THE AUSTRALIAN HANDBOOK for the IDENTIFICATION of FRUIT FLIES Version 1.0

Total Page:16

File Type:pdf, Size:1020Kb

THE AUSTRALIAN HANDBOOK for the IDENTIFICATION of FRUIT FLIES Version 1.0 THE AUSTRALIAN HANDBOOK FOR THE IDENTIFICATION OF FRUIT FLIES Version 1.0 Species: Bactrocera bryoniae Species: Bactrocera frauenfeldi Species: Bactrocera kandiensis Species: Bactrocera tau Species: Bactrocera trilineola Species: Bactrocera umbrosa Species: Bactrocera xanthodes Species: Bactrocera newmani For more information on Plant Health Australia Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 Email: [email protected] Visit our website: www.planthealthaustralia.com.au An electronic copy of this plan is available from the website listed above. © Plant Health Australia 2011 This work is copyright except where attachments are provided by other contributors and referenced, in which case copyright belongs to the relevant contributor as indicated throughout this document. Apart from any use as permitted under the Copyright Act 1968, no part may be reproduced by any process without prior permission from Plant Health Australia. Requests and enquiries concerning reproduction and rights should be addressed to: Communications Manager Plant Health Australia 1/1 Phipps Close DEAKIN ACT 2600 ISBN 978-0-9872309-0-4 In referencing this document, the preferred citation is: Plant Health Australia (2011). The Australian Handbook for the Identification of Fruit Flies. Version 1.0. Plant Health Australia. Canberra, ACT. Disclaimer: The material contained in this publication is produced for general information only. It is not intended as professional advice on any particular matter. No person should act or fail to act on the basis of any material contained in this publication without first obtaining specific, independent professional advice. Plant Health Australia and all persons acting for Plant Health Australia in preparing this publication, expressly disclaim all and any liability to any persons in respect of anything done by any such person in reliance, whether in whole or in part, on this publication. The views expressed in this publication are not necessarily those of Plant Health Australia. 1 Contributors This document has been made possible through consultation with and input from the following fruit fly entomologists, scientists, academics and diagnosticians: Organisation Contributor Australian Government, Department of Agriculture, Jacek Plazinski, Kerry Huxham, Anthony Rice, Glenn Fisheries and Forestry Bellis, Bart Rossel, James Walker, Sally Cowan, David Daniels CRC for National Plant Biosecurity Gary Kong CSIRO David Yeates Department of Agriculture and Food, Western Australia Andras Szito, Darryl Hardie Department of Employment, Economic Development Jane Royer, Suzy Perry, Shaun Winterton, Harry Fay and Innovation, Queensland Department of Primary Industries, Parks, Water and Lionel Hill Environment, Tasmania Department of Primary Industries, Victoria Jane Moran, Mali Malipatil, Linda Semeraro, Mark Blacket Department of Resources, Northern Territory Stuart Smith, Deanna Chin, Stephen West, Brian Thistleton Griffith University Dick Drew Industry and Investment New South Wales Peter Gillespie, Bernie Dominiak, Deborah Hailstones Margaret Williams Plant Health Services Margaret Williams Primary Industries and Resources, South Australia Cathy Smallridge, John Hannay Queensland University of Technology Tony Clarke South Australian Museum Mark Adams Private consultant David Hancock 1 2 Foreword The accurate identification of fruit flies is a key component of Australia’s biosecurity system that underpins the domestic movement of fruit and vegetables, maintains international market access for Australian producers and protects Australia’s borders from exotic pest incursion. In Australia’s tropics, routine surveillance of coastal and island communities results in a requirement to process and identify thousands of adult flies per hour. In some parts of southern Australia fruit fly sampling numbers are smaller, however diagnosticians still have to be skilled and equipped to identify a single fly of economic importance amongst a large range of native fruit flies that have no impact on commercial fruits and vegetables. For the first time a document has been produced that integrates all the diagnostic techniques currently used in Australia for the identification of fruit flies. A new set of descriptions and photographs have been prepared to assist the identification of flies by adult morphology. In addition, current protocols used for the identification of fruit flies using molecular biology techniques are presented. This document has been written by Australia’s fruit fly diagnosticians for diagnosticians and it is my hope that the dialogue, sharing of information and experience, and constructive discourse that has resulted in this new publication will continue to grow. Together the combined expertise and knowledge of Australia’s fruit fly researchers, academics, surveillance officers, diagnosticians and laboratory scientists make up a formidable national resource, which when networked and coupled with extensive fruit fly reference collections, provides a world-class national capability. This valuable document provides a useful benchmark against which future updates and revisions can be developed and training programs can be delivered. I would like to thank all the entomologists and scientists who have brought this document together and have the greatest pleasure in endorsing its adoption and use by practitioners and jurisdictions in Australia. Professor Dick Drew International Centre for Management of Pest Fruit Flies Griffith University 2 3 Preface The Australian Handbook for the Identification of Fruit Flies (v1.0) • Was written by diagnosticians for diagnosticians; • Collates current and existing practices and knowledge into a single document; • Pools experience from Australia’s network of fruit fly experts; • Establishes a resource that can support and develop the confidence and expertise of all users; • Provides a mechanism to possibly identify future information and research needs; and, • Considers the potential of both morphological and molecular techniques. The Handbook has been an important part of building a network of fruit fly diagnosticians across Australia and it is hoped that both the network and this document continue to grow and develop in the future. We also welcome feedback from fruit fly experts around the world. The Handbook is a compilation of diagnostic techniques for some 47 fruit fly species, most of which are exotic to Australia. The Handbook is intended to facilitate rapid diagnosis of fruit fly species and be a comprehensive guide for Australian diagnosticians and field officers. A copy of the Handbook can be downloaded by following the link below. http://www.phau.com.au/go/phau/strategies-and-policy This is the first version of The Australian Handbook for the Identification of Fruit Flies. It is provided freely as a reference resource with an expectation that it is appropriately acknowledged when it is used. As a living document it is designed to be continuously updated as more information becomes available through Australia’s skilled network of fruit fly diagnosticians. For further information please contact the Office of the Chief Plant Protection Officer (OCPPO), Department of Agriculture, Fisheries and Forestry. Email: [email protected]. Funding for this important initiative was provided by the Australian Government. The Office of the Chief Plant Protection Officer would like to recognise the huge contribution made by researchers, academics, surveillance officers, diagnosticians and laboratory scientists who have collectively brought this valuable document into being. Thanks are also extended to Plant Health Australia for facilitating and coordinating the preparation of the Handbook. Lois Ransom Chief Plant Protection Officer December 2011 3 Contents 1 Contributors ...................................................................................................................................... 1 2 Foreword ........................................................................................................................................... 2 3 Preface ............................................................................................................................................... 3 4 Introduction....................................................................................................................................... 6 4.1 Background ............................................................................................................................... 6 4.2 Coverage of this diagnostic handbook ..................................................................................... 7 5 Detection ........................................................................................................................................... 9 5.1 Plant products affected ............................................................................................................. 9 5.2 Signs and symptoms ................................................................................................................ 9 5.3 Development stages ................................................................................................................. 9 5.4 Methods for detection ............................................................................................................. 10 5.4.1 Trap types ......................................................................................................................... 10 5.4.2 Attractants ........................................................................................................................
Recommended publications
  • Fijian Fruit Fly
    Fact sheet Fijian fruit fly What is the Fijian fruit fly? Fijian fruit fly (Bactrocera passiflorae) is a small fly that attacks a range of fruit including papaya. Like all fruit flies, it can cause a significant amount of damage to fruit and make fruit unmarketable. This pest has the potential to have a significant impact on the Australian papaya industry. What does it look like? The Fijian fruit fly has a black coloured body with a black abdomen and clear wings. It is approximately 6-8mm long. Accurate diagnosis requires expert 1 mm examination of the fly under a microscope. Museum Victoria, PaDIL Ken Walker Dorsal view of adult Fijian fruit fly What can it be confused with? At first glance most fruit flies are very similar. The Fijian fruit fly can be differentiated from other fruit flies by its predominantly black colour. If you see any unusual fruit flies consult an agronomist or contact the Exotic Plant Pest Hotline on 1800 084 881. What should I look for? Adult Fijian fruit flies are visible to the naked eye so you should keep a look out for small black coloured fruit flies, especially around fallen or damaged fruit. Traps placed in your orchard may also help you look for fruit flies. You should also look for distorted, dropped or rotten fruit as these symptoms can be Ken Walker Museum Victoria, PaDIL Ken Walker caused by fruit flies. Report any unusual fruit flies in Lateral view of Fijian fruit fly. Note: fly is predominantly black your orchard to the Exotic Plant Pest Hotline on in colour 1800 084 881.
    [Show full text]
  • Lamp-Revisi Permentan 15-New 10 JUNI 2012 2 Final
    LAMPIRAN PERATURAN MENTERI PERTANIAN NOMOR : 42/Permentan/OT.140/6/2012 TANGGAL : 13 Juni 2012 JENIS BUAH SEGAR DAN SAYURAN BUAH SEGAR, LALAT BUAH DAERAH SEBAR DAN TINDAKAN PERLAKUAN NO. BUAH SEGAR DAN SAYURAN LALAT BUAH DAERAH SEBAR PERLAKUAN BUAH SEGAR 1 Alpokat Anastrepha fraterculus (Wied).; America : Argentina, Bolivia, Brazil, 1. Pendinginan (Cold (Avocado ), (=Acrotoxa fraterculus =Anastrepha Colombia, Costa Rica, Ecuador, Treatment) : Persea braziliensis =Anthomyia frutalis Guatemala, Guyana, Mexico, 2 – 3o C/16 – 20 hari; americana =Dacus fraterculus =Tephritis mellea Panama, Paraguay, Peru, Suriname, atau =Trypeta fraterculus =Trypeta Trinidad-Tobago, USA, Uruguay, 2. Fumigasi (CH 3Br) : unicolor =Anastrepha peruviana Venezuela. 4 lb/1000 ft 3/21 oC/4 =A.soluta) ; Diptera: Tephritidae; jam; atau South American fruitfly, West 3. Vapour Heat Indian fruitfly Treatment (VHT) : 44oC/360 menit; atau Anastrepha ludens (Loew); America : Belize, Costa Rica, El 4. Iradiasi : (=Acrotoxa ludens =Trypeta ludens) ; Salvador, Guatemala, Honduras, 150 gray Diptera: Tephritidae; Mexican Mexico, Nicaragua, USA. fruitfly Anastrepha serpentina Wied.; America : Argentina, Brazil, (=Dacus serpentinus =Leptoxys Colombia, Costa Rica, Dominica, serpentina =Acrotoxa serpentinus Equador, Guyana France, =Trypeta serpentina =Urophora Guatemala, Guyana, Mexico, Antilles vittithorax) ; Diptera: Tephritidae; Netherlands, Panama, Peru, sapodilla fruitfly, sapote fruitfly, Suriname, Trinidad-Tobago, dark fruitfly, black fruitfly, USA,Venezuela 1 orange fruitfly
    [Show full text]
  • Flies) Benjamin Kongyeli Badii
    Chapter Phylogeny and Functional Morphology of Diptera (Flies) Benjamin Kongyeli Badii Abstract The order Diptera includes all true flies. Members of this order are the most ecologically diverse and probably have a greater economic impact on humans than any other group of insects. The application of explicit methods of phylogenetic and morphological analysis has revealed weaknesses in the traditional classification of dipteran insects, but little progress has been made to achieve a robust, stable clas- sification that reflects evolutionary relationships and morphological adaptations for a more precise understanding of their developmental biology and behavioral ecol- ogy. The current status of Diptera phylogenetics is reviewed in this chapter. Also, key aspects of the morphology of the different life stages of the flies, particularly characters useful for taxonomic purposes and for an understanding of the group’s biology have been described with an emphasis on newer contributions and progress in understanding this important group of insects. Keywords: Tephritoidea, Diptera flies, Nematocera, Brachycera metamorphosis, larva 1. Introduction Phylogeny refers to the evolutionary history of a taxonomic group of organisms. Phylogeny is essential in understanding the biodiversity, genetics, evolution, and ecology among groups of organisms [1, 2]. Functional morphology involves the study of the relationships between the structure of an organism and the function of the various parts of an organism. The old adage “form follows function” is a guiding principle of functional morphology. It helps in understanding the ways in which body structures can be used to produce a wide variety of different behaviors, including moving, feeding, fighting, and reproducing. It thus, integrates concepts from physiology, evolution, anatomy and development, and synthesizes the diverse ways that biological and physical factors interact in the lives of organisms [3].
    [Show full text]
  • Rhagoletis Pomonella
    Agence Fédérale pour la Sécurité de la Chaîne Alimentaire DG Politique de Contrôle Direction Protection des Végétaux et Sécurité des Produits Végétaux Rhagoletis pomonella I. IDENTITÉ Synonymes: Spilographa pomonella, UE-catégorie: Organisme de quarantaine de Trypeta pomonella, Zonosema pomonella l’UE (Annexe II, partie A du Règlement (UE) Noms courants: Mouche de la pomme 2019/2072) ; Organisme de quarantaine (FR), Appelboorvlieg (NL), Apple Fruit Fly prioritaire (Règlement (UE) 2019/1702) AFF (EN) EPPO-code: RHAGPO Classement taxonomique: Ne pas confondre avec: Rhagoletis fausta, Insecta: Diptera: Tephritidae R. cerasi, R. cingulata II. DESCRIPTION DE L’ORGANISME ET SA RÉPARTITION GÉOGRAPHIQUE Rhagoletis pomonella est un organisme de quarantaine de l’Union Européenne (UE) identifié comme constituant une priorité absolue à cause de l'impact économique, environnemental et social qu’il est susceptible d’engendrer s’il est introduit sur le territoire de l'UE. R. pomonella est une mouche de la famille des Tephritidae (espèces non européennes). Cette famille contient de nombreuses espèces, parmi lesquelles certaines sont des organismes nuisibles importants. En particulier, le genre Rhagoletis contient 77 espèces qui sont répandues en Asie et Amérique. Lorsque la culture de pommier a été introduite en Amérique du Nord au milieu du 19ième siècle, R. pomonella s’est déplacée de sa plante-hôte naturelle Crataegus (aubépine) vers les fruits du pommier domestique, ce qui a permis la dissémination de cette mouche sur tout le continent nord- américain (Canada, Etats-Unis, Mexique). Actuellement, R. pomonella est le plus grave des ravageurs parmi les mouches des fruits en Amérique du Nord. Malgré le fait que 4,400 interceptions ont été généralement attribuées à des Tephritidae pendant la période 1995–2020, aucun foyer de R.
    [Show full text]
  • A Web-Based Expert System for Identification of Tephritid Fruit Flies in China Based on DNA Barcode Zhimei Li, Zhihong Li, Fuxiang Wang, Wei Lin, Jiajiao Wu
    TBIS: A Web-Based Expert System for Identification of Tephritid Fruit Flies in China Based on DNA Barcode Zhimei Li, Zhihong Li, Fuxiang Wang, Wei Lin, Jiajiao Wu To cite this version: Zhimei Li, Zhihong Li, Fuxiang Wang, Wei Lin, Jiajiao Wu. TBIS: A Web-Based Expert System for Identification of Tephritid Fruit Flies in China Based on DNA Barcode. 4th Conference onCom- puter and Computing Technologies in Agriculture (CCTA), Oct 2010, Nanchang, China. pp.563-571, 10.1007/978-3-642-18354-6_66. hal-01563456 HAL Id: hal-01563456 https://hal.inria.fr/hal-01563456 Submitted on 17 Jul 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution| 4.0 International License TBIS: A Web-Based Expert System for Identification of Tephritid Fruit Flies in China Based on DNA Barcode Zhimei Li 1, Zhihong Li 1,*, Fuxiang Wang 2, Wei Lin 3, Jiajiao Wu 4 1Department of Entomology, China Agricultural University, Beijing, P. R. China 2 National Agricultural Technology Extension Service Center, Beijing, P. R. China 3General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China, Beijing, P.
    [Show full text]
  • Table of Contents
    Table of Contents Table of Contents ............................................................................................................ 1 Authors, Reviewers, Draft Log ........................................................................................ 3 Introduction to Reference ................................................................................................ 5 Introduction to Stone Fruit ............................................................................................. 10 Arthropods ................................................................................................................... 16 Primary Pests of Stone Fruit (Full Pest Datasheet) ....................................................... 16 Adoxophyes orana ................................................................................................. 16 Bactrocera zonata .................................................................................................. 27 Enarmonia formosana ............................................................................................ 39 Epiphyas postvittana .............................................................................................. 47 Grapholita funebrana ............................................................................................. 62 Leucoptera malifoliella ........................................................................................... 72 Lobesia botrana ....................................................................................................
    [Show full text]
  • Fruit Flies in American Samoa, Niue, Tokelau, Tuvalu and Wallis and Futuna
    PEST ADVISORY LEAFLET NO. 39 Plant Protection Service Secretariat of the Pacific Community 2001 Fruit Flies in American Samoa, Niue, Tokelau, Tuvalu and Wallis and Futuna Six fruit fly species have been recorded from trapping and B. distincta, B. obscura and B. new species near host fruit surveys in American Samoa, Niue, Wallis and passiflorae, attack non-edible, wild or forest fruits and Futuna, Tuvalu and Tokelau (Table 1). These include three vegetables. economic species (Bactrocera kirki, B. xanthodes and B. passiflorae) and three non-economic species (B. Little information is available on the range of host plants distincta, B. obscura and B. new species near infested by fruit flies in the country and territories covered passiflorae). in this leaflet. Total number of economic and wild hosts cited in Table 1 are based on intensive host fruit surveying Fruit flies are economically important because they cause carried out since 1991 under the Regional Fruit Fly Project damage to fruits and vegetables that are of commercial in Cook Islands, Tonga, Samoa, Fiji Islands, and since 1997 value or are edible, and hinder international and domestic as part of the Oriental fruit fly eradication programme in trade of fruits and fleshy vegetables. They center their French Polynesia. Host records cited under species profiles activities on the host plant, which provide sites for adult for B. xanthodes, B. kirki and B. passiflorae provide an feeding, mating, egg laying, larval development and pupae indication of what the most common hosts may be in the development in the soil underneath the plant. The adult fe- countries and territories covered here.
    [Show full text]
  • Fijian Fruit Fly
    Fact sheet Exotic threats of tropical fruit: Fijian fruit fly What is it? The Fijian fruit fly (Bactrocera passiflorae) affects more than 55 crop species in Fiji, including avocado, cashew, cocoa, guava, kumquat, lime, lychee, mandarin, mango, papaya, pomelo and tropical almond. If this fruit fly species was to be introduced into Australia and become established, it could cause serious damage to our tropical The Fijian fruit fly (Bactrocera fruit industries. passiflorae). Image Ken Walker, Museum Victoria, What do I look for? Pest & Diseases Image Library Fruit flies are pest insects whose larvae (maggots) live in and feed (PaDIL), www.padil.gov.au. off the flesh of fruit and vegetables. Fruit should be inspected for any symptoms of infestation, such as puncture marks and any associated necrosis and decomposition of the fruit that appears as black or brown lesions. Suspect fruits should be cut open and checked for larvae. The Fijian fruit fly has four life stages: eggs, larvae (maggots), pupae, and the adult flies. The eggs are about 0.8 mm long and 0.2 mm wide, white to yellow-white in colour, and are laid under the skin of the fruit. The mature larvae are about 7.5 – 9.5 mm long and 1.5 – 2 mm wide. Pupae are barrel-shaped and are white to yellow- brown in colour. The adult flies are mostly black with some yellow markings (see picture). Bactrocera passiflorae is difficult to identify accurately. Suspect samples of the pest must be sent to a laboratory for identification. If you see any of these life stages of the Fijian fruit fly, you should keep samples for identification and report your findings immediately.
    [Show full text]
  • Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives
    insects Review Tephritid Fruit Fly Semiochemicals: Current Knowledge and Future Perspectives Francesca Scolari 1,* , Federica Valerio 2 , Giovanni Benelli 3 , Nikos T. Papadopoulos 4 and Lucie Vaníˇcková 5,* 1 Institute of Molecular Genetics IGM-CNR “Luigi Luca Cavalli-Sforza”, I-27100 Pavia, Italy 2 Department of Biology and Biotechnology, University of Pavia, I-27100 Pavia, Italy; [email protected] 3 Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124 Pisa, Italy; [email protected] 4 Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Fytokou st., N. Ionia, 38446 Volos, Greece; [email protected] 5 Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, CZ-613 00 Brno, Czech Republic * Correspondence: [email protected] (F.S.); [email protected] (L.V.); Tel.: +39-0382-986421 (F.S.); +420-732-852-528 (L.V.) Simple Summary: Tephritid fruit flies comprise pests of high agricultural relevance and species that have emerged as global invaders. Chemical signals play key roles in multiple steps of a fruit fly’s life. The production and detection of chemical cues are critical in many behavioural interactions of tephritids, such as finding mating partners and hosts for oviposition. The characterisation of the molecules involved in these behaviours sheds light on understanding the biology and ecology of fruit flies and in addition provides a solid base for developing novel species-specific pest control tools by exploiting and/or interfering with chemical perception. Here we provide a comprehensive Citation: Scolari, F.; Valerio, F.; overview of the extensive literature on different types of chemical cues emitted by tephritids, with Benelli, G.; Papadopoulos, N.T.; a focus on the most relevant fruit fly pest species.
    [Show full text]
  • Natural Enemies of True Fruit Flies 02/2004-01 PPQ Jeffrey N
    United States Department of Agriculture Natural Enemies of Marketing and Regulatory True Fruit Flies Programs Animal and Plant Health (Tephritidae) Inspection Service Plant Protection Jeffrey N. L. Stibick and Quarantine Psyttalia fletcheri (shown) is the only fruit fly parasitoid introduced into Hawaii capable of parasitizing the melon fly (Bactrocera cucurbitae) United States Department of Agriculture Animal and Plant Health Inspection Service Plant Protection and Quarantine 4700 River Road Riverdale, MD 20737 February, 2004 Telephone: (301) 734-4406 FAX: (301) 734-8192 e-mail: [email protected] Jeffrey N. L. Stibick Introduction Introduction Fruit flies in the family Tephritidae are high profile insects among commercial fruit and vegetable growers, marketing exporters, government regulatory agencies, and the scientific community. Locally, producers face huge losses without some management scheme to control fruit fly populations. At the national and international level, plant protection agencies strictly regulate the movement of potentially infested products. Consumers throughout the world demand high quality, blemish-free produce. Partly to satisfy these demands, the costs to local, state and national governments are quite high and increasing as world trade, and thus risk, increases. Thus, fruit flies impose a considerable resource tax on participants at every level, from producer to shipper to the importing state and, ultimately, to the consumer. (McPheron & Steck, 1996) Indeed, in the United States alone, the running costs per year to APHIS, Plant Protection and Quarantine (PPQ), (the federal Agency responsible) for maintenance of trapping systems, laboratories, and identification are in excess of US$27 million per year and increasing. This figure only accounts for a fraction of total costs throughout the country, as State, County and local governments put in their share as well as the local industry affected.
    [Show full text]
  • Pest Categorisation of Liriomyza Bryoniae
    SCIENTIFIC OPINION ADOPTED: 30 January 2020 doi: 10.2903/j.efsa.2020.6038 Pest categorisation of Liriomyza bryoniae EFSA Panel on Plant Health (PLH), Claude Bragard, Katharina Dehnen-Schmutz, Francesco Di Serio, Paolo Gonthier, Marie-Agnes Jacques, Josep Anton Jaques Miret, Annemarie Fejer Justesen, Christer Sven Magnusson, Panagiotis Milonas, Juan A Navas-Cortes, Stephen Parnell, Roel Potting, Philippe Lucien Reignault, Hans-Hermann Thulke, Wopke Van der Werf, Antonio Vicent Civera, Jonathan Yuen, Lucia Zappala, Ewelina Czwienczek, Franz Streissl and Alan MacLeod Abstract The EFSA Panel on Plant Health performed a pest categorisation of Liriomyza bryoniae (Diptera: Agromyzidae) for the EU. L. bryoniae (the tomato leaf miner; EPPO code: LIRIBO) is a polyphagous Palaearctic species which probably originates from southern Europe, where it occurs commonly outdoors and has now spread to many parts of central and northern Europe, where it is only found in greenhouses. The species is also reported in North Africa and in several countries in Asia. L. bryoniae can have multiple overlapping generations per year. Eggs are inserted in the leaves of host plants. Three larval instars feed internally within leaves and stems of field vegetables. Pupation generally takes place in the soil and very occasionally on the upper or lower surfaces of the leaves. L. bryoniae is regulated in the EU by Commission Implementing Regulation (EU) 2019/2072 (Annex III) in specific protected zones only (the Republic of Ireland and Northern Ireland in the United Kingdom). However, L. bryoniae is not specifically mentioned in any of the annexes of Commission Implementing Regulation 2019/2072 concerning controls regarding certain protected zones.
    [Show full text]
  • Mango Fruiting Period
    ,£; c: 0 E I ~ ""iii'" E'" '0 100 0 c: 50 i 0.- - Q) c:- c:- ~ c: ~ 1il in in in • ::; ::> ..., ::J .0 1i .0 -" '" '"2 ~ ..., " g> E g E E " .0 « ., ~ ,'f i 0 1) ~ (J) z 0 month Figure 1. Host Availability of Fruit Flies at Dobuilevu Research Station, Ra. 1000 900 800 ,£; c: 700 0 E :;; 600 c. '"c. B,x 500 jg -,l,-B,d $ 'li! 400 E '0 300 0 c: 200 100 0 ,r:; ., c: ~ in in in in ~ ~ '" 1i .0 .0 .0 ::J ::J ~ ::;'" ..., ..., is, c: ::; ~ " " ::l E ..., « ., '" u.ii i., 8 1) ~ (J) z ~ month Figure 2. Host Availability of Fruit Flies at Legalega Research Station, Nadi. 107 1400 breadfruit 1200 mango Barringtonia edulis ~ 1000 E as Syzygium a. 800 ~B.p Q. ,!l; Pometia -~B.x ~ 600 -6--Bd E 0 11 '"c: 400 200 0 .c /!> /!> u iO' c: 2?:- 1n L.~., Iii Iii K :::;: '"::> ..,:J :J 1i .a .Cl .Cl (ij « .., CD 0 E E '"c" ~'" :::;: ti .., .i! 0 2l '" u. i ~ (I) '" &l z 0 month Figure 3. Host Availability of Fruit Flies at Nabua, Suva. 1200 Syzygium I 1000 mango I E0 E 800 "a. ~B.p '"a. ~ 600 ..~.iiiI-- B.x ., ........... B.d <ii'" E a 400 '"c: 200 0 ... j::::::.. -::t:== .. • .~.~ . 2?:- 1n Iii •Iii ~ iO' c :J •:J .a .a ~ ~ ::;; '" .., 1i ~ :J :J .., 0> E :::;: ~ " :J ~ E E ..,!ii '" « 0 > u.-2 a" '"0 ~ z 0 f/)" month Figure 4. Host Availability of Fruit Flies at Naduruloulou Research Station, NauaorL 108 350 mango I mango 300 guava I Syzygium Pometia 250 breadfruit ~ E ¥ 200 a.Cl.
    [Show full text]