Ecozones of Canada

Total Page:16

File Type:pdf, Size:1020Kb

Ecozones of Canada Unit 3 Part 1 Pgs. 100- 109 • An introduction to Ecozones • - 15 terrestrial , or land regions. • - 5 marine ,or ocean regions. 1 Activity 1.Look at the map on p. 100 of your text. (a)What is the name of the ecozone you live in? (b)What image comes to mind when you think about that ecozone? 2 Ecozones 3 1. Ecozones • Marine • Terrestrial – Pacific – Arctic Cordillera – Arctic Archipelago – Northern Arctic – Arctic Basin – Southern Arctic – Northwest Atlantic – Taiga Plains – Atlantic – Taiga Shield – Taiga Cordillera – Hudson Plains – Boreal Plains – Boreal Shield – Boreal Cordillera – Pacific Maritime – Montane Cordillera – Prairies – Atlantic Maritime – Mixedwood Plains 4 2. Glossary Terms • Define the 2 terms below using the glossary. • Ecozones • Biodiversity 5 3.What is an Ecozone? • Ecozones are multifactor regions that are based upon a combination of natural and human characteristics. 6 4.The Characteristics of an Ecozone pg.102 • Landscape – Geology – Landforms – Climate – Soil – Water • Natural Vegetation • Wildlife • People 7 5. People Affect Ecozones p.104 • People can affect nature in significant ways. • Human activity often accelerates the pace of change in the environment, which causes stress on the environment. This can lead to serious and sometimes irreversible damage • Examples of damage: – Smoggy air, polluted water, disappearing forests and animals, collapse of fisheries. 8 6. Biodiversity pg.105 • Ecozones vary in shape and size which leads to them varying in biodiversity. • - Biodiversity means that there is a large variety of living things contained in each ecozone. 9 • Complete Handout #1 10 7.Where we live - Glossary Words (p.106) • Use the glossary to define the following terms: • Habitat • Ecology • Terrestrial Ecozone • Marine Ecozone • Boundary • Transition Zone 11 • Ecozones are vast in size, and so contain many smaller ecosystems. – Wet lands and local forests, are examples of ecosystems within ecozones. • Boundary lines for ecozones are marked by the location of transition zones, where characteristics blend from one ecozone to the next. 12 • Ecozones represents the habitat of distinct communities of plants and animals. • They give you a broad picture of how natural and human features interact in different parts of Canada. • Marine Ecozones – Ocean regions • Terrestrial Ecozones – Land regions 13 • Complete Handout #2 14 8.Terrestrial Ecozones that we will study • Boreal Shield • Mixwood Plains • Prairie • Montane Cordillera • Southern Arctic 15 9.Marine Ecosystem we will study • Atlantic Marine Ecozone 16 • Complete In Class Assignment #1 17 Unit 3 Part 2 • Canada’s Ecozones Pgs. 110-149. 18 1. Boreal Shield 19 The Boreal Shield – The Big Wild pgs. 110-121 • - The Boreal Shield contains two important natural features : the rocky Canadian shield and the coniferous northern forest. • - It’s referred to as the Big Wild and in some places is 1000 kilometres wide. • - Many aboriginal communities call this area home . • - It contains steep rocky hills, dense forest , thousands of lakes and swampy wetlands called muskegs. 20 Define the Glossary Terms! • Muskeg • Taiga • Timberland 21 The Boreal Shield • The Boreal Shield is a combination of two important natural features: – The rocky Canadian Shield – The coniferous northern forest • The Boreal Shield is a huge ecozone, in some places stretching over 1000 kilometres wide. • It as been called the Amazon of the North 22 Landscape • The Boreal Shield has a very distinct look. This is due mostly to glaciers that scraped the land and exposed the granite bedrock, leaving behind thin soils and many depressions. • These depression fill with water creating bogs, swamps and lakes. 23 Natural Vegetation • The natural vegetation of the Boreal Shield is well adapted to cold winters and short, hot summers and just enough precipitation to support a dense forest. 24 Natural Vegetation • Black Spruce and balsam fir are used in high quantity for the pulp and paper mills. • Hardy deciduous trees like birch and poplar are found on the southern edges of the region. • Lichens and shrubs are also found in this area. 25 • Complete Handout #3 26 People • About 4 million people live in the Boreal Shield • Mines and mills are major resources in this ecozone. • Remote hunting and fishing lodges create a prosperous tourism industry. 27 People • Many Aboriginal peoples live in the Boreal Shield • Some maintain their traditions of hunting and fishing while others work in resources, businesses, construction or tourism. 28 People • In Newfoundland and Labrador, fishing formed the basis of the economy. • However, recent overfishing has led to the collapse of major fish stocks, which have impaired many coastal fishing communities. 29 Threats • Logging, mining, the building of oil and gas pipelines, and hydroelectric development all threaten the ecozone. • Forestry industry – Clear-cutting methods leave few trees behind in logging areas – Only a few tree species are being replanted. 30 • Handout #4 31 Threats • Roads – Road building through the ecozone force sediment buildup in streams and rivers – Road separate animal habitats, leaving them vulnerable – Road access brings more motorized vehicles into an area leading to more pollution, risk of fire and an overall negative impact on the wildlife. 32 Activate your Learning! • Page 121 • Q.1 and 4 33 2.Montane Cordillera pgs.122-127 34 Define the Glossary Words! • Orographic precipitation • Windward • Alpine tundra • Leeward • Mountain pine beetle 35 Montane Cordillera Landscape • This eco zone lies mostly in British Columbia, with 10% in Alberta • It consists of rows of mountains separated by wide valleys and plateaus (areas of elevated, flat land) • The montane cordillera is a land of exceptional natural history 36 Montane Cordillera Natural Vegetation • Natural vegetation varies greatly in the Montane Cordillera. This depends upon the location on mountains or in valleys • Why does vegetation vary? – Orographic precipitation 37 Page 123 (fig. 3.22) 38 Orographic Precipitation Windward Slopes of Mountains • These slopes are located on the west side of the mountain ranges where wind brings moisture from the Pacific. • Most precipitation is found on the windward side of mountains, so the lower parts of windward slopes are dense with coniferous forests (spruce, pine). 39 Orographic Precipitation Near the Top of the Mountain • The mountain top is too cold and windswept for trees to grow, so alpine tundra vegetation grows here (moss, lichen, and grasses). • Mountain Peaks – Have permanent ice. 40 Orographic Precipitation The leeward side of Mountains • This side of the mountain is more protected and therefore does not receive much precipitation. • Grasses and sagebrush grow in valleys of these regions. 41 Orographic Precipitation 42 Wildlife • Big horned sheep • Mountain goats • Grizzly Bear • White tailed deer • Mink 43 People • Forestry – Coniferous forests of the lower and middle slopes are a great resource for logging companies. • Tourism – Hiking, mountain climbing, hunting, fishing, etc. 44 People • Farming – Climate and soil conditions in valleys provide ideal conditions for fruit farming and vineyards 45 People • Mining – Coal deposits in ancient sedimentary rock provides a great resource for mining companies • Cattle Ranching – Grasslands on interior plateaus are perfect for cattle ranching 46 Threats • Logging – Logging, replanting and maintaining forest cover is essential for sustaining wildlife habitats – Urban growth, industrialization, agriculture and tourism are encroaching on grasslands and increasing pressure on water supplies. 47 Threats • The Mountain Pine Beetle – Kills trees by eating holes in the inner bark, laying eggs there. – This leaves a mass of dying red trees, costing the provincial economy millions of dollars – Both B.C and Alberta are burning forests in an attempt to contain and kill the pest. 48 Geolab Challenge • Page 126 Complete Handout #5 • Solving A Climate Mystery 49 3.The Prairie Ecozone pgs. 128-137 50 Define the Glossary Words! • Potholes • Slough • Drought • Badlands • Grasslands • Shelterbelt • Windbreak • Chinook 51 Landscape • The Prairie land is very distinct • From above, the land appears flat. However, a closer view reveals depressions in the soil (potholes) that are left behind by glaciers. • Many depressions have become wetlands which support a variety of plant life and wildlife 52 Landscape • Other aspects of the Prairie landscape include: – River valleys – Hills and eroded badlands (an unusual landscape created by the erosion of soft sedimentary rock.) – Gently rolling grasslands • A mixture of different grasslands – Impressions of the Prairie Ecozone (p128) 53 Landscape • The Prairies are a continental climate. This is because: – They are located in the centre of the continent. – The Rocky Mountains to the west act as barriers against rain bearing winds. – Dry arctic masses move in from the north, making the winters long and cold. – They are far from the moderating effects of bodies of water. 54 Vegetation • Wet and rich nutrient filled areas give way to fertile soil • Tall grasses grow in wet areas, while shorter grasses grow in drier areas. • Drought resistant plants such as sagebrush and short grasses grown in drier areas. • 90% of the Prairie landscape is used for agriculture. 55 Disappearing Grasslands • Less that half of the prairie's original wetlands, potholes and sloughs remain. • Many have been drained and cleared for farming and urban development. • This development has led
Recommended publications
  • Okanagan Range Ecoregion
    Selecting Plants for Pollinators A Guide for Gardeners, Farmers, and Land Managers In the Okanagan Range Ecoregion Keremeos and Hedley Table of CONTENTS Why Support Pollinators? 4 Getting Started 5 Okanagan range 6 Meet the Pollinators 8 Plant Traits 10 Developing Plantings 12 Farms 13 Public Lands 14 Home Landscapes 15 Plants That Attract Pollinators 16 Habitat hints 20 Habitat and Nesting requirements 21 S.H.A.R.E. 22 Checklist 22 This is one of several guides for different regions of North America. Resources and Feedback 23 We welcome your feedback to assist us in making the future guides useful. Please contact us at [email protected] 2 Selecting Plants for Pollinators Selecting Plants for Pollinators A Guide for Gardeners, Farmers, and Land Managers In the Okanagan Range Ecoregion Keremeos and Hedley A NAPPC and Pollinator Partnership Canada™ Publication Okanagan Range 3 Why support pollinators? IN THEIR 1996 BOOK, THE FORGOTTEN POLLINATORS, Buchmann and Nabhan estimated that animal pollinators are needed for the reproduction “Flowering plants of 90% of fl owering plants and one third of human food crops. Each of us depends on these industrious pollinators in a practical way to provide us with the wide range of foods we eat. In addition, pollinators are part of the across wild, intricate web that supports the biological diversity in natural ecosystems that helps sustain our quality of life. farmed and even Abundant and healthy populations of pollinators can improve fruit set and quality, and increase fruit size. In farming situations this increases production per hectare. In the wild, biodiversity increases and wildlife urban landscapes food sources increase.
    [Show full text]
  • The Alaska-Yukon Region of the Circumboreal Vegetation Map (CBVM)
    CAFF Strategy Series Report September 2015 The Alaska-Yukon Region of the Circumboreal Vegetation Map (CBVM) ARCTIC COUNCIL Acknowledgements CAFF Designated Agencies: • Norwegian Environment Agency, Trondheim, Norway • Environment Canada, Ottawa, Canada • Faroese Museum of Natural History, Tórshavn, Faroe Islands (Kingdom of Denmark) • Finnish Ministry of the Environment, Helsinki, Finland • Icelandic Institute of Natural History, Reykjavik, Iceland • Ministry of Foreign Affairs, Greenland • Russian Federation Ministry of Natural Resources, Moscow, Russia • Swedish Environmental Protection Agency, Stockholm, Sweden • United States Department of the Interior, Fish and Wildlife Service, Anchorage, Alaska CAFF Permanent Participant Organizations: • Aleut International Association (AIA) • Arctic Athabaskan Council (AAC) • Gwich’in Council International (GCI) • Inuit Circumpolar Council (ICC) • Russian Indigenous Peoples of the North (RAIPON) • Saami Council This publication should be cited as: Jorgensen, T. and D. Meidinger. 2015. The Alaska Yukon Region of the Circumboreal Vegetation map (CBVM). CAFF Strategies Series Report. Conservation of Arctic Flora and Fauna, Akureyri, Iceland. ISBN: 978- 9935-431-48-6 Cover photo: Photo: George Spade/Shutterstock.com Back cover: Photo: Doug Lemke/Shutterstock.com Design and layout: Courtney Price For more information please contact: CAFF International Secretariat Borgir, Nordurslod 600 Akureyri, Iceland Phone: +354 462-3350 Fax: +354 462-3390 Email: [email protected] Internet: www.caff.is CAFF Designated
    [Show full text]
  • Origin, Burial and Preservation of Late Pleistocene-Age Glacier Ice in Arctic
    Origin, burial and preservation of late Pleistocene-age glacier ice in Arctic permafrost (Bylot Island, NU, Canada) Stephanie Coulombe1 2 3, Daniel Fortier 2 3 5, Denis Lacelle4, Mikhail Kanevskiy5, Yuri Shur5 6 1Polar Knowledge Canada, Cambridge Bay, X0B 0C0, Canada 5 2Department of Geography, Université de Montréal, Montréal, H2V 2B8, Canada 3Centre for Northern Studies, Université Laval, Quebec City, G1V 0A6, Canada 4Department of Geography, Environment and Geomatics, University of Ottawa, Ottawa, K1N 6N5, Canada 5Institute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, 99775-5910, USA 6Department of Civil and Environmental Engineering, University of Alaska Fairbanks, Fairbanks, 99775-5960, USA 10 Correspondence to: Stephanie Coulombe ([email protected]) Over the past decades, observations of buried glacier ice exposed in coastal bluffs and headwalls of retrogressive thaw slumps of the Arctic indicate that considerable amounts of late Pleistocene glacier ice survived the deglaciation and are still preserved in permafrost. In exposures, relict glacier ice and intrasedimental ice often coexist and look alike but their genesis is strikingly different. This paper aims to present a detailed description and infer the origin of a massive ice body preserved in the permafrost 15 of Bylot Island (Nunavut). The massive ice exposure and core samples were described according to the cryostratigraphic approach, combining the analysis of permafrost cryofacies and cryostructures, ice crystallography, stable O-H isotopes and cation contents. The ice was clear to whitish in appearance with large crystals (cm) and small gas inclusions (mm) at crystal intersections, similar to observations of englacial ice facies commonly found on contemporary glaciers and ice sheets.
    [Show full text]
  • Taiga Plains
    ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES Taiga Plains Ecosystem Classification Group Department of Environment and Natural Resources Government of the Northwest Territories Revised 2009 ECOLOGICAL REGIONS OF THE NORTHWEST TERRITORIES TAIGA PLAINS This report may be cited as: Ecosystem Classification Group. 2007 (rev. 2009). Ecological Regions of the Northwest Territories – Taiga Plains. Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, NT, Canada. viii + 173 pp. + folded insert map. ISBN 0-7708-0161-7 Web Site: http://www.enr.gov.nt.ca/index.html For more information contact: Department of Environment and Natural Resources P.O. Box 1320 Yellowknife, NT X1A 2L9 Phone: (867) 920-8064 Fax: (867) 873-0293 About the cover: The small photographs in the inset boxes are enlarged with captions on pages 22 (Taiga Plains High Subarctic (HS) Ecoregion), 52 (Taiga Plains Low Subarctic (LS) Ecoregion), 82 (Taiga Plains High Boreal (HB) Ecoregion), and 96 (Taiga Plains Mid-Boreal (MB) Ecoregion). Aerial photographs: Dave Downing (Timberline Natural Resource Group). Ground photographs and photograph of cloudberry: Bob Decker (Government of the Northwest Territories). Other plant photographs: Christian Bucher. Members of the Ecosystem Classification Group Dave Downing Ecologist, Timberline Natural Resource Group, Edmonton, Alberta. Bob Decker Forest Ecologist, Forest Management Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Hay River, Northwest Territories. Bas Oosenbrug Habitat Conservation Biologist, Wildlife Division, Department of Environment and Natural Resources, Government of the Northwest Territories, Yellowknife, Northwest Territories. Charles Tarnocai Research Scientist, Agriculture and Agri-Food Canada, Ottawa, Ontario. Tom Chowns Environmental Consultant, Powassan, Ontario. Chris Hampel Geographic Information System Specialist/Resource Analyst, Timberline Natural Resource Group, Edmonton, Alberta.
    [Show full text]
  • Across Borders, for the Future: Torngat Mountains Caribou Herd Inuit
    ACROSS BORDERS, FOR THE FUTURE: Torngat Mountains Caribou Herd Inuit Knowledge, Culture, and Values Study Prepared for the Nunatsiavut Government and Makivik Corporation, Parks Canada, and the Torngat Wildlife and Plants Co-Management Board - June 2014 This report may be cited as: Wilson KS, MW Basterfeld, C Furgal, T Sheldon, E Allen, the Communities of Nain and Kangiqsualujjuaq, and the Co-operative Management Board for the Torngat Mountains National Park. (2014). Torngat Mountains Caribou Herd Inuit Knowledge, Culture, and Values Study. Final Report to the Nunatsiavut Government, Makivik Corporation, Parks Canada, and the Torngat Wildlife and Plants Co-Management Board. Nain, NL. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise (except brief passages for purposes of review) without the prior permission of the authors. Inuit Knowledge is intellectual property. All Inuit Knowledge is protected by international intellectual property rights of Indigenous peoples. As such, participants of the Torngat Mountains Caribou Herd Inuit Knowledge, Culture, and Values Study reserve the right to use and make public parts of their Inuit Knowledge as they deem appropriate. Use of Inuit Knowledge by any party other than hunters and Elders of Nunavik and Nunatsiavut does not infer comprehensive understanding of the knowledge, nor does it infer implicit support for activities or projects in which this knowledge is used in print, visual, electronic, or other media. Cover photo provided by and used with permission from Rodd Laing. All other photos provided by the lead author.
    [Show full text]
  • Ecoregions with Grasslands in British Columbia, the Yukon, and Southern Ontario
    83 Chapter 4 Ecoregions with Grasslands in British Columbia, the Yukon, and Southern Ontario Joseph D. Shorthouse Department of Biology, Laurentian University Sudbury, Ontario, Canada P3E 2C6 Abstract. The second largest grasslands of Canada are found in south-central British Columbia in valleys between mountain ranges and on arid mountain-side steppes or benchlands. The province contains five ecozones, with most of the grassland habitat in the Montane Cordillera Ecozone. This ecozone consists of a series of plateaux and low mountain ranges and comprises 17 ecoregions, 7 of which contain grasslands. Dominant grasses here are bunchgrasses. A few scattered grasslands are found in the Yukon in the Boreal Cordillera Ecozone within three ecoregions. Grasslands in southwestern Ontario consist of about 100 small remnants of what was once much more abundant tallgrass prairie. These grasslands grow in association with widely spaced deciduous trees and are remnants of a past prairie peninsula. Grasslands called alvars are also found on flat limestone bedrock in southern Ontario. This chapter briefly describes the physiography, climate, soils, and prominent flora of each ecoregion for the benefit of future biologists wishing to study the biota of these unique grasslands. Résumé. Les prairies du centre-sud de la Colombie-Britannique sont les deuxièmes plus vastes au Canada. Elles se trouvent dans les vallées séparant les chaînes de montagnes, et sur les steppes ou replats arides à flanc de montagne. La province renferme cinq écozones, et l’habitat de prairies se trouve principalement dans l’écozone de la cordillère alpestre. Cette écozone est constituée d’une série de plateaux et de chaînes de montagnes basses et se divise en 17 écorégions, dont 7 renferment des prairies.
    [Show full text]
  • Classification of Ecosystem Types: Experiences and Perspectives from Statistics Canada
    Classification of ecosystem types: Experiences and perspectives from Statistics Canada Prepared for Forum of Experts in SEEA Experimental Ecosystem Accounting 2018 18 – 20 June 2018 Glen Cove, New York, USA Prepared by: Jennie Wang, Marcelle Grenier, Mark Henry and François Soulard,1 Environmental Accounts and Statistics Program, Statistics Canada. Working paper, June 14, 2018. 1 Corresponding author: [email protected] 1 Contents Introduction .............................................................................................................................................. 3 Initial work on measuring ecosystem extent in Canada ......................................................................... 3 Ecological classification in Canada ........................................................................................................ 3 Measuring ecosystem goods and services ............................................................................................ 6 Ecosystem extent accounts ................................................................................................................... 6 Discussion issues ...................................................................................................................................... 7 Ecological classification ......................................................................................................................... 7 Identifying ecosystem types ................................................................................................................
    [Show full text]
  • Caribou (Barren-Ground Population) Rangifer Tarandus
    COSEWIC Assessment and Status Report on the Caribou Rangifer tarandus Barren-ground population in Canada THREATENED 2016 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2016. COSEWIC assessment and status report on the Caribou Rangifer tarandus, Barren-ground population, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xiii + 123 pp. (http://www.registrelep-sararegistry.gc.ca/default.asp?lang=en&n=24F7211B-1). Production note: COSEWIC would like to acknowledge Anne Gunn, Kim Poole, and Don Russell for writing the status report on Caribou (Rangifer tarandus), Barren-ground population, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Justina Ray, Co-chair of the COSEWIC Terrestrial Mammals Specialist Subcommittee, with the support of the members of the Terrestrial Mammals Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment and Climate Change Canada Ottawa, ON K1A 0H3 Tel.: 819-938-4125 Fax: 819-938-3984 E-mail: [email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le Caribou (Rangifer tarandus), population de la toundra, au Canada. Cover illustration/photo: Caribou — Photo by A. Gunn. Her Majesty the Queen in Right of Canada, 2016. Catalogue No. CW69-14/746-2017E-PDF ISBN 978-0-660-07782-6 COSEWIC Assessment Summary Assessment Summary – November 2016 Common name Caribou - Barren-ground population Scientific name Rangifer tarandus Status Threatened Reason for designation Members of this population give birth on the open arctic tundra, and most subpopulations (herds) winter in vast subarctic forests.
    [Show full text]
  • MOTHS and BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed Distributional Information Has Been J.D
    MOTHS AND BUTTERFLIES LEPIDOPTERA DISTRIBUTION DATA SOURCES (LEPIDOPTERA) * Detailed distributional information has been J.D. Lafontaine published for only a few groups of Lepidoptera in western Biological Resources Program, Agriculture and Agri-food Canada. Scott (1986) gives good distribution maps for Canada butterflies in North America but these are generalized shade Central Experimental Farm Ottawa, Ontario K1A 0C6 maps that give no detail within the Montane Cordillera Ecozone. A series of memoirs on the Inchworms (family and Geometridae) of Canada by McGuffin (1967, 1972, 1977, 1981, 1987) and Bolte (1990) cover about 3/4 of the Canadian J.T. Troubridge fauna and include dot maps for most species. A long term project on the “Forest Lepidoptera of Canada” resulted in a Pacific Agri-Food Research Centre (Agassiz) four volume series on Lepidoptera that feed on trees in Agriculture and Agri-Food Canada Canada and these also give dot maps for most species Box 1000, Agassiz, B.C. V0M 1A0 (McGugan, 1958; Prentice, 1962, 1963, 1965). Dot maps for three groups of Cutworm Moths (Family Noctuidae): the subfamily Plusiinae (Lafontaine and Poole, 1991), the subfamilies Cuculliinae and Psaphidinae (Poole, 1995), and ABSTRACT the tribe Noctuini (subfamily Noctuinae) (Lafontaine, 1998) have also been published. Most fascicles in The Moths of The Montane Cordillera Ecozone of British Columbia America North of Mexico series (e.g. Ferguson, 1971-72, and southwestern Alberta supports a diverse fauna with over 1978; Franclemont, 1973; Hodges, 1971, 1986; Lafontaine, 2,000 species of butterflies and moths (Order Lepidoptera) 1987; Munroe, 1972-74, 1976; Neunzig, 1986, 1990, 1997) recorded to date.
    [Show full text]
  • National Park System: a Screening Level Assessment
    Environment Canada Parks Canada Environnement Canada Parcs Canada Edited by: Daniel Scott Adaptation & Impacts Research Group, Environment Canada and Roger Suffling School of Planning, University of Waterloo May 2000 Climate change and Canada’s national park system: A screening level assessment Le Changement climatique et le réseau des parcs nationaux du Canada : une évaluation préliminaire This report was prepared for Parks Canada, Department of Canadian Heritage by the Adaptation & Impacts Research Group, Environment Canada and the Faculty of Environmental Studies, University of Waterloo. The views expressed in the report are those of the study team and do not necessarily represent the opinions of Parks Canada or Environment Canada. Catalogue No.: En56-155/2000E ISBN: 0-662-28976-5 This publication is available in PDF format through the Adaptation and Impacts Research Group, Environment Canada web site < www1.tor.ec.gc.ca/airg > and available in Canada from the following Environment Canada office: Inquiry Centre 351 St. Joseph Boulevard Hull, Quebec K1A 0H3 Telephone: (819) 997-2800 or 1-800-668-6767 Fax: (819) 953-2225 Email: [email protected] i Climate change and Canada’s national park system: A screening level assessment Le Changement climatique et le réseau des parcs nationaux du Canada : une évaluation préliminaire Project Leads and Editors: Dr. Daniel Scott1 and Dr. Roger Suffling2 1 Adaptation and Impacts Research Group, Environment Canada c/o the Faculty of Environmental Studies, University of Waterloo Waterloo, Ontario N2L 3G1 519-888-4567 ext. 5497 [email protected] 2 School of Planning Faculty of Environmental Studies, University of Waterloo Waterloo, Ontario N2L 3G1 Research Team: Derek Armitage - Ph.D.
    [Show full text]
  • Integrating Biophysical and Eco-Cultural Fire in Canada Doi: 10.4996/Fireecology.0701074 Page 74
    Fire Ecology Volume 7, Issue 1, 2011 White et al.: Integrating Biophysical and Eco-Cultural Fire in Canada doi: 10.4996/fireecology.0701074 Page 74 FORUM ARTICLE BURNING AT THE EDGE: INTEGRATING BIOPHYSICAL AND ECO-CULTURAL FIRE PROCESSES IN CANADA’S PARKS AND PROTECTED AREAS Clifford A. White1*, Daniel D.B. Perrakis2, Victor G. Kafka3, and Timothy Ennis4 1Parks Canada Agency, P.O. Box 900, Banff National Park, Banff, Alberta, Canada T1L 1K2 2 British Columbia Ministry of Natural Resource Operations, Wildfire Management Branch, P.O. Box 9502 Station Provincial Government Victoria, British Columbia, Canada V8W 9C1 3Parks Canada Agency, Ecosystem Conservation Service, 3 passage du Chien d’Or, C.P. 6060, Haute-Ville, Québec, Province of Québec, Canada G1R 4V7 4 Nature Conservancy of Canada, 200-825 Broughton Street, Victoria, British Columbia, Canada V8W 1E5 *Corresponding author: Tel.: 001-403-760-0203; e-mail: [email protected] ABSTRACT Currently, high intensity, large-area lightning fires that burn during droughts dominate Canada’s fire regimes. However, studies from several disciplines clearly show that hu- mans historically ignited burns within this matrix of large fires. Two approaches for fire research and management have arisen from this pattern: a “large-fire biophysical para- digm” related to lightning-ignited fires, and an “eco-cultural paradigm” related to human- caused burning. Working at the edge between biophysically driven fires and eco-cultural burns, and their associated management and research paradigms, presents unique chal- lenges to land managers. We proceed by describing fire frequency trends across Canada, and how an interaction between changing climatic and cultural factors may provide better causal explanations for observed patterns than either group of factors alone.
    [Show full text]
  • Article Is Available On- Anderson, E
    Hydrol. Earth Syst. Sci., 25, 2513–2541, 2021 https://doi.org/10.5194/hess-25-2513-2021 © Author(s) 2021. This work is distributed under the Creative Commons Attribution 4.0 License. The spatial extent of hydrological and landscape changes across the mountains and prairies of Canada in the Mackenzie and Nelson River basins based on data from a warm-season time window Paul H. Whitfield1,2,3, Philip D. A. Kraaijenbrink4, Kevin R. Shook1, and John W. Pomeroy1 1Centre for Hydrology, University of Saskatchewan, Saskatoon, SK, S7N 1K2, Canada 2Department of Earth Sciences, Simon Fraser University, Burnaby, BC, Canada 3Environment and Climate Change Canada, Vancouver, BC, Canada 4Geosciences, Utrecht University, Utrecht, the Netherlands Correspondence: Paul H. Whitfield (paul.h.whitfi[email protected]) Received: 24 November 2020 – Discussion started: 4 January 2021 Revised: 30 March 2021 – Accepted: 8 April 2021 – Published: 18 May 2021 Abstract. East of the Continental Divide in the cold inte- separating the Canadian Rockies and other mountain ranges rior of Western Canada, the Mackenzie and Nelson River in the west from the poorly defined drainage basins in the basins have some of the world’s most extreme and variable east and north. Three specific areas of change were iden- climates, and the warming climate is changing the landscape, tified: (i) in the mountains and cold taiga-covered subarc- vegetation, cryosphere, and hydrology. Available data consist tic, streamflow and greenness were increasing while wetness of streamflow records from a large number (395) of natu- and snowcover were decreasing, (ii) in the forested Boreal ral (unmanaged) gauged basins, where flow may be peren- Plains, particularly in the mountainous west, streamflows nial or temporary, collected either year-round or during only and greenness were decreasing but wetness and snowcover the warm season, for a different series of years between were not changing, and (iii) in the semi-arid to sub-humid 1910 and 2012.
    [Show full text]