Asia Pacific Catastrophe Reinsurance an Executive Summary Key Contacts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Toward the Establishment of a Disaster Conscious Society
Special Feature Consecutive Disasters --Toward the Establishment of a Disaster Conscious Society-- In 2018, many disasters occurred consecutively in various parts of Japan, including earthquakes, heavy rains, and typhoons. In particular, the earthquake that hit the northern part of Osaka Prefecture on June 18, the Heavy Rain Event of July 2018 centered on West Japan starting June 28, Typhoons Jebi (1821) and Trami (1824), and the earthquake that stroke the eastern Iburi region, Hokkaido Prefecture on September 6 caused damage to a wide area throughout Japan. The damage from the disaster was further extended due to other disaster that occurred subsequently in the same areas. The consecutive occurrence of major disasters highlighted the importance of disaster prevention, disaster mitigation, and building national resilience, which will lead to preparing for natural disasters and protecting people’s lives and assets. In order to continue to maintain and improve Japan’s DRR measures into the future, it is necessary to build a "disaster conscious society" where each member of society has an awareness and a sense of responsibility for protecting their own life. The “Special Feature” of the Reiwa Era’s first White Paper on Disaster Management covers major disasters that occurred during the last year of the Heisei era. Chapter 1, Section 1 gives an overview of those that caused especially extensive damage among a series of major disasters that occurred in 2018, while also looking back at response measures taken by the government. Chapter 1, Section 2 and Chapter 2 discuss the outline of disaster prevention and mitigation measures and national resilience initiatives that the government as a whole will promote over the next years based on the lessons learned from the major disasters in 2018. -
East Asia and Pacific
28 EAST ASIA AND PACIFIC 5 COUNTRIES WITH MOST NEW DISPLACEMENT (conflict, violence and disasters) Philippines 3,990,000 China 3,762,000 Indonesia 857,500 Conflict 236,000 Disasters 9,332,000 Myanmar 340,000 34.2% of the global total Japan 146,000 As in previous years, the East Asia and Pacific region There were 301,000 people living in displacement as accounted for most of the internal displacement asso- a result of conflict in the Philippines as of the end of ciated with disasters recorded worldwide in 2018 the 2018 They include around 65,000 in Marawi who Typhoons, monsoon rains and floods, earthquakes, have been unable to return to their homes more than tsunamis and volcanic eruptions triggered 9 3 million a year after the country’s military retook the city from new displacements From highly exposed countries such affiliates of ISIL, because of the extent of the damage as the Philippines, China, Indonesia and Japan, to small and presence of unexploded ordnance (see Philippines island states and territories such as Guam, Northern spotlight, p 32) Mariana Islands and Vanuatu, the impacts varied signifi- cantly across the vast region Almost 3 8 million new displacements associated with disasters were recorded in China, particularly in south- The Philippines alone recorded 3 8 million new displace- eastern provinces that were hit by typhoons Despite ments associated with disasters, more than any other the fact that some of the storms were severe, including country worldwide Pre-emptive evacuations organised the category five typhoon Maria, -
Appendix (PDF:4.3MB)
APPENDIX TABLE OF CONTENTS: APPENDIX 1. Overview of Japan’s National Land Fig. A-1 Worldwide Hypocenter Distribution (for Magnitude 6 and Higher Earthquakes) and Plate Boundaries ..................................................................................................... 1 Fig. A-2 Distribution of Volcanoes Worldwide ............................................................................ 1 Fig. A-3 Subduction Zone Earthquake Areas and Major Active Faults in Japan .......................... 2 Fig. A-4 Distribution of Active Volcanoes in Japan ...................................................................... 4 2. Disasters in Japan Fig. A-5 Major Earthquake Damage in Japan (Since the Meiji Period) ....................................... 5 Fig. A-6 Major Natural Disasters in Japan Since 1945 ................................................................. 6 Fig. A-7 Number of Fatalities and Missing Persons Due to Natural Disasters ............................. 8 Fig. A-8 Breakdown of the Number of Fatalities and Missing Persons Due to Natural Disasters ......................................................................................................................... 9 Fig. A-9 Recent Major Natural Disasters (Since the Great Hanshin-Awaji Earthquake) ............ 10 Fig. A-10 Establishment of Extreme Disaster Management Headquarters and Major Disaster Management Headquarters ........................................................................... 21 Fig. A-11 Dispatchment of Government Investigation Teams (Since -
Topics Geo Natural Catastrophes 2006 Analyses, Assessments, Positions Topics Geo 2006
Knowledge series Knowledge series Topics Geo Natural catastrophes 2006 Analyses, assessments, positions Topics Geo 2006 Topics © 2007 Münchener Rück Munich Re Group Münchener Rückversicherungs-Gesellschaft Königinstrasse 107 80802 München Germany Order number 302-05217 Contents © 2007 Picture credits Münchener Rückversicherungs-Gesellschaft Cover: Michael Spranger, Hong Kong Königinstrasse 107 Inside front cover: Reuters, Berlin 2 In focus 80802 München pp. 2/3: Reuters, Berlin Germany p. 9: Reuters, Berlin Tel.: +49(89) 38 91-0 pp.10/11: Jan Pitman/Getty Images 5 Lull in the North Atlantic? Fax: +49 (89) 39 90 56 p. 17: picture-alliance/dpa/dpaweb http://www.munichre.com p. 19: Torsten Blackwood/AFP/Getty Images 10 Catastrophe portraits p. 22 left: www.101box.com Supervisory Board p. 22 right: www.jorgent.com Dr. jur. Hans-Jürgen Schinzler (Chairman), p. 23: Ian Hitchcock/Getty Images 13 Winter 2005–2006 in Europe – An exception? Herbert Bach, Hans-Georg Appel, p. 25: Joel Nito/AFP/Getty Images 18 Stormy times down under Holger Emmert, Ulrich Hartmann, p. 29: Michael Spranger, Hong Kong Dr. rer. nat. Rainer Janßen, p. 30 left, right: Michael Spranger, Hong Kong 24 2006 typhoon season in the Northwest Pacific Prof. Dr. rer. nat. Henning Kagermann, p. 33: Reuters, Berlin 28 The Yogyakarta earthquake Prof. Dr. rer. nat. Drs. h. c. mult. Hubert Markl, p. 35 top, bottom: Reuters, Berlin 32 Tsunami strikes Java Wolfgang Mayrhuber, Kerstin Michl, pp. 36/37: Reuters, Berlin Cover: Prof. Karel Van Miert, Ingrid Müller, p. 41: Thomas Loster, Munich In the early hours of 27 May 2006, the densely Prof. -
二零一八熱帶氣旋tropical Cyclones in 2018
Ḵ暞ᶨℓ⸜䘬䅙ⷞ㯋㕳嶗⼹⚾ TRACKS OF TROPICAL CYCLONES IN 2018 㭷㖍⋼婧ᶾ䓴㗪暞㗪ỵ伖(楁㷗㗪攻ᶲ⋰ℓ㗪), ࡁ؍ ⫷ㅖ㲏ѝཞᮨⴞᆇẋ堐娚㚰䘬ᰕ Daily Positions at 00 UTC(08 HKT), '36/2 Є߃0;2 ⽭ډ the number in the symbol represents the date of the month 坤ԃ 154-8+? 95;2/1 㖂ॱ ԝ߃5): ࣭࣭ 㭷ℕ⮷㗪ỵ伖 ҷ߃';- =;154- 9.'49.'4 Intermediate 6-hourly Positions 榆⛃ Є߃0;2 棁䓃 ҷ߃';- )/3'854 0+(/ 崭⻟桙桐 Super Typhoon ҷ߃';- Ь߃9+6 ⻟桙桐 Severe Typhoon 䉷২ ؍ࡵࡁ 桙桐 Typhoon 68'6/8554 :8'3/ Є߃0;2 Ь߃9+6 ⻟䁰䅙ⷞ桐㙜 Severe Tropical Storm 䅙ⷞ桐㙜 Tropical Storm ݦ兺 ?'-/ 榆ԃގ 䅙ⷞỶ㯋⡻ Tropical Depression ҷ߃';- 3'2/19/ 湞䛵 ҹ߃0;4 Ỷ⡻⋨ Low Pressure Area 2++6/ ҷ߃';- 曾曓 䇃ࡁ☓ 054-*'8/ 8;3(/' ҷ߃';- ҷ߃';- ۺұ .+):58 ҷ߃';- 䜨哿☓ ࠀ২ -'+3/ 3'8/' 䒠㍼Ѻ㾎⺷ 䇃ࡁ☓ ҹ߃0;4 Є߃0;2 :* 8;3(/' Є߃0;2 ҷ߃';- ঁٌ 䒠㍼Ѻ㾎⺷ 3'4-1.;: ۺ :* ұ Ь߃9+6 Hong Kong ҷ߃';- 䒠㍼Ѻ㾎⺷ .+):58 -;'ਬ曾ؿ :* ҷ߃ ٌ॔ +=/4/'8 ҷ߃';- 喗ؖ 954:/4. ҹ߃0;4 3'4?/ 㖂ॱ Є߃0;2 ࠀ২ ԝ▲߃45< =;154- -'+3/ घୌⰧ Є߃0;2 ؍ҹ߃0;4 ࡵࡁ :'8/0') 68'6/8554 Ь߃9+6 घୌⰧ ҹ߃0;4 湞䛵 ٌ॔ ('8/0': ߟܞ啠 954:/4. 曾曓 2++6/ Ь߃9+6 0+2'=': -;' ҷ߃᳦ֺ Є߃0;2 054-*'8/ ࡁ ݦ兺 ֚߃'68 ࣭࣭؍ ?;:; Є߃0;2 嶔䬐Ⱗ ?'-/ 9.'49.'4 ԝ▲߃45< '36/2 (+(/4)' 䒠㍼Ѻ㾎⺷ ҷ߃';- 嶔䬐Ⱗ Є߃0;2 ҷ߃';- ҷ߃';- :* (+(/4)' Є߃0;2 榆ԃގ ҷ߃';- 3'2/19/ ҹ߃0;4 䉷২ 坤ԃ :8'3/ 95;2/1 -;'喗 Ь߃9+6 ҷ߃ܞ٢ ٧٢ 6'(;1 (52'<+4 ࠂ吤 ਬ曾ؿ 棁䓃 ▲߃0'4 ▲߃0'4 榆⛃ :58'0/ +=/4/'8 0+(/ ીֺ )/3'854 ঁٌ -;'ԝ▲߃45< ҹ߃0;4 ҷ߃ ;9'-/ ҷ߃';- :;.ԝ▲߃45< 䜨哿☓ 3'4-1 ⡕מ ;9'-/ Ь߃9+6 '/8'3 ⽭ډ ԝ▲߃45< Є߃0;2喗 154-8+?ܞ٢ ࠂ吤 (52'<+4 Ь߃9+6 :58'0/ ▲߃0'4 ࣥ⡕ ԝ▲߃45< 䒠㍼Ѻ㾎⺷ 䒠㍼Ѻ㾎⺷ ?;:; :* :* ԝ߃5): ԝи߃*+) ߟܞ啠 (+*ԝи߃ ٧٢ 0+2'=': Іٞ 1;)'6 І߃3'8 ԝи߃*+) 9'4(' Іٞ и߃,+( 9'4(' и߃,+( 喗ؖ 3'4?/ ԝ▲߃45< 二零一 八 年 熱帶氣旋 TROPICAL CYCLONES IN 2018 2 二零二零年一月出版 Published January 2020 香港天文台編製 香港九龍彌敦道134A Prepared by: Hong Kong Observatory 134A Nathan Road Kowloon, Hong Kong © 版權所有。未經香港天文台台長同意,不得翻印本刊物任何部分內容。 © Copyright reserved. -
A Report on All Cyclones That Formed in 2018, with Detailed Season Statistics and Records That Were Achieved Worldwide This Year
A report on all cyclones that formed in 2018, with detailed season statistics and records that were achieved worldwide this year. Compiled by Nathan Foy at Force Thirteen, December 2018, January 2019 E-mail: [email protected] Cover photo: International Space Station image of Hurricane Lane on August 18, 2018 Below photo: GOES-16 Sandwich imagery of Hurricane Michael shortly before its Florida landfall on October 10, 2018. Originally sourced from Force Thirteen’s live stream output. Contents 1. Background 3 1.1 2018 in summary 3 1.2 Pre-season predictions 4 1.3 Historical perspective 6 2. The 2018 Datasheet 9 2.1 Peak Intensities 9 2.2 Amount of Landfalls and Nations Affected 12 2.3 Fatalities, Injuries, and Missing persons 17 2.4 Monetary damages 19 2.5 Buildings damaged and destroyed 21 2.6 Evacuees 22 2.7 Timeline 23 3. 2018 Storm Records 26 3.1 Intensity and Longevity 27 3.2 Activity Records 30 3.3 Landfall Records 32 3.4 Eye and Size Records 33 3.5 Intensification Rate 34 4. Force Thirteen during 2018 35 4.1 Forecasting critique and storm coverage 36 4.2 Viewing statistics 37 5. 2018 Storm Image Gallery 39 6. Ways to contact Force Thirteen 42 2 1.1. 2018 in Summary Activity in 2018 has been well above average, with numbers approaching record levels. Sea Surface temperatures started cooler than average, but warmed relative to average through the year building into a mild El Nino event. The Pacific and North Indian Ocean behaved as expected for the prevailing conditions, all having well above average seasons. -
The Promulgation of Urban Legends in Hong Kong: Li's Field As a Case Study
Lingnan University Digital Commons @ Lingnan University Bachelor of Social Sciences – Senior Theses Undergraduate Open Access Dissertations 5-2019 The promulgation of urban legends in Hong Kong: Li's field as a case study Lok Sang, Stephen LEE Follow this and additional works at: https://commons.ln.edu.hk/socsci_fyp Part of the Sociology Commons Recommended Citation Lee, L. S. S. (2019). The promulgation of urban legends in Hong Kong: Li's field as a case study (UG dissertation, Lingnan University, Hong Kong). Retrieved from http://commons.ln.edu.hk/socsci_fyp/17 This UG Dissertation is brought to you for free and open access by the Undergraduate Open Access Dissertations at Digital Commons @ Lingnan University. It has been accepted for inclusion in Bachelor of Social Sciences – Senior Theses by an authorized administrator of Digital Commons @ Lingnan University. 2018-2019 Second Semester SSC4319 - Senior Thesis The promulgation of urban legends in Hong Kong: Li's field as a case study Lee Lok Sang, Stephen (4003799) Date of submission: 02/05/2019 Instructor: Dr. Sharon Chan Acknowledgement First and foremost, I would like to express my sincere gratitude to my instructor, Dr. Sharon Chan, for her patience, guidance and involvement. Her advices fostered the completion of my final year project. Without her detailed and constructive advices, I would not be able to complete this rigorous thesis alone. I also owe a debt of gratitude to my friends who facilitated the recruitment of interviewees for this thesis project, since it is of utmost difficulty to approach employees from an array of employment sectors. I also appreciate the efforts and involvement from the nine participants, who sacrificed their precious time to engage in this project. -
二零一八熱帶氣旋tropical Cyclones in 2018
156 第四節 熱帶氣旋統計表 表4.1是二零一八年在北太平洋西部及南海區域(即由赤道至北緯45度、東 經 100度至180 度所包括的範圍)的熱帶氣旋一覽。表內所列出的日期只說明某熱帶氣旋在上述範圍內 出現的時間,因而不一定包括整個風暴過程。這個限制對表內其他元素亦同樣適用。 表4.2是天文台在二零一八年為船舶發出的熱帶氣旋警告的次數、時段、首個及末個警告 發出的時間。當有熱帶氣旋位於香港責任範圍內時(即由北緯10至30度、東經105至125 度所包括的範圍),天文台會發出這些警告。表內使用的時間為協調世界時。 表4.3是二零一八年熱帶氣旋警告信號發出的次數及其時段的摘要。表內亦提供每次熱帶 氣旋警告信號生效的時間和發出警報的次數。表內使用的時間為香港時間。 表4.4是一九五六至二零一八年間熱帶氣旋警告信號發出的次數及其時段的摘要。 表4.5是一九五六至二零一八年間每年位於香港責任範圍內以及每年引致天文台需要發 出熱帶氣旋警告信號的熱帶氣旋總數。 表4.6是一九五六至二零一八年間天文台發出各種熱帶氣旋警告信號的最長、最短及平均 時段。 表4.7是二零一八年當熱帶氣旋影響香港時本港的氣象觀測摘要。資料包括熱帶氣旋最接 近香港時的位置及時間和當時估計熱帶氣旋中心附近的最低氣壓、京士柏、香港國際機 場及橫瀾島錄得的最高風速、香港天文台錄得的最低平均海平面氣壓以及香港各潮汐測 量站錄得的最大風暴潮(即實際水位高出潮汐表中預計的部分,單位為米)。 表4.8.1是二零一八年位於香港600公里範圍內的熱帶氣旋及其為香港所帶來的雨量。 表4.8.2是一八八四至一九三九年以及一九四七至二零一八年十個為香港帶來最多雨量 的熱帶氣旋和有關的雨量資料。 表4.9是自一九四六年至二零一八年間,天文台發出十號颶風信號時所錄得的氣象資料, 包括熱帶氣旋吹襲香港時的最近距離及方位、天文台錄得的最低平均海平面氣壓、香港 各站錄得的最高60分鐘平均風速和最高陣風。 表4.10是二零一八年熱帶氣旋在香港所造成的損失。資料參考了各政府部門和公共事業 機構所提供的報告及本地報章的報導,當中超強颱風山竹(1822)引致香港直接經濟損失 的估算的詳情載於附件一。 表4.11是一九六零至二零一八年間熱帶氣旋在香港所造成的人命傷亡及破壞。資料參考 了各政府部門和公共事業機構所提供的報告及本地報章的報導。 表4.12是二零一八年天文台發出的熱帶氣旋路徑預測驗証。 157 Section 4 TROPICAL CYCLONE STATISTICS AND TABLES TABLE 4.1 is a list of tropical cyclones in 2018 in the western North Pacific and the South China Sea (i.e. the area bounded by the Equator, 45°N, 100°E and 180°). The dates cited are the residence times of each tropical cyclone within the above-mentioned region and as such might not cover the full life- span. This limitation applies to all other elements in the table. TABLE 4.2 gives the number of tropical cyclone warnings for shipping issued by the Hong Kong Observatory in 2018, the durations of these warnings and the times of issue of the first and last warnings for all tropical cyclones in Hong Kong's area of responsibility (i.e. the area bounded by 10°N, 30°N, 105°E and 125°E). Times are given in hours and minutes in UTC. TABLE 4.3 presents a summary of the occasions/durations of the issuing of tropical cyclone warning signals in 2018. The sequence of the signals displayed and the number of tropical cyclone warning bulletins issued for each tropical cyclone are also given. -
Annual Summary of Global Tropical Cyclone Season
ANNUAL SUMMARY OF GLOBAL TROPICAL CYCLONE SEASON 2000 WMO/TD-No. 1082 Report No. TCP - 46 SECRETARIAT OF THE WORLD METEOROLOGICAL ORGANIZATION - GENEVA - SWITZERLAND 2000 Edition CONTENTS Page PART A Introduction 1 Monitoring, forecasting and warning of tropical cyclones 3 Tropical cyclone RSMCs 6 RSMC La Réunion - Tropical Cyclone Centre RSMC Miami - Hurricane Center/USA National Hurricane Center RSMC Nadi - Tropical Cyclone Centre RSMC - tropical cyclones New Delhi RSMC Tokyo - Typhoon Center Tropical cyclone warning centres with regional responsibility 10 PART B ANNUAL TROPICAL CYCLONE SUMMARIES (YEAR 2000) I. RSMC La Réunion - Tropical Cyclone Centre II. RSMC Miami - Hurricane Center/USA National Hurricane Center III. RSMC Nadi - Tropical Cyclone Centre, TCWC - Brisbane, TCWC - Wellington IV. RSMC - tropical cyclones New Delhi V. RSMC Tokyo - Typhoon Center VI. CPHC - Honolulu, RSMC Miami - Hurricane Center VII. TCWC - Darwin, TCWC - Perth, (TCWC - Brisbane) 2000 Edition INTRODUCTION About 80 tropical cyclones form annually over warm tropical oceans. When they develop and attain an intensity with surface wind speed exceeding 118 km/h, they are called hurricanes in the western hemisphere, typhoons in the western North Pacific region and severe tropical cyclones, tropical cyclones or similar names in other regions. Such tropical cyclones are among the most devastating of all natural hazards. Their potential for wrecking havoc caused by their violent winds, torrential rainfall and associated storm surges, floods, tornadoes and mud slides is exacerbated by the length and width of the areas they affect, their severity, frequency of occurrence and the vulnerability of the impacted areas. Every year several tropical cyclones cause sudden-onset disasters of varying harshness, with loss of life, human suffering, destruction of property, severe disruption of normal activities and set-back to social and economic advances. -
Summary of Natural Catastrophe Events 2018 Willis Re Eventtm Update Insured Losses and Economic Impact Due to Natural Disasters
Summary of Natural Catastrophe Events 2018 Willis Re eVENTTM Update Insured losses and economic impact due to natural disasters Volume 7 Natural Catastrophes in 2018 i Table of contents Map of major natural catastrophes in 2018 ................................................................................................... iii Contact us ..................................................................................................................................................... iv Introduction.................................................................................................................................................... 1 1. In focus ...................................................................................................................................................... 2 California: A year of wildfires ........................................................................................................... 2 Hurricane Michael: Could losses have been larger? ....................................................................... 3 An active but not unexpected year of natural catastrophes in Japan .............................................. 4 Latin America and the Caribbean: 2018 losses not a patch on 2017 .............................................. 5 The strongest tropical cyclone to hit the Arabian Peninsula ............................................................ 6 2. Major natural catastrophes in 2018 ......................................................................................................... -
State of the Climate in 2018
STATE OF THE CLIMATE IN 2018 Special Supplement to the Bulletin of the American Meteorological Society Vol. 100, No. 9, September 2019 STATE OF THE CLIMATE IN 2018 Editors Jessica Blunden Derek S. Arndt Chapter Editors Peter Bissolli Martin O. Jeffries Ahira Sánchez-Lugo Howard J. Diamond Tim Li Ted A. Scambos Matthew L. Druckenmiller Rick Lumpkin Carl J. Schreck III Robert J. H. Dunn Ademe Mekonnen Sharon Stammerjohn Catherine Ganter Emily Osborne Diane M. Stanitski Nadine Gobron Jacqueline A. Richter-Menge Kate M. Willett Technical Editor Andrea Andersen BAMS Special Editor for Climate Richard Rosen AMERICAN METEOROLOGICAL SOCIETY COVER CREDITS: FRONT/BACK: © BOB Busey, International Arctic Research Center, University of Alaska Fairbanks Ice-rich permafrost exposed on the face of Itkillik Bluff on the North Slope of Alaska. The bluffs and surrounding ice-rich permafrost have lost large volumes of ice over recent years due to lateral erosion and surface disturbances such as wildfire and climate warming. Members of NASA’s Arctic-Boreal Vulnerability Experiment visit this site annually to collect frozen soil and ground ice for carbon analysis. The team also uses regional airborne and space-borne remote sensing to identify potential volume of major ground ice loss in previously unidentified ice-rich parts of the landscape. How to cite this document: Citing the complete report: Blunden, J. and D. S. Arndt, Eds., 2019: State of the Climate in 2018. Bull. Amer. Meteor. Soc., 100 (9), Si–S305, doi:10.1175/2019BAMSStateoftheClimate.1. Citing a chapter (example): Scambos, T. and S. Stammerjohn Eds., 2019: Antarctica and the Southern Ocean [in “State of the Climate in 2018”]. -
State of the Climate in 2018
STATE OF THE CLIMATE IN 2018 Special Supplement to the Bulletin of the American Meteorological Society Vol. 100, No. 9, September 2019 Unauthenticated | Downloaded 10/04/21 04:59 AM UTC STATE OF THE CLIMATE IN 2018 Editors Jessica Blunden Derek S. Arndt Chapter Editors Peter Bissolli Martin O. Jeffries Ahira Sánchez-Lugo Howard J. Diamond Tim Li Ted A. Scambos Matthew L. Druckenmiller Rick Lumpkin Carl J. Schreck III Robert J. H. Dunn Ademe Mekonnen Sharon Stammerjohn Catherine Ganter Emily Osborne Diane M. Stanitski Nadine Gobron Jacqueline A. Richter-Menge Kate M. Willett Technical Editor Andrea Andersen BAMS Special Editor for Climate Richard Rosen AMERICAN METEOROLOGICAL SOCIETY Unauthenticated | Downloaded 10/04/21 04:59 AM UTC COVER CREDITS: FRONT/BACK: © BOB Busey, International Arctic Research Center, University of Alaska Fairbanks Ice-rich permafrost exposed on the face of Itkillik Bluff on the North Slope of Alaska. The bluffs and surrounding ice-rich permafrost have lost large volumes of ice over recent years due to lateral erosion and surface disturbances such as wildfire and climate warming. Members of NASA’s Arctic-Boreal Vulnerability Experiment visit this site annually to collect frozen soil and ground ice for carbon analysis. The team also uses regional airborne and space-borne remote sensing to identify potential volume of major ground ice loss in previously unidentified ice-rich parts of the landscape. How to cite this document: Citing the complete report: Blunden, J. and D. S. Arndt, Eds., 2019: State of the Climate in 2018. Bull. Amer. Meteor. Soc., 100 (9), Si–S305, doi:10.1175/2019BAMSStateoftheClimate.1.