetation and the Fluvial Environment: A Biogeographic Perspective distribution of physical forces of fow and sediment regimes, conclusions about drivers, responses, and landscape patterns which ultimately create feedbacks to biological communities in riparian vegetation communities? In which biomes and at and ecosystems (Bendix and Hupp, 2000). what scales is the direction of infuence primarily from the Early work relating riparian ecology to fuvial processes was physical to the biotic, the reverse, or one of strongly linked primarily descriptive in nature, with a common thread being feedbacks? How does the biome or geographic setting infu- the classifcation of riparian vegetation communities and their ence the relative strength of ecosystem drivers, including dis- association with particular fuvial landforms, or even simply turbance regimes (fooding, scour, and sediment deposition), particular vertical locations relative to stream channels. These abiotic stress (e.g., seasonal drought), soil chemistry, and/or studies were generally place- and taxa-specifc. The develop- limitations on life-history processes such as propagule ment of geomorphology as a more quantitative science since dispersal? the middle of the last century (e.g., Leopold and Maddock, We believe that a biogeomorphic approach is necessary for 1953; Leopold et al., 1964) laid the basis for more generality a legitimate understanding of either fuvial processes or the and a common biogeomorphic process approach to the study ecology of the riparian zone. The large volume of relevant of rivers and riparian zones (Osterkamp and Hupp, 2010). empirical research since several landmark papers in the 1980s Examples of this work include the hydraulic geometry ap- and early 1990s (e.g., Osterkamp and Hupp, 1984; Hupp and proach (Leopold and Maddock, 1953), process-based classi- Osterkamp, 1985; Gregory et al., 1991) suggests the need to go fcation of river environments (Montgomery and Buffngton, beyond a catalog-style review to a more analytical approach to 1997), and quantifcations of interactions between sediment understanding the complex relationships between the eco- transport capacity and supply across a wide range of spatial logical and geomorphic elements of the riparian environment. and temporal scales (e.g., Howard et al., 1994). We therefore seek to examine the literature on the interactions However, much of the early work was conducted on North between riparian plant communities and fuvial landforms/ American streams, with particular ecological communities and processes, within a bipartite, spatially oriented framework that physical regimes infuencing a great deal of the development emphasizes how biogeomorphic interactions between riparian in early theories and empirical examples. The histories of both vegetation and fuvial geomorphology vary with both geog- geomorphology and ecology include reminders of the danger raphy and the scale of observation. of generalizing theories across dissimilar environments. Cri- In this chapter, we begin with a condensed review of the tiques of the roles of William Morris Davis in the former historical arc of research on the varied fuvial impacts on discipline and of Frederick C Clements in the latter have noted vegetation, the means whereby vegetation infuences fuvial that theoretical models developed in distinctive geographic geomorphology, and the feedbacks between the two. The bulk settings did not translate appropriately when imposed else- of that research has been on the specifc mechanisms of where. In a recent example, studies by Walter and Merritts hydrogeomorphic infuence on riparian plant communities; (2008) in eastern North America suggest that the geomorphic therefore, these mechanisms receive particular emphasis in context in the region where much of the early hydraulic our review. We then report on an examination of the past 20 geometry research (e.g., Leopold and Maddock, 1953)was years of published research on this topic. Having classifed conducted may have been in disequilibrium due to historical studies according to the key relationships they have identifed, human infuences (i.e., mill dams). These well-known ex- we map both the causal directions and the mechanisms to amples serve as reminders that processes and relationships seek spatial patterns that emerge in terms of either physio- vary spatially. In particular, the very different environmental graphic environment or actual geographic location. We also conditions and vegetation structure occurring in different consider the varied patterns of causal interactions that may biomes suggest that plant adaptations to hydrogeomorphic emerge at different spatial scales. constraints, and the subsequent infuence of vegetation on fuvial processes, may vary widely from one setting to another. Another spatial complication arises when we consider the 12.5.2 Early History: Pattern and Process in scale at which biogeomorphic relationships are observed. A Riparian Zones
Recommended publications
  • Zoogeomorphology & Ecosystem Engineering
    Zoogeomorphology & Ecosystem Engineering The 42nd Annual Binghamton Geomorphology Symposium October 21 – 23, 2011 University of South Alabama, Mobile, Alabama National Science University of Texas State University- Foundation South Alabama San Marcos Zoogeomorphology and Ecosystem Engineering The 42nd Annual Binghamton Geomorphology Symposium University of South Alabama, Mobile, Alabama October 21 – 23, 2011 Conference Organizers: David R. Butler Department of Geography, Texas State University-San Marcos Carol F. Sawyer Department of Earth Sciences, University of South Alabama Conference Sponsors National Science Foundation, GEO/EAR, Geomorphology & Land-Use Dynamics Department of Earth Sciences, University of South Alabama College of Arts and Sciences, University of South Alabama Department of Geography, Texas State University-San Marcos Field Trip Assistance Dr. Mimi Fearn, Ms. Sherall Cornwell, Ms. Karen Jordan, Ms. Tela O’Rourke, and Mr. Donald Brinkman, Department of Earth Sciences, University of South Alabama We wish to thank the following people for their assistance in organizing this symposium: Catherine Drake and the Center for Continuing Education & Conference Services staff, Univ. South Alabama Department of Earth Sciences faculty, staff, and students, including Dr. Mimi Fearn, Dr. Jim Connors, Sherall Cornwell, Chris Reese, Donald Brinkman, Tela O’Rourke, and Reva Stienstraw-Hitchcock Dr. Phil Suckling, Chair, Department of Geography, Texas State University-San Marcos Dr. Jack Vitek, Texas A&M University Dr. Richard Marston,
    [Show full text]
  • Biomechanical and Biochemical Effects Recorded in the Tree Root Zone – Soil Memory, Historical Contingency and Soil Evolution Under Trees
    Plant Soil (2018) 426:109–134 https://doi.org/10.1007/s11104-018-3622-9 REGULAR ARTICLE Biomechanical and biochemical effects recorded in the tree root zone – soil memory, historical contingency and soil evolution under trees Łukasz Pawlik & Pavel Šamonil Received: 17 September 2017 /Accepted: 1 March 2018 /Published online: 15 March 2018 # The Author(s) 2018 Abstract increase in soil spatial complexity. We hypothesized that Background and aims The changing soils is a never- trees can be a strong local factor intensifying, blocking ending process moderated by numerous biotic and abi- or modifying pedogenetic processes, leading to local otic factors. Among these factors, trees may play a changes in soil complexity (convergence, divergence, critical role in forested landscapes by having a large or polygenesis). These changes are hypothetically con- imprint on soil texture and chemical properties. During trolled by regionally predominating soil formation their evolution, soils can follow convergent or divergent processes. development pathways, leading to a decrease or an Methods To test the main hypothesis, we described the pedomorphological features of soils under tree stumps of fir, beech and hemlock in three soil regions: Haplic Highlights Cambisols (Turbacz Reserve, Poland), Entic Podzols 1) The architecture of tree root systems controls soil physical and (Žofínský Prales Reserve, Czech Republic) and Albic chemical properties. Podzols (Upper Peninsula, Michigan, USA). Soil pro- 2) The predominating pedogenetic process significantly modifies files under the stumps, as well as control profiles on sites the effect of trees on soil. 3) Trees are a factor in polygenesis in Haplic Cambisols at the currently not occupied by trees, were analyzed in the pedon scale.
    [Show full text]
  • BIOGEOMORPHOLOGY of COASTAL STRUCTURES: Understanding Interactions Between Hard Substrata and Colonising Organisms As a Tool for Ecological Enhancement
    BIOGEOMORPHOLOGY OF COASTAL STRUCTURES: Understanding interactions between hard substrata and colonising organisms as a tool for ecological enhancement Submitted by Martin Andrew Coombes B.Sc. M.Sc. , to the University of Exeter as a thesis for the degree of Doctor of Philosophy in Geography In February 2011 This thesis is available for Library use on the understanding that it is copyright material and that no quotation from the thesis may be published without proper acknowledgement. I certify that all material in this thesis which is not my own work has been identified and that no material has previously been submitted and approved for the award of a degree by this or any other University. Signature: M. A. Coombes --- BLANK --- 2 ABSTRACT Urbanisation is increasingly recognised as a major ecological pressure at the coast. By 2035, the Department for Environment, Food and Rural Affairs will have to spend £1 billion each year on flood defence and erosion control infrastructure if current levels of protection are to be sustained in England and Wales; this represents a substantial commitment to building new hard structures. Ecological research has shown that structures like seawalls, breakwaters, and harbour and port infrastructure are poor surrogates for undisturbed rocky shores. This, alongside substantial international policy drivers, has led to an interest in the ways in which structures might be enhanced for ecological gain. Virtually all of this research has been undertaken by ecologists, while the contribution of geomorphological understanding has not been fully recognised. This thesis presents an assessment of the two-way interactions between colonising organisms and the materials used to build hard coastal structures under a framework of biogeomorphology.
    [Show full text]
  • Biodiversity Effects on Dune and Salt Marsh Biogeomorphology – a Trait-Based Approach
    Biodiversity effects on dune and salt marsh biogeomorphology – a trait-based approach Von der Fakultät für Mathematik und Naturwissenschaften der Carl von Ossietzky Universität Oldenburg zur Erlangung des Grades und Titels eines Doktors der Naturwissenschaften (Dr. rer. nat.) angenommene Dissertation von von Julia Bass geboren am 03. Februar 1989 in Bremen Oldenburg 2019 Gutachter Prof. Dr. Michael Kleyer Zweitgutachter Prof. Dr. Gerhard Zotz Tag der Disputation 13.11.2019 Contents Summary .........................................................................................................................1 Zusammenfassung ..........................................................................................................4 1 Introduction ............................................................................................................8 1.1 The concept of biogeomorphology ..................................................................8 1.2 The trait-based perspective in ecology ..........................................................13 1.3 Combining the biogeomorphic succession model and the functional trait approach .........................................................................................................18 1.4 Barrier islands and Halligen in the Wadden Sea ...........................................25 1.5 Research objectives .......................................................................................35 2 Morphological plasticity of dune pioneer plants in response to timing and magnitude
    [Show full text]
  • Dynamic Interactions Between Biodiversity and Geomorphology from Hurgada to Quseir - Red Sea Coast Using RS and GIS
    Geophysical Research Abstracts Vol. 21, EGU2019-940-1, 2019 EGU General Assembly 2019 © Author(s) 2018. CC Attribution 4.0 license. Dynamic interactions between biodiversity and Geomorphology from Hurgada to Quseir - Red Sea Coast Using RS and GIS Enas Farghaly (1), Seham Hashem (2), Samia Moheb (3), and Ahmed Khalafallah (4) (1) Geography Department ,Faculty of Women for Art, Science and Education - Ain Shams University,cairo, Egypt ([email protected]), (2) Geography Department ,Faculty of Women for Art, Science and Education - Ain Shams University, cairo, Egypt([email protected]), (3) Botany Department ,Faculty of Women for Art, Science and Education - Ain Shams University, cairo, Egypt ([email protected]), (4) Botany Department ,Faculty of Women for Art, Science and Education - Ain Shams University, cairo, Egypt ([email protected]) Study area extends from Hurghada to Quseir, between latitude 33 ◦20’ 00 "and33 ◦" 50 east, between the widths 26 ◦00’ 00 "and 27 ◦ 30’ 00"north . It was covered by the eastern desert and overlooking Red Sea coast. Subject importance is a study of geomorphological diversity units and different effects of biodiversity on erosion and mu- tual impacts of the biological environment and geomorphology in addition to touristic human activities and their impact on the biological and geomorphological environment. The study deals with Biogeomorphology of Red Sea Coast between Hurgada and Quseir Using RS and GIS,and study of interactions and feedbacks between living and nonliving parts of the landscape. Straddling the disci- plines of geomorphology and ecology, biogeomorphology is inherently interdisciplinary. Microorganisms, plants, and animals contribute to the development of landforms and landscapes in many different ways, both actively and passively, through processes of bioconstruction, bioweathering, bioerosion, and bioprotection.
    [Show full text]
  • Biogeomorphology of an Upper Chesapeake Bay River-Mouth Tidal Freshwater Marsh
    WETlANDS. Vol. 20. No.3. September 2000. pp. 520-537 C 2000. The Society of Wetland Scientists BIOGEOMORPHOLOGY OF AN UPPER CHESAPEAKE BAY RIVER-MOUTH TIDAL FRESHWATER MARSH Gregory B. Pasternackl, William B. Hilgartner2, and Grace S. Brush2 I Department of l..and. Air. and Water Resources University of California Davis. California, USA 95616-8628 E-mail: [email protected] 2 Department of Geography and Environmental Engineering The Johns Hopkins University Baltimore. Maryland. USA 21218 Abstract: Field mapping and monitoring of vegetation. sedimentation patterns. substrate characteristics, and geomorphology in the Bush River tributary to upper Chesapeake Bay has been conducted since 1991 to ascertain the process-morphology dynamics in a tidal freshwater marsh. Nine plant associations from 5 distinct marsh habitats were identified by clustering species abundance measurements from 115 quadrats throughout an 84-hectare area. High spatial variability in physical habitat conditions such as summer-average sediment deposition. summer-average organic content, and surface-sediment grain size distributions were explainable using combinations of independent variables, including elevation, plant distributions, and dis­ tances to the tidal inlet and an adjacent stream. Sedimentation and vegetation were both observed to show a predictable response to disturbance by animal activity. Key Words: tidal freshwater wetlands; plant species distributions. geomorphology, hydrology. sedimenta­ tion, Chesapeake Bay INTRODUCTION Parker and Leck 1985, Leck and Simpson 1987, Leek and Simpson 1994). Tidal freshwater marshes exist where watershed-de­ In contrast to plant community structure, little is rived sediment accumulates at the upstream boundary known about processes contributing to formation and of an estuary (Orson et ale 1992, Pasternack and Brush evolution of tidal freshwater marshes.
    [Show full text]
  • The Biogeomorphological Life Cycle of Poplars During the Fluvial Biogeomorphological Succession: a Special Focus on Populus Nigra L
    Open Archive TOULOUSE Archive Ouverte ( OATAO ) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited version published in : http://oatao.univ- toulouse.fr/ Eprints ID : 11091 To link to this article : doi:10.1002/esp.3515 URL : http://dx.doi.org/10.1002/esp.3515 To cite this version : Corenblit, Dov and Steiger, Johannes and González, Eduardo and Gurnell, Angela M. and Charrier, Gaspard and Darrozes, José and Dousseau, Julien and Julien, Frédéric and Lambs, Luc and Larrue, Sébastien and Roussel, Erwan and Vautier, Franck and Voldoire, Olivier The biogeomorphological life cycle of poplars during the fluvial biogeomorphological succession: a special focus on Populus nigra L. (2014) Earth Surface Processes and Landforms . ISSN 0197- 9337 Any correspondance concerning this service should be sent to the repository administrator: [email protected] DOI: 10.1002/esp.3515 The biogeomorphological life cycle of poplars during the fluvial biogeomorphological succession: a special focus on Populus nigra L. D. Corenblit, 1,2 * J. Steiger, 1,2 E. González, 3 A. M. Gurnell, 4 G. Charrier, 1,2 J. Darrozes, 5 J. Dousseau, 1,2 F. Julien, 6 L. Lambs, 6 S. Larrue, 1,2 E. Roussel, 7 F. Vautier 7 and O. Voldoire 1,2 1 Clermont Université, Maison des Sciences de l ’Homme, 4 rue Ledru, 63057, Clermont-Ferrand Cedex 1, France 2 CNRS, UMR 6042, GEOLAB – Laboratoire de géographie physique et environnementale, 63057, Clermont-Ferrand,
    [Show full text]
  • Geomorphic Controls on Biological Soil Crust Distribution: a Conceptual Model from the Mojave Desert (USA)
    Geomorphology 195 (2013) 99–109 Contents lists available at SciVerse ScienceDirect Geomorphology journal homepage: www.elsevier.com/locate/geomorph Geomorphic controls on biological soil crust distribution: A conceptual model from the Mojave Desert (USA) Amanda J. Williams a,b,⁎, Brenda J. Buck a, Deborah A. Soukup a, Douglas J. Merkler c a Department of Geoscience, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4010, USA b School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV, 89154-4004, USA c USDA-NRCS, 5820 South Pecos Rd., Bldg. A, Suite 400, Las Vegas, NV 89120, USA article info abstract Article history: Biological soil crusts (BSCs) are bio-sedimentary features that play critical geomorphic and ecological roles in Received 30 November 2012 arid environments. Extensive mapping, surface characterization, GIS overlays, and statistical analyses ex- Received in revised form 17 April 2013 plored relationships among BSCs, geomorphology, and soil characteristics in a portion of the Mojave Desert Accepted 18 April 2013 (USA). These results were used to develop a conceptual model that explains the spatial distribution of Available online 1 May 2013 BSCs. In this model, geologic and geomorphic processes control the ratio of fine sand to rocks, which con- strains the development of three surface cover types and biogeomorphic feedbacks across intermontane Keywords: fi Biological soil crust basins. (1) Cyanobacteria crusts grow where abundant ne sand and negligible rocks form saltating sand Soil-geomorphology sheets. Cyanobacteria facilitate moderate sand sheet activity that reduces growth potential of mosses and Pedogenesis lichens. (2) Extensive tall moss–lichen pinnacled crusts are favored on early to late Holocene surfaces com- Vesicular (Av) horizon posed of mixed rock and fine sand.
    [Show full text]
  • High Temperature So2 Chemisorption on Model Systems
    HIGH TEMPERATURE SO2 CHEMISORPTION ON MODEL SYSTEMS IMPLICATIONS FOR IN-PLUME PROCESSES PAUL MARTIN AYRIS SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY ENVIRONMENT DEPARTMENT, UNIVERSITY OF YORK SUBMITTED MAY, 2010 For my family. And for the wizard. Because of the wonderful things he does. ABSTRACT ABSTRACT Volcanic volatile species are scavenged by silicate ash during transition through eruption plumes. Scavenging may form S, F and Cl salts and acids on ash surfaces, though the mechanisms and controlling variables remain poorly understood. A limited mechanistic understanding impedes estimation of volcanic volatile budgets and may also prevent assessment of environmental impacts resulting from volatile scavenging. Limited assessment of these impacts may have implications for local communities affected by ashfall onto vegetation, soils and into water bodies, and ashfall from very large eruptions may have global impacts. Through experimental techniques, this study examined SO2 scavenging mechanisms on silicate ash surfaces. SO2 uptake experiments were conducted on model Ca-aluminosilicate xerogels and on glasses with chemical compositions of common ash types. The materials were characterised using bulk and surface-sensitive techniques to gain insight into the mechanisms of scavenging and the reaction products formed. SO2 chemisorption onto glass surfaces may occur on non- bridging oxygens of network modifying cations (Ca), forming sulphate salts (CaSO4) and initiates diffusion mechanisms which resupplies the surface with Ca. The chemisorption-diffusion mechanism may be most efficient at high temperature, and may become significant after a few minutes of SO2 exposure. The proposed scavenging mechanism may occur during the eruption within the high temperature volcanic conduit and in the core of the plume.
    [Show full text]
  • Vegetation and Geomorphic Connectivity in Mountain Fluvial Systems
    water Review Vegetation and Geomorphic Connectivity in Mountain Fluvial Systems Piotr Cienciala Department of Geography and GIS, University of Illinois at Urbana–Champaign, 1301 W Green Street, Urbana, IL 61801, USA; [email protected] Abstract: Rivers are complex biophysical systems, constantly adjusting to a suite of changing gov- erning conditions, including vegetation cover within their basins. This review seeks to: (i) highlight the crucial role that vegetation’s influence on the efficiency of clastic material fluxes (geomorphic connectivity) plays in defining mountain fluvial landscape’s behavior; and (ii) identify key chal- lenges which hinder progress in the understanding of this subject. To this end, a selective literature review is carried out to illustrate the pervasiveness of the plants’ effects on geomorphic fluxes within channel networks (longitudinal connectivity), as well as between channels and the broader land- scape (lateral connectivity). Taken together, the reviewed evidence lends support to the thesis that vegetation-connectivity linkages play a central role in regulating geomorphic behavior of mountain fluvial systems. The manuscript is concluded by a brief discussion of the need for the integration of mechanistic research into the local feedbacks between plants and sediment fluxes with basin-scale research that considers emergent phenomena. Keywords: fluvial system; geomorphic connectivity; riparian vegetation; biogeomorphology; moun- tain rivers Citation: Cienciala, P. Vegetation and Geomorphic Connectivity in 1. Introduction Mountain Fluvial Systems. Water Rivers are complex and dynamic systems, constantly adjusting to a suite of chang- 2021, 13, 593. https://doi.org/ ing governing conditions, which include the characteristics of the biophysical landscape 10.3390/w13050593 within which they are embedded.
    [Show full text]
  • Functional Consequences of Short and Long Term Vegetation
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Apollo 1 Considering river structure and stability in the light of evolution: feedbacks 2 between riparian vegetation and hydrogeomorphology 3 4 5 Dov Corenblit1,2*, Neil S. Davies3, Johannes Steiger1,2, Martin R. Gibling4 and Gudrun 6 Bornette5 7 8 1 Clermont Université, UBP, 4 rue Ledru, 63057 Clermont-Ferrand Cedex 1, France. 9 2 CNRS, UMR 6042, GEOLAB – Laboratoire de géographie physique et 10 environnementale, 63057 Clermont-Ferrand, France. 11 3 Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge 12 CB2 3EQ, United Kingdom. 13 4.Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, 14 Canada. 15 5 CNRS, UMR 5023, LEHNA – Laboratoire d'Ecologie des Hydrosystèmes Naturels et 16 Anthropisés, Université Lyon 1, Villeurbanne, F-69622, Lyon, France. 17 18 Corresponding author*: [email protected] 19 Ph. +33 (0)4 73 34 68 43 20 Fx. +33 (0)4 73 34 68 24 21 22 1 23 Abstract 24 25 River ecological functioning can be conceptualized according to a four-dimensional 26 framework, based on the responses of aquatic and riparian communities to 27 hydrogeomorphic constraints along the longitudinal, transverse, vertical and temporal 28 dimensions of rivers. Contemporary riparian vegetation responds to river dynamics at 29 ecological timescales, but riparian vegetation, in one form or another, has existed on 30 Earth since at least the Middle Ordovician (c. 450 Ma) and has been a significant 31 controlling factor on river geomorphology since the late Silurian (c.
    [Show full text]
  • Geomorphic and Ecologic Patterns After Fire Within
    GEOMORPHIC AND ECOLOGIC PATTERNS AFTER FIRE WITHIN THE ALPINE TREELINE ECOTONE, GLACIER NATIONAL PARK, MONTANA DISSERTATION Presented to the Graduate Council of Texas State University-San Marcos in Partial Fulfillment of the Requirments for the Degree Doctor of PHILOSOPHY by Melanie Brooke Stine, M.S. San Marcos, Texas May 2013 GEOMORPHIC AND ECOLOGIC PATTERNS AFTER FIRE WITHIN THE ALPINE TREELINE ECOTONE, GLACIER NATIONAL PARK, MONTANA Committee Members Approved: David R. Butler, Chair George P. Malanson Richard W. Dixon Philip W. Suckling Approved: J. Michael Willoughby Dean of the Graduate College COPYRIGHT by Melanie Brooke Stine 2013 FAIR USE AND AUTHOR’S PERMISSION STATEMENT Fair Use This work is protected by the Copyright Laws of the United States (Public Law 94-553, section 107). Consistent with fair use as defined in the Copyright Laws, brief quotations from this material are allowed with proper acknowledgment. Use of this material for financial gain without the author’s express written permission is not allowed. Duplication Permission As the copyright holder of this work I, Melanie Stine, authorize duplication of this work, in whole or in part, for educational or scholarly purposes only. DEDICATION I dedicate this dissertation to my parents, Donald and Sherry Stine. ACKNOWLEDGEMENTS First off, I acknowledge and thank my committee. Without their guidance and patience, this dissertation would not have been possible. Thanks to Dr. Suckling for stepping in and being willing to serve on my committee. Thanks to Dr. Dixon for answering my many questions and for his patient guidance. Thanks to Dr. Malanson for his input, guidance, and visiting my field sites.
    [Show full text]