January 2014
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Physicists in Times of War” Has Gained New Topicality As a Result of the US Doctrine of Preemptive Strikes Adopted by the Bush Administration
Physicists in times of war Bert Schroer CBPF, Rua Dr. Xavier Sigaud 150 22290-180 Rio de Janeiro, Brazil and Institut fuer Theoretische Physik der FU Berlin, Germany December 2005 Abstract Though the majority of physicists would probably not support pre- emptive wars, nuclear and other weapons of mass destruction would not exist without their contributions. Einstein’s anti-militaristic position has been well-documented and the present essay recalls the role of some contemporary and past physicists on this issue. The idea that the rationality of scientific thought is a reliable antidote against supporting wars in order to achieve political or ideological aims was neither correct in the past nor is it presently valid. In the physics community there always existed a minority of supporters of wars of conquest of territory, domination of people beyond the borders or regime change. The “preemptive” war for the US hegemony in the middle east has given the problem of “physicists in times of war” new actuality, especially on the third anniversary of its start with a country slipping into civil war and culprit of this bloody mess talking about the fight for victory. One of the most perplexing appologists of the agressive war of Nazi- Germany against “the Bolshevist peril” has been the physicist Pascual Jordan whose interesting scientific and controversial political biography is the main issue of this essay. 1 Introductory remarks As a result of a significant coincidence 2005 was not only the centennial year of Einstein’s greatest discoveries but it also marks the 60 year commemoration of the end of the second world war, which was perhaps one of the greatest arXiv:physics/0603095v2 [physics.soc-ph] 20 Mar 2006 man-made tragedy and certainly 20thcenturies darkest episode. -
Fundamental Theorems in Mathematics
SOME FUNDAMENTAL THEOREMS IN MATHEMATICS OLIVER KNILL Abstract. An expository hitchhikers guide to some theorems in mathematics. Criteria for the current list of 243 theorems are whether the result can be formulated elegantly, whether it is beautiful or useful and whether it could serve as a guide [6] without leading to panic. The order is not a ranking but ordered along a time-line when things were writ- ten down. Since [556] stated “a mathematical theorem only becomes beautiful if presented as a crown jewel within a context" we try sometimes to give some context. Of course, any such list of theorems is a matter of personal preferences, taste and limitations. The num- ber of theorems is arbitrary, the initial obvious goal was 42 but that number got eventually surpassed as it is hard to stop, once started. As a compensation, there are 42 “tweetable" theorems with included proofs. More comments on the choice of the theorems is included in an epilogue. For literature on general mathematics, see [193, 189, 29, 235, 254, 619, 412, 138], for history [217, 625, 376, 73, 46, 208, 379, 365, 690, 113, 618, 79, 259, 341], for popular, beautiful or elegant things [12, 529, 201, 182, 17, 672, 673, 44, 204, 190, 245, 446, 616, 303, 201, 2, 127, 146, 128, 502, 261, 172]. For comprehensive overviews in large parts of math- ematics, [74, 165, 166, 51, 593] or predictions on developments [47]. For reflections about mathematics in general [145, 455, 45, 306, 439, 99, 561]. Encyclopedic source examples are [188, 705, 670, 102, 192, 152, 221, 191, 111, 635]. -
Otto Stern Annalen 4.11.11
(To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern. -
Guide to the James Franck Papers 1882-1966
University of Chicago Library Guide to the James Franck Papers 1882-1966 © 2006 University of Chicago Library Table of Contents Acknowledgments 3 Descriptive Summary 3 Information on Use 3 Access 3 Citation 3 Biographical Note 4 Scope Note 15 Related Resources 21 Subject Headings 21 INVENTORY 22 Series I: Correspondence 22 Series II: Manuscripts 51 Subseries 1: Physics - work in Germany and Denmark, 1905-1934 51 Subseries 2: Physics - work in United States, 1935-1958 53 Subseries 3: Biophysics - work on Photosynthesis at Johns Hopkins, 1935-193855 Subseries 4: Biophysics - work on Photosynthesis at the University of Chicago,55 1938-48 Subseries 5: Biophysics - work on Photosynthesis after 1948 55 Subseries 6: General Articles and Talks on Science 71 Subseries 7: Papers by other scientists 72 Subseries 8: Notes, memoranda and fragments 76 Subseries 9: Atomic Scientists' Movement, 1944-1953 76 Subseries 10: Franck Memorial Symposium, May 12-13, 1966 79 Series III: Tape Recordings and Photographs 80 Subseries 1: Tape recordings 80 Subseries 2: Hertha Sponer's photograph album, Göttingen, 1920-1933 80 Series IV: Personal Documents and Memorabilia 90 Subseries 1: Documents 90 Subseries 2: Clippings 93 Subseries 3: Biographies and Obituaries 94 Subseries 4: Memorabilia; Scrolls, Certificates, Medals, Mementos 96 Series V: Robert Platzman's Editorial Papers for the "Selected Works of James98 Franck" Series VI: Addenda 103 Subseries 1: Correspondence between James Franck and his nephew and Dr. Heinz104 Kallman Subseries 2: Oversize 105 Descriptive Summary Identifier ICU.SPCL.FRANCK Title Franck, James. Papers Date 1882-1966 Size 20.5 linear feet (29 boxes) Repository Special Collections Research Center University of Chicago Library 1100 East 57th Street Chicago, Illinois 60637 U.S.A. -
• KUDOS for CHAOS "Highly Entertaining ... a Startling
• KUDOS FOR CHAOS "Highly entertaining ... a startling look at newly discovered universal laws" —Chicago Tribune Book World "I was caught up and swept along by the flow of this astonishing chronicle of scientific thought. It has been a long, long time since I finished a book and immediately started reading it all over again for sheer pleasure." —Lewis Thomas, author of Lives of a Cell "Chaos is a book that deserves to be read, for it chronicles the birth of a new scientific technique that may someday be important." —The Nation "Gleick's Chaos is not only enthralling and precise, but full of beautifully strange and strangely beautiful ideas." —Douglas Hofstadter, author of Godel, Escher, Bach "Taut and exciting ... it is a fascinating illustration of how the pattern of science changes." —The New York Times Book Review "Admirably portrays the cutting edge of thought" —Los Angeles Times "This is a stunning work, a deeply exciting subject in the hands of a first-rate science writer. The implications of the research James Gleick sets forth are breathtaking." —Barry Lopez, author of Arctic Dreams "An ambitious and largely successful popular science book that deserves wide readership" — Chicago Sun-Times "There is a teleological grandeur about this new math that gives the imagination wings." —Vogue "It is a splendid introduction. Not only does it explain accurately and skillfully the fundamentals of chaos theory, but it also sketches the theory's colorful history, with entertaining anecdotes about its pioneers and provocative asides about the philosophy of science and mathematics." —The Boston Sunday Globe PENGUIN BOOKS CHAOS James Gleick was born in New York City and lives there with his wife, Cynthia Crossen. -
Main Attributes of Nuclides Presented in This Book
Appendix A Main Attributes of Nuclides Presented in This Book Data given in TableA.1 can be used to determine the various decay energies for the specific radioactive decay examples as well as for the nuclear activation examples presented in this book. M stands for the nuclear rest mass; M stands for the atomic rest mass. The data were obtained from the NIST and are based on CODATA 2010 as follows: 1. Data for atomic masses M are given in atomic mass constants u and were obtained from the NIST at: (http://www.physics.nist.gov/pml/data/comp.cfm). 2. Rest mass of proton mp, neutron mn, electron me, and of the atomic mass constant u are from the NIST (http://www.physics.nist.gov/cuu/constants/index. html) as follows: −27 2 mp = 1.672 621 777×10 kg = 1.007 276 467 u = 938.272 046 MeV/c (A.1) −27 2 mn = 1.674 927 351×10 kg = 1.008 664 916 u = 939.565 379 MeV/c (A.2) −31 −4 2 me = 9.109 382 91×10 kg = 5.485 799 095×10 u = 0.510 998 928 MeV/c (A.3) − 1u= 1.660 538 922×10 27 kg = 931.494 060 MeV/c2 (A.4) 3. For a given nuclide, its nuclear rest energy was determined by subtracting the 2 rest energy of all atomic orbital electrons (Zmec ) from the atomic rest energy M(u)c2 as follows 2 2 2 Mc = M(u)c − Zmec = M(u) × 931.494 060 MeV/u − Z × 0.510 999 MeV. -
Appendix a I
Appendix A I Appendix A Professional Institutions and Associations AVA: Aerodynamische Versuchsanstalt (see under --+ KWIS) DFG: Deutsche Forschungs-Gemeinschaft (previously --+ NG) German Scientific Research Association. Full title: Deutsche Gemeinschaft zur Erhaltung und Forderung der Forschung (German Association for the Support and Advancement of Sci entific Research). Successor organization to the --+ NG, which was renamed DFG unofficially since about 1929 and officially in 1937. During the terms of its presidents: J. --+ Stark (June 1934-36); R. --+ Mentzel (Nov. 1936-39) and A. --+ Esau (1939-45), the DFG also had a dom inant influence on the research policy of the --+ RFR. It was funded by government grants in the millions and smaller contributions by the --+ Stifterverband. Refs.: ~1entzel [1940]' Stark [1943]c, Zierold [1968], Nipperdey & Schmugge [1970]. DGtP: Deutsche Gesellschaft fiir technische Physik German Society of Technical Physics. Founded on June 6, 1919 by Georg Gehlhoff as an alternative to the --+ DPG with a total of 13 local associations and its own journal --+ Zeitschrift fUr technische Physik. Around 1924 the DGtP had approximately 3,000 members, thus somewhat more than the DPG, but membership fell by 1945 to around 1,500. Chairmen: G. Gehlhoff (1920-31); K. --+ Mey (1931-45). Refs.: Gehlhoff et al. [1920]' Ludwig [1974], Richter [1977], Peschel (Ed.) [1991]' chap. 1, Heinicke [1985]' p. 43, Hoffmann & Swinne [1994]. DPG: Deutsche Physikalische Gesellschaft German Physical Society. Founded in 1899 a national organization at to succeed the Berlin Physical Society, which dates back to 1845. The Society issued regular biweekly proceedings, reports (Berichte) on the same, as well as the journal: Fortschritte der Physik (since 1845). -
PEOPLE Lise Meitner Prize
PEOPLE Lise Meitner Prize For 2000, three new chairmen are appointed for the European Space Agency's advisory structure. Left to right: Sandro Vitale for the Fundamental Physics Advisory Group (replacing Maurice Jacob), Michael Ward for the Astronomy Working Group (replacing Reinhard Genzel) and Yves Langevin for the Solar System Working Group (replacing Risto Pellinen). Ilka Brunner - Lise Meitner Prize. Since 1998, Berlin's Humboldt University has awarded a Use Meitner Prize for outstanding PhD thesis work in physics.The prize is awarded by the Association of Friends of the Institute of Physics. For 1998 and 1999 it was sponsored by the Jewish community of Berlin and for the coming years it will be sponsored by the W E Heraeus Foundation. In 1998 the prize went to Sibylle Petrak for her PhD thesis "Measurements of lifetimes of bottom hadrons in Z decays". Born in Weimar, Germany, Sibylle Petrak studied at the Technical University of Dresden, at the Free University of Berlin and at the Humboldt Canadian Ambassador to the UN in Geneva, Sergio Marchi (third from right), at the Opal University. She now holds a postdoctoral experiment at CERN, with (left to right) Canadian physicists John White (Carleton), Robert position at SLAC, Stanford. McPherson (TRIUMF/Victoria), Jim Pinfold (Alberta), Brigitte Vachon (TRIUMF/Victoria) The 1999 prize went to Ilka Brunner for her and Isabelle Trigger (McGill). thesis "On the interplay between string theory and field theory". Ilka Brunner was born in Pittsburgh, studied at Bonn and at the AWARDS for his outstanding contributions to lattice Humboldt University, Berlin, and now holds a gauge theory. -
Karl Ernst Ludwig Marx PLANCK
SIR P. T. SARVAJANIK COLLEGE OF SCIENCE DEPARTMENT OF PHYSICS Special Issue, August-2019 Karl Ernst Ludwig Marx PLANCK The Founder of Quantum Theory Editorial SPECTRUM “When you change the way you look at the things; Special Issue, August-2019 the things you look at change.” - Max Planck With all enjoyment and pleasure we are bestow- Published by ing next dynamic piece of our enthusiasm and Physics Club creativity - second issue of our magazine “Spec- Department of Physics trum”. The unprecedented response to the first is- Sir P. T. Sarvajanik College sue has motivated us to come up with the second of Science, Surat issue. April is the birth month of famous physicist Max Planck. Considering the datum, this issue has been dedicated to Max Planck. In this issue, Chief Editor we have tried to present few articles about Max Dr. Pruthul Desai Planck. The first article consists Bio-graphical sketch of Max Planck. He was a German theoret- Editorial Board ical physicist whose discovery of energy quanta Prof. Sadanand Sutar won him the Nobel Prize for Physics in 1918. His Prof. Viresh Thakkar study of blackbody radiation ushered in a revolu- Dr. Nisha Patel tion which changed physics and our understand- Dr. Dhiraj Shah ing of nature forever. The compulsions of black- Prof. Kileen Mahajan body spectrum that led Planck to the path break- Prof. Bhupesh Lad ing idea of energy quantization is presented in the Ms. Priyanka Mule article inscribed by Dr. Pruthul Desai. A timeline Mrs. Pinal Shah of Max Planck’s life is also presented. Further, Mr. -
84 Weisskopf
NATIONAL ACADEMY OF SCIENCES VICTOR FREDERICK WEISSKOPF 1908–2002 A Biographical Memoir by J. DAVID JACKSON AND KURT GOTTFRIED Any opinions expressed in this memoir are those of the authors and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoirs, VOLUME 84 PUBLISHED 2003 BY THE NATIONAL ACADEMIES PRESS WASHINGTON, D.C. Photo by Heka Davis, AIP Emilio Segré Visual Archives, Physics Today Collection VICTOR FREDERICK WEISSKOPF September 19, 1908–April 22, 2002 BY J. DAVID JACKSON AND KURT GOTTFRIED ICTOR FREDERICK WEISSKOPF was a major figure in the golden Vage of quantum mechanics, who made seminal contri- butions to the quantum theory of radiative transitions, the self-energy of the electron, the electrodynamic properties of the vacuum, and to the theory of nuclear reactions. In the broader arena through his writings and actions he was an effective advocate for international cooperation in sci- ence and human affairs. In 1981 he shared the Wolf Prize for physics with Freeman Dyson and Gerhard ‘t Hooft for “development and application of the quantum theory of fields.” In 1991 he was awarded the Public Welfare Medal of the National Academy of Sciences “for a half-century of unflagging effort to humanize the goals of science, acquaint the world with the beneficial potential of nuclear technolo- gies, and to safeguard it from the devastation of nuclear war.” As a member of the Pontifical Academy of Sciences he was instrumental in persuading the Pope to speak on the dangers of nuclear weapons. Weisskopf was born in Vienna, Austria, on September 19, 1908. -
Max Planck – a Conservative Revolutionary
1 Draft: Max Planck – A conservative revolutionary Manuel Cardona and Werner Marx Max Planck Institute for Solid State Research, Heisenbergstraße 1, D-70569 Stuttgart (Germany) Abstract A Brief Biography Max Planck has a deeply moving biography. He was not only one of the creators of modern Physics but also witness and actor of the most fateful events of the 20th century. Interwoven with these historic vicissitudes is his rather tragic personal life, having lost four of his five children, two of them through violence, the other, identical twins, in the aftermath of childbirth. His biographic literature is rather copious, starting with a scientific autobiography [1]. We refer here to the other biographical works we have used, in particular the investigations of the science historian Dieter Hoffmann [2-7]. We shall only mention some of the numerous short biographical accounts appeared in scientific journals and the general press when appropriate. For the sake of conciseness, we give Planck’s biography in tabular form. 1858 Born April 23, 1858 in Kiel as the fourth child of the lawyer Johann Julius Wilhelm Planck and his wife Emma née Patzig. In his Lutheran baptismal record his name appears as Marx (sic) Karl Ernst Ludwig Planck. He published under the name of Max Planck but in the Web of Science he appears 12 times cited as MKE Planck. 1867 The family moves to Munich where his father had been appointed professor of law. Max attends the Maximilian school (gymnasium) and soon distinguishes himself as one of the better students, in particular in religion and mathematics but also in languages. -
Paul Peter Ewald (January 23, 1888 in Berlin, Germany – August 22, 1985 in Ithaca, New York) Was a U.S
Paul Peter Ewald (January 23, 1888 in Berlin, Germany – August 22, 1985 in Ithaca, New York) was a U.S. ( German-born) crystallographer and physicist - a pioneer of X-ray diffraction methods. Education Ewald received his early education in the classics at the Gymnasium in Berlin and Potsdam, where he learned to speak Greek, French, and English, in addition to his native language of German. Ewald began his higher education in physics, chemistry, and mathematics at Gonville and Caius College in Cambridge, during the winter of 1905. Then in 1906 and 1907 he continued his formal education at the University of Göttingen, where his interests turned primarily to mathematics. At that time, Göttingen was a world-class center of mathematics under the three “Mandarins” of Göttingen: Felix Klein, David Hilbert, and Hermann Minkowski. While studying at Göttingen, Ewald was taken on by Hilbert as an Ausarbeiter, a paid position as a scribe, i.e., he would take notes in Hilbert’s classes, have the notes approved by Hilbert’s assistant – at that time Ernst Hellinger – and then prepare a clean copy for the Lesezimmer – the mathematics reading room. In 1907, he continued his mathematical studies at the Ludwig Maximilians University of Munich (LMU), under Arnold Sommerfeld at his Institute for Theoretical Physics. He was granted his doctorate in 1912. His doctoral thesis developed the laws of propagation of X-rays in single crystals. After earning his doctorate, he was an assistant to Sommerfeld. During the 1911 Christmas recess and in January 1912, Ewald was finishing the writing of his doctoral thesis.