Max Born (1882-1970)

Total Page:16

File Type:pdf, Size:1020Kb

Max Born (1882-1970) Max Born (1882-1970) Max Born was born December 11, 1882 in Breslau, Germany. His father, Gustav Born, was a professor at the University of Breslau. His mother was from a Silesian industrial family. Max inherited a love of the arts and music from his mother who died when he was four years old. Born attended the Gymnasium and then shortly after his graduation from school his father died. This did not stop his thirst for knowledge so he pursued more education at several universities, including those in Breslau, Heidelberg, Zurich and Göttingen. At these institutions he mainly studied mathematics, physics and astronomy. Born was awarded the prize of the Philosophical Faculty of the University of Göttingen in 1906 and graduated in 1907. From there he traveled to Cambridge for a short time to study with J.J. Thomson. In 1908 Born returned to Breslau where he studied the theory of relativity. The next year Born was invited to collaborate on one of his papers about relativity by a former professor at the University of Göttingen, Hermann Minkowski. Unfortunately, shortly after Born arrived at Göttingen, Minkowski died. Born was then given the task of reviewing all of Minkowski’s work on physics and publishing some of Minkowski’s unfinished work. Once he finished this task he became a lecturer in Physics. In 1915 Born was appointed as a professor (extraordinarius) at Berlin University in order to assist Max Planck. Unfortunately he was unable to fill this position because he joined the German Armed forces due to compulsory military service. Born worked for the army in a scientific office where he studied sound ranging and the theory of crystals. Born hated the military and his time there was cut short of the usual one year of mandatory service because he had asthma. War times were quite difficult for Max Born but they proved to be productive none the less. It was during the war that he published his first book, Dynamik de Kristallgitter (Dynamics of Crystal Lattices). In this publication he interpreted a group of experiments that he started back at the University of Göttingen. Born also strengthened his friendship with Einstein during the war. During time that they spent together they would not only discuss physics but with Einstein on the violin and Born on the piano they played sonatas together. In 1919, Born became a professor at the University of Frankfurt-on-Main. His assistant, Otto Stern, later won a Nobel Prize for the work he did under Born. In 1921 Born returned once again to the University of Göttingen to be a professor. This time he stayed there for 12 years and completed some of his most important work. This included studies of crystal lattices and quantum theory. Born published a paper on matrix mechanics and the principles of quantum mechanics with Werner Heisenberg and Pascual Jordan in 1925. In August of 1926 he published his work on the statistical interpretation of quantum mechanics. Born was awarded the Nobel Prize in 1954 for this work. In 1933 he was forced to emigrate so he returned to Cambridge for 3 years. In 1936 he was appointed Tait Professor of Natural Philosophy in Edinburgh and held this position until he retired in 1953. Born remained active in science long after his retirement. He was specifically interested in the philosophy of science and the impact of science on humanity. In the interest of philosophy Born was quoted as saying, “I am now convinced that theoretical physics is actual philosophy”. He was also quite concerned about the possibility of mass destruction because of scientific advances. Like many other scientists, Born knew how much devastation an atomic bomb could impart so he made a statement against nuclear warfare which was signed by several Nobel laureates. Max Born died January 5, 1970. He was the grandfather of singer/actress Olivia Newton John. Born won the Nobel Prize in 1954 for his statistical representation of the position of an electron within an atom. He changed the quantum theory of the time which regarded electrons as particles by giving a mathematical description which represented their observed behavior more accurately. What Born discovered was that if you take the square of the absolute value of Schrödinger’s wave equation you get the probability of finding a particle in a given location. He said that you cannot predict the exact position of an electron but you could only give the probability of finding an electron in a given location. Awards Awarded Fellowship of 13 different cities. Honorary Doctorates at 9 different universities. Stokes Medal of Cambridge Max Planck medal of the German Physical Society Hughes medal of the Royal Society (London) Gunning-Victoria Jubilee prize of the Royal Society (Edinburgh) References http://nobelprize.org/physics/laureates/1954/born-bio.html http://en.wikipedia.org/wiki/max_born http://scienceworld.wolfram.com/biography/Born.html www.nobel-winners.com/physics/max_born.html www-groups.dcs.st-and.ac.uk/~history/mathematicians/born.html Quantum Theory by: J.P. McEvoy and Oscar Zarate The Restless Universe by Max Born .
Recommended publications
  • Conference on the History of Quantum Physics Max-Planck-Institut Für Wissenschaftsgeschichte Berlin, 2–6 July 2007 Abstract
    Conference on the history of quantum physics Max-Planck-Institut für Wissenschaftsgeschichte Berlin, 2–6 July 2007 Abstract Title: Walther Nernst, Albert Einstein, Otto Stern, Adriaan Fokker, and the rotational specific heat of hydrogen Author: Clayton A. Gearhart (St. John’s University, Minnesota, USA) In 1911, the German physical chemist Walther Nernst argued that the new quantum theory promised to clear up long-standing puzzles in kinetic theory, particularly in understanding the discrepancies between the predictions of the equipartition theorem and the measured specific heats of gases. Nernst noted that hydrogen gas would be a good test case. The first measurements were published by his assistant Arnold Euken in 1912, and showed a sharp drop in the specific heat at low temperatures, corresponding to rotational degrees of freedom “freezing out.” In his 1911 paper, Nernst also developed a theory for a quantum rotator (a tiny rotating dumbbell representing a diatomic gas). Remarkably, he did not quantize rotational energies. Instead, the specific heat fell off because the gas reached equilibrium by exchanging harmonic oscillator quanta with quantized Planck resonators. Nernst’s theory was flawed. But Einstein adopted a corrected version at the 1911 Solvay Conference, and in 1913, he and Otto Stern published a detailed treatment. Following Nernst, Einstein and Stern did not quantize the rotators. But they did explore the new zero- point energy that Max Planck had introduced in his “second quantum theory” in 1911. Einstein and Stern calculated the specific heat of hydrogen for two cases, one that assumed a zero-point energy for a rotator and one that did not.
    [Show full text]
  • The Physical Tourist Physics and New York City
    Phys. perspect. 5 (2003) 87–121 © Birkha¨user Verlag, Basel, 2003 1422–6944/05/010087–35 The Physical Tourist Physics and New York City Benjamin Bederson* I discuss the contributions of physicists who have lived and worked in New York City within the context of the high schools, colleges, universities, and other institutions with which they were and are associated. I close with a walking tour of major sites of interest in Manhattan. Key words: Thomas A. Edison; Nikola Tesla; Michael I. Pupin; Hall of Fame for GreatAmericans;AlbertEinstein;OttoStern;HenryGoldman;J.RobertOppenheimer; Richard P. Feynman; Julian Schwinger; Isidor I. Rabi; Bronx High School of Science; StuyvesantHighSchool;TownsendHarrisHighSchool;NewYorkAcademyofSciences; Andrei Sakharov; Fordham University; Victor F. Hess; Cooper Union; Peter Cooper; City University of New York; City College; Brooklyn College; Melba Phillips; Hunter College; Rosalyn Yalow; Queens College; Lehman College; New York University; Courant Institute of Mathematical Sciences; Samuel F.B. Morse; John W. Draper; Columbia University; Polytechnic University; Manhattan Project; American Museum of Natural History; Rockefeller University; New York Public Library. Introduction When I was approached by the editors of Physics in Perspecti6e to prepare an article on New York City for The Physical Tourist section, I was happy to do so. I have been a New Yorker all my life, except for short-term stays elsewhere on sabbatical leaves and other visits. My professional life developed in New York, and I married and raised my family in New York and its environs. Accordingly, writing such an article seemed a natural thing to do. About halfway through its preparation, however, the attack on the World Trade Center took place.
    [Show full text]
  • Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman
    Wolfgang Pauli Niels Bohr Paul Dirac Max Planck Richard Feynman Louis de Broglie Norman Ramsey Willis Lamb Otto Stern Werner Heisenberg Walther Gerlach Ernest Rutherford Satyendranath Bose Max Born Erwin Schrödinger Eugene Wigner Arnold Sommerfeld Julian Schwinger David Bohm Enrico Fermi Albert Einstein Where discovery meets practice Center for Integrated Quantum Science and Technology IQ ST in Baden-Württemberg . Introduction “But I do not wish to be forced into abandoning strict These two quotes by Albert Einstein not only express his well­ more securely, develop new types of computer or construct highly causality without having defended it quite differently known aversion to quantum theory, they also come from two quite accurate measuring equipment. than I have so far. The idea that an electron exposed to a different periods of his life. The first is from a letter dated 19 April Thus quantum theory extends beyond the field of physics into other 1924 to Max Born regarding the latter’s statistical interpretation of areas, e.g. mathematics, engineering, chemistry, and even biology. beam freely chooses the moment and direction in which quantum mechanics. The second is from Einstein’s last lecture as Let us look at a few examples which illustrate this. The field of crypt­ it wants to move is unbearable to me. If that is the case, part of a series of classes by the American physicist John Archibald ography uses number theory, which constitutes a subdiscipline of then I would rather be a cobbler or a casino employee Wheeler in 1954 at Princeton. pure mathematics. Producing a quantum computer with new types than a physicist.” The realization that, in the quantum world, objects only exist when of gates on the basis of the superposition principle from quantum they are measured – and this is what is behind the moon/mouse mechanics requires the involvement of engineering.
    [Show full text]
  • Bringing out the Dead Alison Abbott Reviews the Story of How a DNA Forensics Team Cracked a Grisly Puzzle
    BOOKS & ARTS COMMENT DADO RUVIC/REUTERS/CORBIS DADO A forensics specialist from the International Commission on Missing Persons examines human remains from a mass grave in Tomašica, Bosnia and Herzegovina. FORENSIC SCIENCE Bringing out the dead Alison Abbott reviews the story of how a DNA forensics team cracked a grisly puzzle. uring nine sweltering days in July Bosnia’s Million Bones tells the story of how locating, storing, pre- 1995, Bosnian Serb soldiers slaugh- innovative DNA forensic science solved the paring and analysing tered about 7,000 Muslim men and grisly conundrum of identifying each bone the million or more Dboys from Srebrenica in Bosnia. They took so that grieving families might find some bones. It was in large them to several different locations and shot closure. part possible because them, or blew them up with hand grenades. This is an important book: it illustrates the during those fate- They then scooped up the bodies with bull- unspeakable horrors of a complex war whose ful days in July 1995, dozers and heavy earth-moving equipment, causes have always been hard for outsiders to aerial reconnais- and dumped them into mass graves. comprehend. The author, a British journalist, sance missions by the Bosnia’s Million It was the single most inhuman massacre has the advantage of on-the-ground knowl- Bones: Solving the United States and the of the Bosnian war, which erupted after the edge of the war and of the International World’s Greatest North Atlantic Treaty break-up of Yugoslavia and lasted from 1992 Commission on Missing Persons (ICMP), an Forensic Puzzle Organization had to 1995, leaving some 100,000 dead.
    [Show full text]
  • Twenty Five Hundred Years of Small Science What’S Next?
    Twenty Five Hundred Years of Small Science What’s Next? Lloyd Whitman Assistant Director for Nanotechnology White House Office of Science and Technology Policy Workshop on Integrated Nanosystems for Atomically Precise Manufacturing Berkeley, CA, August 5, 2015 Democritus (ca. 460 – 370 BC) Everything is composed of “atoms” Atomos (ἄτομος): that which can not be cut www.phil-fak.uni- duesseldorf.de/philo/galerie/antike/ demokrit.html Quantum Mechanics (1920s) Max Planck 1918* Albert Einstein 1921 Niels Bohr 1922 Louis de Broglie 1929 Max Born 1954 Paul Dirac 1933 On the Theory of Quanta Louis-Victor de Broglie Werner Heisenberg 1932 Wolfgang Pauli 1945 Erwin Schrödinger 1933 *Nobel Prizes in Physics https://tel.archives-ouvertes.fr/tel- 00006807 Ernst Ruska (1906 – 1988) Electron Microscopy Magnifying higher than the light microscope - 1933 Nobel Prize in Physics 1986 www.nobelprize.org/nobel_prizes/physics/laureates /1986/ruska-lecture.pdf Richard Feynman (1918-1988) There's Plenty of Room at the Bottom, An Invitation to Enter a New Field of Physics What would happen if we could arrange the atoms one by one the way we want them…? December 29, 1959 richard-feynman.net Heinrich Rohrer (1933 – 2013) Gerd Binnig Atomic resolution Scanning Tunneling Microscopy - 1981 1983 I could not stop looking at the images. It was like entering a new world. Gerd Binnig, Nobel lecture Binnig, et al., PRL 50, 120 (1983) Nobel Prize in Physics 1986 C60: Buckminsterfullerene Kroto, Heath, O‘Brien, Curl and September 1985 Smalley - 1985 …a remarkably stable cluster consisting of 60 carbon atoms…a truncated icosahedron. Nature 318, 162 (1985) http://www.acs.org/content/acs/en/education/whatis chemistry/landmarks/fullerenes.html Nobel Prize in Chemistry 1996 Curl, Kroto, and Smalley Positioning Single Atoms with a Scanning Tunnelling Microscope Eigler and Schweizer - 1990 …fabricate rudimentary structures of our own design, atom by atom.
    [Show full text]
  • I. I. Rabi Papers [Finding Aid]. Library of Congress. [PDF Rendered Tue Apr
    I. I. Rabi Papers A Finding Aid to the Collection in the Library of Congress Manuscript Division, Library of Congress Washington, D.C. 1992 Revised 2010 March Contact information: http://hdl.loc.gov/loc.mss/mss.contact Additional search options available at: http://hdl.loc.gov/loc.mss/eadmss.ms998009 LC Online Catalog record: http://lccn.loc.gov/mm89076467 Prepared by Joseph Sullivan with the assistance of Kathleen A. Kelly and John R. Monagle Collection Summary Title: I. I. Rabi Papers Span Dates: 1899-1989 Bulk Dates: (bulk 1945-1968) ID No.: MSS76467 Creator: Rabi, I. I. (Isador Isaac), 1898- Extent: 41,500 items ; 105 cartons plus 1 oversize plus 4 classified ; 42 linear feet Language: Collection material in English Location: Manuscript Division, Library of Congress, Washington, D.C. Summary: Physicist and educator. The collection documents Rabi's research in physics, particularly in the fields of radar and nuclear energy, leading to the development of lasers, atomic clocks, and magnetic resonance imaging (MRI) and to his 1944 Nobel Prize in physics; his work as a consultant to the atomic bomb project at Los Alamos Scientific Laboratory and as an advisor on science policy to the United States government, the United Nations, and the North Atlantic Treaty Organization during and after World War II; and his studies, research, and professorships in physics chiefly at Columbia University and also at Massachusetts Institute of Technology. Selected Search Terms The following terms have been used to index the description of this collection in the Library's online catalog. They are grouped by name of person or organization, by subject or location, and by occupation and listed alphabetically therein.
    [Show full text]
  • Physicists in Times of War” Has Gained New Topicality As a Result of the US Doctrine of Preemptive Strikes Adopted by the Bush Administration
    Physicists in times of war Bert Schroer CBPF, Rua Dr. Xavier Sigaud 150 22290-180 Rio de Janeiro, Brazil and Institut fuer Theoretische Physik der FU Berlin, Germany December 2005 Abstract Though the majority of physicists would probably not support pre- emptive wars, nuclear and other weapons of mass destruction would not exist without their contributions. Einstein’s anti-militaristic position has been well-documented and the present essay recalls the role of some contemporary and past physicists on this issue. The idea that the rationality of scientific thought is a reliable antidote against supporting wars in order to achieve political or ideological aims was neither correct in the past nor is it presently valid. In the physics community there always existed a minority of supporters of wars of conquest of territory, domination of people beyond the borders or regime change. The “preemptive” war for the US hegemony in the middle east has given the problem of “physicists in times of war” new actuality, especially on the third anniversary of its start with a country slipping into civil war and culprit of this bloody mess talking about the fight for victory. One of the most perplexing appologists of the agressive war of Nazi- Germany against “the Bolshevist peril” has been the physicist Pascual Jordan whose interesting scientific and controversial political biography is the main issue of this essay. 1 Introductory remarks As a result of a significant coincidence 2005 was not only the centennial year of Einstein’s greatest discoveries but it also marks the 60 year commemoration of the end of the second world war, which was perhaps one of the greatest arXiv:physics/0603095v2 [physics.soc-ph] 20 Mar 2006 man-made tragedy and certainly 20thcenturies darkest episode.
    [Show full text]
  • Nobel Prize Physicists Meet at Lindau
    From 28 June to 2 July 1971 the German island town of Lindau in Nobel Prize Physicists Lake Constance close to the Austrian and Swiss borders was host to a gathering of illustrious men of meet at Lindau science when, for the 21st time, Nobel Laureates held their reunion there. The success of the first Lindau reunion (1951) of Nobel Prize win­ ners in medicine had inspired the organizers to invite the chemists and W. S. Newman the physicists in turn in subsequent years. After the first three-year cycle the United Kingdom, and an audience the dates of historical events. These it was decided to let students and of more than 500 from 8 countries deviations in the radiocarbon time young scientists also attend the daily filled the elegant Stadttheater. scale are due to changes in incident meetings so they could encounter The programme consisted of a num­ cosmic radiation (producing the these eminent men on an informal ber of lectures in the mornings, two carbon isotopes) brought about by and personal level. For the Nobel social functions, a platform dis­ variations in the geomagnetic field. Laureates too the Lindau gatherings cussion, an informal reunion between Thus chemistry may reveal man­ soon became an agreeable occasion students and Nobel Laureates and, kind’s remote past whereas its long­ for making or renewing acquain­ on the last day, the traditional term future could well be shaped by tances with their contemporaries, un­ steamer excursion on Lake Cons­ the developments mentioned by trammelled by the formalities of the tance to the island of Mainau belong­ Mössbauer, viz.
    [Show full text]
  • Otto Stern Annalen 4.11.11
    (To be published by Annalen der Physik in December 2011) Otto Stern (1888-1969): The founding father of experimental atomic physics J. Peter Toennies,1 Horst Schmidt-Böcking,2 Bretislav Friedrich,3 Julian C.A. Lower2 1Max-Planck-Institut für Dynamik und Selbstorganisation Bunsenstrasse 10, 37073 Göttingen 2Institut für Kernphysik, Goethe Universität Frankfurt Max-von-Laue-Strasse 1, 60438 Frankfurt 3Fritz-Haber-Institut der Max-Planck-Gesellschaft Faradayweg 4-6, 14195 Berlin Keywords History of Science, Atomic Physics, Quantum Physics, Stern- Gerlach experiment, molecular beams, space quantization, magnetic dipole moments of nucleons, diffraction of matter waves, Nobel Prizes, University of Zurich, University of Frankfurt, University of Rostock, University of Hamburg, Carnegie Institute. We review the work and life of Otto Stern who developed the molecular beam technique and with its aid laid the foundations of experimental atomic physics. Among the key results of his research are: the experimental test of the Maxwell-Boltzmann distribution of molecular velocities (1920), experimental demonstration of space quantization of angular momentum (1922), diffraction of matter waves comprised of atoms and molecules by crystals (1931) and the determination of the magnetic dipole moments of the proton and deuteron (1933). 1 Introduction Short lists of the pioneers of quantum mechanics featured in textbooks and historical accounts alike typically include the names of Max Planck, Albert Einstein, Arnold Sommerfeld, Niels Bohr, Max von Laue, Werner Heisenberg, Erwin Schrödinger, Paul Dirac, Max Born, and Wolfgang Pauli on the theory side, and of Wilhelm Conrad Röntgen, Ernest Rutherford, Arthur Compton, and James Franck on the experimental side. However, the records in the Archive of the Nobel Foundation as well as scientific correspondence, oral-history accounts and scientometric evidence suggest that at least one more name should be added to the list: that of the “experimenting theorist” Otto Stern.
    [Show full text]
  • Heisenberg's Visit to Niels Bohr in 1941 and the Bohr Letters
    Klaus Gottstein Max-Planck-Institut für Physik (Werner-Heisenberg-Institut) Föhringer Ring 6 D-80805 Munich, Germany 26 February, 2002 New insights? Heisenberg’s visit to Niels Bohr in 1941 and the Bohr letters1 The documents recently released by the Niels Bohr Archive do not, in an unambiguous way, solve the enigma of what happened during the critical brief discussion between Bohr and Heisenberg in 1941 which so upset Bohr and made Heisenberg so desperate. But they are interesting, they show what Bohr remembered 15 years later. What Heisenberg remembered was already described by him in his memoirs “Der Teil und das Ganze”. The two descriptions are complementary, they are not incompatible. The two famous physicists, as Hans Bethe called it recently, just talked past each other, starting from different assumptions. They did not finish their conversation. Bohr broke it off before Heisenberg had a chance to complete his intended mission. Heisenberg and Bohr had not seen each other since the beginning of the war in 1939. In the meantime, Heisenberg and some other German physicists had been drafted by Army Ordnance to explore the feasibility of a nuclear bomb which, after the discovery of fission and of the chain reaction, could not be ruled out. How real was this theoretical possibility? By 1941 Heisenberg, after two years of intense theoretical and experimental investigations by the drafted group known as the “Uranium Club”, had reached the conclusion that the construction of a nuclear bomb would be feasible in principle, but technically and economically very difficult. He knew in principle how it could be done, by Uranium isotope separation or by Plutonium production in reactors, but both ways would take many years and would be beyond the means of Germany in time of war, and probably also beyond the means of Germany’s adversaries.
    [Show full text]
  • Interleaved Excerpts from Interviews of Dudley Herschbach (DH) by John Rigden (JR) on May 21–22, 2003 and Bretislav Friedrich (BF) on March 5–9, 2012
    This article was downloaded by: [Harvard College] On: 30 August 2012, At: 22:23 Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK Molecular Physics: An International Journal at the Interface Between Chemistry and Physics Publication details, including instructions for authors and subscription information: http://www.tandfonline.com/loi/tmph20 Interleaved excerpts from interviews of Dudley Herschbach (DH) by John Rigden (JR) on May 21–22, 2003 and Bretislav Friedrich (BF) on March 5–9, 2012 Version of record first published: 27 Jun 2012 To cite this article: (2012): Interleaved excerpts from interviews of Dudley Herschbach (DH) by John Rigden (JR) on May 21–22, 2003 and Bretislav Friedrich (BF) on March 5–9, 2012, Molecular Physics: An International Journal at the Interface Between Chemistry and Physics, 110:15-16, 1549-1590 To link to this article: http://dx.doi.org/10.1080/00268976.2012.698097 PLEASE SCROLL DOWN FOR ARTICLE Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae, and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand, or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
    [Show full text]
  • Maria Goeppert Mayer Papers
    http://oac.cdlib.org/findaid/ark:/13030/tf4489p06g No online items Maria Goeppert Mayer Papers Special Collections & Archives, UC San Diego Special Collections & Archives, UC San Diego Copyright 2015 9500 Gilman Drive La Jolla 92093-0175 [email protected] URL: http://libraries.ucsd.edu/collections/sca/index.html Maria Goeppert Mayer Papers MSS 0020 1 Descriptive Summary Languages: English Contributing Institution: Special Collections & Archives, UC San Diego 9500 Gilman Drive La Jolla 92093-0175 Title: Maria Goeppert Mayer Papers Identifier/Call Number: MSS 0020 Physical Description: 7.5 Linear feet(15 archives boxes, 1 flat box and 1 map case folder) Date (inclusive): 1906-1996 (bulk 1930-1972) Abstract: Papers of Maria Goeppert Mayer, Nobel Prize winning physicist and professor at the University of California, 1960-1964. The collection includes correspondence, biographical information, reprints, manuscript drafts, notebooks, teaching materials, subject files, news clippings and photographs. Scope and Content of Collection Papers of Maria Goeppert Mayer, Nobel Prize winning physicist and professor at the University of California, 1960-1964. The collection includes correspondence, biographical information, reprints, manuscript drafts, notebooks, teaching materials, subject files, news clippings and photographs. Accessions Processed in 1988: Mayer's papers contain a relative abundance of correspondence and her research notebooks. There are scant manuscript materials related to her numerous publications. Arranged in seven series: 1) CORRESPONDENCE, 2) REPRINTS, WRITINGS, AND LECTURES, 3) RESEARCH NOTEBOOKS AND CLASS LECTURES, 4) TEACHING MATERIALS, 5) BIOGRAPHICAL MATERIALS, 6) NEWSPAPER CLIPPINGS and 7) SUBJECT MATERIALS. Accession Processed in 1997 Arranged in two series: 8) PHOTOGRAPHS and 9) AWARDS, CERTIFICATES AND DIPLOMAS. Accession Processed in 2015 Arranged in four series: 10) BIOGRAPHICAL MATERIALS, 11) CORRESPONDENCE, 12) WRITINGS BY MAYER and 13) PHOTOGRAPHS.
    [Show full text]