Response Statement - Deepwater Redfish, Gulf of St

Total Page:16

File Type:pdf, Size:1020Kb

Response Statement - Deepwater Redfish, Gulf of St Response Statement - Deepwater Redfish, Gulf of St. Lawrence - Laurentian Channel population December 2, 2010 Common Name: Deepwater Redfish, Gulf of St. Lawrence - Laurentian Channel population Scientific Name: Sebastes mentella Status assessment by the Committee on the Status of Endangered Wildlife in Canada (COSEWIC): Endangered How the Minister of the Environment intends to respond to the assessment: The Minister of Fisheries and Oceans will undertake consultations with the governments of Quebec, Newfoundland and Labrador, New Brunswick, Nova Scotia and Prince Edward Island, Aboriginal peoples, stakeholders, and the public on whether or not the Deepwater Redfish, Gulf of St. Lawrence - Laurentian Channel population, should be added to the List of Wildlife Species at Risk (Schedule 1) under the Species at Risk Act as Endangered. The Minister of the Environment will forward the COSEWIC assessment of the Deepwater Redfish, Gulf of St. Lawrence - Laurentian Channel population, to the Governor in Council upon completion of consultations. Once a species has been assessed by COSEWIC, further steps must be undertaken before it is added to Schedule 1 of the Species at Risk Act. For more information on this process, please view The Species Listing Process Under SARA. Reason(s) for status designation provided by COSEWIC: As with other members of the family Sebastidae, this species is long-lived (maximum age about 75 yr), late-maturing (generation time 18 yr), and highly vulnerable to mortality from human activities. Recruitment is episodic, with strong year-classes only occurring every 5-12 years. Abundance of mature individuals has declined 98% since 1984, somewhat more than one generation, and the decline has not ceased. Directed fishing and incidental harvest in fisheries for other species (bycatch) are the main known threats. Harvesting in parts of this population (Gulf of St. Lawrence) is currently limited to an index fishery, but commercial fisheries remain open in other areas (Laurentian Channel). Bycatch in shrimp fisheries has been substantially reduced since the 1990s by use of separator grates in trawls, but could still be frequent enough to affect recovery. Occurrence: Atlantic Ocean Competent Minister(s): Minister of Fisheries and Oceans Province(s) and territory (territories) to be consulted: Quebec Newfoundland and Labrador New Brunswick Nova Scotia Prince Edward Island Applicable federal legislation: Fisheries are managed and fish habitat is protected under the Fisheries Act. Conservation activities underway: Given their morphological similarities and the significant overlapping of their distribution areas, a number of criteria are needed to distinguish the deepwater redfish from the Acadian redfish. In view of the time and costs involved, it is hard to apply these criteria on a large scale. The "redfish" is therefore considered a single species within the fishing industry. The DFO recently recommended adopting a management strategy for each species (2008), and may soon begin drafting this. In the Northwest Atlantic, the redfish fishery is managed by DFO, NAFO, the U.S. government and certain American states. Since the Gulf of St. Lawrence and Laurentian Channel populations are exclusive to Canadian waters, they are managed by DFO. Further north, the stocks of the Grand Banks (NAFO divisions 3O and 3LN) are managed by NAFO, while those of Labrador (Sub-Zone 2) and northeast Newfoundland (Division 3K) are managed by DFO. The Acadian redfish population of the southern Scotian Shelf and Gulf of Maine is jointly managed by the United States and Canada. Moratoria on directed redfish fishing have been in force in the Gulf of St. Lawrence (Unit 1) since 1995, and in the southern Labrador (2J) and northeast Newfoundland (3K) divisions since 1988. The fishery in Grand Banks divisions 3L and 3N was reopened in 2010, after a moratorium that had been in place since 1998. Redfish fishing is subject to quotas on the Scotian Shelf, in the Gulf of Maine, and in Grand Banks Division 3O. In addition to catch limits, restrictions governing minimum catch and mesh sizes are in place to reduce pressure on immature redfish populations. To protect broodstock during spawning season, fishing in the Laurentian Channel is prohibited in May and June. A protected area has also been set aside for young redfish, to protect Acadian redfish populations in the southern sector (Browns Bank in the Gulf of Maine). The Nordmore grate, whose use in the northern shrimp fishery has been mandatory since 1994, considerably reduces redfish bycatches by allowing fish to escape from trawl nets..
Recommended publications
  • Marine Fish Conservation Global Evidence for the Effects of Selected Interventions
    Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca0 K. Smith & William J. Sutherland CONSERVATION EVIDENCE SERIES SYNOPSES Marine Fish Conservation Global evidence for the effects of selected interventions Natasha Taylor, Leo J. Clarke, Khatija Alliji, Chris Barrett, Rosslyn McIntyre, Rebecca K. Smith and William J. Sutherland Conservation Evidence Series Synopses 1 Copyright © 2021 William J. Sutherland This work is licensed under a Creative Commons Attribution 4.0 International license (CC BY 4.0). This license allows you to share, copy, distribute and transmit the work; to adapt the work and to make commercial use of the work providing attribution is made to the authors (but not in any way that suggests that they endorse you or your use of the work). Attribution should include the following information: Taylor, N., Clarke, L.J., Alliji, K., Barrett, C., McIntyre, R., Smith, R.K., and Sutherland, W.J. (2021) Marine Fish Conservation: Global Evidence for the Effects of Selected Interventions. Synopses of Conservation Evidence Series. University of Cambridge, Cambridge, UK. Further details about CC BY licenses are available at https://creativecommons.org/licenses/by/4.0/ Cover image: Circling fish in the waters of the Halmahera Sea (Pacific Ocean) off the Raja Ampat Islands, Indonesia, by Leslie Burkhalter. Digital material and resources associated with this synopsis are available at https://www.conservationevidence.com/
    [Show full text]
  • Southward Range Extension of the Goldeye Rockfish, Sebastes
    Acta Ichthyologica et Piscatoria 51(2), 2021, 153–158 | DOI 10.3897/aiep.51.68832 Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan Tak-Kei CHOU1, Chi-Ngai TANG2 1 Department of Oceanography, National Sun Yat-sen University, Kaohsiung, Taiwan 2 Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan http://zoobank.org/5F8F5772-5989-4FBA-A9D9-B8BD3D9970A6 Corresponding author: Tak-Kei Chou ([email protected]) Academic editor: Ronald Fricke ♦ Received 18 May 2021 ♦ Accepted 7 June 2021 ♦ Published 12 July 2021 Citation: Chou T-K, Tang C-N (2021) Southward range extension of the goldeye rockfish, Sebastes thompsoni (Actinopterygii: Scorpaeniformes: Scorpaenidae), to northern Taiwan. Acta Ichthyologica et Piscatoria 51(2): 153–158. https://doi.org/10.3897/ aiep.51.68832 Abstract The goldeye rockfish,Sebastes thompsoni (Jordan et Hubbs, 1925), is known as a typical cold-water species, occurring from southern Hokkaido to Kagoshima. In the presently reported study, a specimen was collected from the local fishery catch off Keelung, northern Taiwan, which represents the first specimen-based record of the genus in Taiwan. Moreover, the new record ofSebastes thompsoni in Taiwan represented the southernmost distribution of the cold-water genus Sebastes in the Northern Hemisphere. Keywords cold-water fish, DNA barcoding, neighbor-joining, new recorded genus, phylogeny, Sebastes joyneri Introduction On an occasional survey in a local fish market (25°7.77′N, 121°44.47′E), a mature female individual of The rockfish genusSebastes Cuvier, 1829 is the most spe- Sebastes thompsoni (Jordan et Hubbs, 1925) was obtained ciose group of the Scorpaenidae, which comprises about in the local catches, which were caught off Keelung, north- 110 species worldwide (Li et al.
    [Show full text]
  • Pacific False Kelpfish, Sebastiscus Marmoratus (Cuvier, 1829) (Scorpaeniformes, Sebastidae) Found in Norwegian Waters
    BioInvasions Records (2018) Volume 7, Issue 1: 73–78 Open Access DOI: https://doi.org/10.3391/bir.2018.7.1.11 © 2018 The Author(s). Journal compilation © 2018 REABIC Research Article Pacific false kelpfish, Sebastiscus marmoratus (Cuvier, 1829) (Scorpaeniformes, Sebastidae) found in Norwegian waters Haakon Hansen1,* and Egil Karlsbakk2 1Norwegian Veterinary Institute, P.O. Box 750 Sentrum, NO-0106 Oslo, Norway 2Department of Biology, University of Bergen, 5020 Bergen, Norway Author e-mails: [email protected] (HH), [email protected] (EK) *Corresponding author Received: 28 September 2017 / Accepted: 21 November 2017 / Published online: 1 December 2017 Handling editor: Henn Ojaveer Abstract During an angling competition in the Oslofjord, Southern Norway, a fish species previously unknown to the anglers was caught. Subsequent morphological studies and DNA barcoding identified it as a false kelpfish, Sebastiscus marmoratus (Cuvier, 1829), a species native to the Western Pacific from southern Hokkaido, Japan to the Philippines. The specimen was a female with a length of 29.2 cm and weighing 453 g. Stomach contents revealed fish remains, as well as the brachyuran Xantho pilipes A. Milne-Edwards, 1867 and remains of anomuran decapods. Parasitological examination revealed infections with the locally common generalist parasites Derogenes varicus (Digenea) and Hysterothylacium aduncum (Nematoda) that likely have been acquired through prey fish. A literature study of the parasites of S. marmoratus was carried out, listing at least 31 species. To the best of our knowledge, this is the first report of this fish species in the Atlantic. The introduction route is unknown, but the most likely possibility is via a ship’s ballast water as a larva or fry, which again would imply that the specimen has been in temperate waters for several years.
    [Show full text]
  • Venom Evolution Widespread in Fishes: a Phylogenetic Road Map for the Bioprospecting of Piscine Venoms
    Journal of Heredity 2006:97(3):206–217 ª The American Genetic Association. 2006. All rights reserved. doi:10.1093/jhered/esj034 For permissions, please email: [email protected]. Advance Access publication June 1, 2006 Venom Evolution Widespread in Fishes: A Phylogenetic Road Map for the Bioprospecting of Piscine Venoms WILLIAM LEO SMITH AND WARD C. WHEELER From the Department of Ecology, Evolution, and Environmental Biology, Columbia University, 1200 Amsterdam Avenue, New York, NY 10027 (Leo Smith); Division of Vertebrate Zoology (Ichthyology), American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Leo Smith); and Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024-5192 (Wheeler). Address correspondence to W. L. Smith at the address above, or e-mail: [email protected]. Abstract Knowledge of evolutionary relationships or phylogeny allows for effective predictions about the unstudied characteristics of species. These include the presence and biological activity of an organism’s venoms. To date, most venom bioprospecting has focused on snakes, resulting in six stroke and cancer treatment drugs that are nearing U.S. Food and Drug Administration review. Fishes, however, with thousands of venoms, represent an untapped resource of natural products. The first step in- volved in the efficient bioprospecting of these compounds is a phylogeny of venomous fishes. Here, we show the results of such an analysis and provide the first explicit suborder-level phylogeny for spiny-rayed fishes. The results, based on ;1.1 million aligned base pairs, suggest that, in contrast to previous estimates of 200 venomous fishes, .1,200 fishes in 12 clades should be presumed venomous.
    [Show full text]
  • Humboldt Bay Fishes
    Humboldt Bay Fishes ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> ·´¯`·._.·´¯`·.. ><((((º>`·._ .·´¯`·. _ .·´¯`·. ><((((º> Acknowledgements The Humboldt Bay Harbor District would like to offer our sincere thanks and appreciation to the authors and photographers who have allowed us to use their work in this report. Photography and Illustrations We would like to thank the photographers and illustrators who have so graciously donated the use of their images for this publication. Andrey Dolgor Dan Gotshall Polar Research Institute of Marine Sea Challengers, Inc. Fisheries And Oceanography [email protected] [email protected] Michael Lanboeuf Milton Love [email protected] Marine Science Institute [email protected] Stephen Metherell Jacques Moreau [email protected] [email protected] Bernd Ueberschaer Clinton Bauder [email protected] [email protected] Fish descriptions contained in this report are from: Froese, R. and Pauly, D. Editors. 2003 FishBase. Worldwide Web electronic publication. http://www.fishbase.org/ 13 August 2003 Photographer Fish Photographer Bauder, Clinton wolf-eel Gotshall, Daniel W scalyhead sculpin Bauder, Clinton blackeye goby Gotshall, Daniel W speckled sanddab Bauder, Clinton spotted cusk-eel Gotshall, Daniel W. bocaccio Bauder, Clinton tube-snout Gotshall, Daniel W. brown rockfish Gotshall, Daniel W. yellowtail rockfish Flescher, Don american shad Gotshall, Daniel W. dover sole Flescher, Don stripped bass Gotshall, Daniel W. pacific sanddab Gotshall, Daniel W. kelp greenling Garcia-Franco, Mauricio louvar
    [Show full text]
  • Marine Fishes from Galicia (NW Spain): an Updated Checklist
    1 2 Marine fishes from Galicia (NW Spain): an updated checklist 3 4 5 RAFAEL BAÑON1, DAVID VILLEGAS-RÍOS2, ALBERTO SERRANO3, 6 GONZALO MUCIENTES2,4 & JUAN CARLOS ARRONTE3 7 8 9 10 1 Servizo de Planificación, Dirección Xeral de Recursos Mariños, Consellería de Pesca 11 e Asuntos Marítimos, Rúa do Valiño 63-65, 15703 Santiago de Compostela, Spain. E- 12 mail: [email protected] 13 2 CSIC. Instituto de Investigaciones Marinas. Eduardo Cabello 6, 36208 Vigo 14 (Pontevedra), Spain. E-mail: [email protected] (D. V-R); [email protected] 15 (G.M.). 16 3 Instituto Español de Oceanografía, C.O. de Santander, Santander, Spain. E-mail: 17 [email protected] (A.S); [email protected] (J.-C. A). 18 4Centro Tecnológico del Mar, CETMAR. Eduardo Cabello s.n., 36208. Vigo 19 (Pontevedra), Spain. 20 21 Abstract 22 23 An annotated checklist of the marine fishes from Galician waters is presented. The list 24 is based on historical literature records and new revisions. The ichthyofauna list is 25 composed by 397 species very diversified in 2 superclass, 3 class, 35 orders, 139 1 1 families and 288 genus. The order Perciformes is the most diverse one with 37 families, 2 91 genus and 135 species. Gobiidae (19 species) and Sparidae (19 species) are the 3 richest families. Biogeographically, the Lusitanian group includes 203 species (51.1%), 4 followed by 149 species of the Atlantic (37.5%), then 28 of the Boreal (7.1%), and 17 5 of the African (4.3%) groups. We have recognized 41 new records, and 3 other records 6 have been identified as doubtful.
    [Show full text]
  • Population Genetic Structure of Marbled Rockfish, Sebastiscus Marmoratus (Cuvier, 1829), in the Northwestern Pacific Ocean
    A peer-reviewed open-access journal ZooKeys 830: 127–144Population (2019) genetic structure of Marbled Rockfish,Sebastiscus marmoratus... 127 doi: 10.3897/zookeys.830.30586 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Population genetic structure of Marbled Rockfish, Sebastiscus marmoratus (Cuvier, 1829), in the northwestern Pacific Ocean Lu Liu1, Xiumei Zhang1,2, Chunhou Li3, Hui Zhang4, Takashi Yanagimoto5, Na Song1, Tianxiang Gao6 1 The Key Laboratory of Mariculture (Ocean University of China), Ministry of Education, 266071 Qingdao, China 2 Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, 266072 Qingdao, China 3 South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 510003 Guangzhou, China 4 Key Laboratory of Marine Ecology and Environment Sciences, Institute of Oceanology, Chinese Academy of Sciences, 266071 Qingdao, China 5 National Research Institute of Fisheries Science, Japan Fisheries Research and Education Agency, 2368648 Yokohama, Japan 6 Fisheries College, Zhejiang Ocean University, 316000 Zhoushan, China Corresponding author: Tianxiang Gao ([email protected]) Academic editor: M.E. Bichuette | Received 16 October 2018 | Accepted 2 February 2019 | Published 14 March 2019 http://zoobank.org/11C4F8F6-256F-4C41-A961-A2847CE94D4F Citation: Liu L, Zhang X, Li C, Zhang H, Yanagimoto T, Song N, Gao T (2019) Population genetic structure of Marbled Rockfish,Sebastiscus marmoratus (Cuvier, 1829), in the northwestern Pacific Ocean. ZooKeys 830: 127–144. https://doi.org/10.3897/zookeys.830.30586 Abstract Sebastiscus marmoratus is an ovoviviparous fish widely distributed in the northwestern Pacific. To examine the gene flow and test larval dispersal strategy of S. marmoratus in Chinese and Japanese coastal waters, 421 specimens were collected from 22 localities across its natural distribution.
    [Show full text]
  • Fishes-Of-The-Salish-Sea-Pp18.Pdf
    NOAA Professional Paper NMFS 18 Fishes of the Salish Sea: a compilation and distributional analysis Theodore W. Pietsch James W. Orr September 2015 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce Papers NMFS National Oceanic and Atmospheric Administration Kathryn D. Sullivan Scientifi c Editor Administrator Richard Langton National Marine Fisheries Service National Marine Northeast Fisheries Science Center Fisheries Service Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Offi ce of Science and Technology Fisheries Research and Monitoring Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientifi c Publications Offi ce 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service - The NOAA Professional Paper NMFS (ISSN 1931-4590) series is published by the Scientifi c Publications Offi ce, National Marine Fisheries Service, The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original NOAA, 7600 Sand Point Way NE, research reports, taxonomic keys, species synopses, fl ora and fauna studies, and data- Seattle, WA 98115. intensive reports on investigations in fi shery science, engineering, and economics. The Secretary of Commerce has Copies of the NOAA Professional Paper NMFS series are available free in limited determined that the publication of numbers to government agencies, both federal and state. They are also available in this series is necessary in the transac- exchange for other scientifi c and technical publications in the marine sciences.
    [Show full text]
  • Patt Uaf 0006N 10265.Pdf
    Life history characteristics, management strategies, and environmental and economic factors that contribute to the vulnerability of rockfish stocks off Alaska Item Type Thesis Authors Patt, Jacqueline Download date 26/09/2021 06:08:55 Link to Item http://hdl.handle.net/11122/4812 LIFE HISTORY CHARACTERISTICS, MANAGEMENT STRATEGIES, AND ENVIRONMENTAL AND ECONOMIC FACTORS THAT CONTRIBUTE TO THE VULNERABILITY OF ROCKFISH STOCKS OFF ALASKA A THESIS Presented to the Faculty of the University of Alaska Fairbanks in Partial Fulfillment of the Requirements for the Degree of MASTER OF SCIENCE By Jacqueline Patt, B.S. Fairbanks, Alaska December 2014 Abstract This study explored the extent to which variations in biological characteristics, environmental and economic factors, and management strategies have affected the tendency for rockfish to become overfished. The analysis used data on 5 species of rockfish that account for more than 95% of commercial catch of rockfish in the Gulf of Alaska (GOA) and Bering Sea and Aleutian Island (BSAI) management regions. These species are: Shortraker Rockfish ( Sebastes borealis ), Pacific Ocean Perch ( Sebastes alutus ), Northern Rockfish ( Sebastes polyspinis ), Dusky Rockfish ( Sebastes variabilis ), and Shortspine Thornyhead ( Sebastolobus alascanus ). Fishery management models often treat BMSY , the biomass level that maximizes sustainable yield, as a critical reference point; whenever the biomass of a federally managed fish or shellfish stock is estimated at less than 0.5× BMSY , the stock is declared “overfished” and managers are required to develop a recovery plan that will restore stock abundance above BMSY within about one generation length. Because estimates of BMSY are unavailable for some GOA and BSAI rockfish stocks included in this analysis and because we were interested in developing a model that could be applied to data-poor stocks, we explored two proxies for BMSY .
    [Show full text]
  • Poissons Marins De La Sous-Région Nord-Ouest Africaine
    COMMISSION EUROPEENNE CENTRE COMMUN DE RECHERCHE Institut de l'Environnement Durable 1-21020 Ispra (VA) Italie Poissons Marins de la Sous-Région Nord-Ouest Africaine par Jan Michael VAKILY, Sékou Balta CAMARA, Asberr Natoumbi M END Y, Yanda MARQUES, Birane SAMB, Abei Jûlio DOS SANTOS, Mohamed Fouad SHERIFF, Mahfoudh OULD TALEE SIDI et Daniel PAUL Y Cap Vert Mauritanie 1 *J* T II Senegal Gambie G'vnée-Bissau II Sierra Leone Guinée 2002 EUR 20379 FR COMMISSION EUROPEENNE CENTRE COMMUN DE RECHERCHE Institut de 1 Environnement Durable 1-21020 Ispra (VA) Italy Poissons Marins de la Sous-Région Nord-Ouest Africaine par Jan Michael Vakily3 , Sékou Balia Camara13, Asberr Natoumbi Mendyc, Vanda Marques0, Birane Sambe , Abei Julio dos Santosi Mohamed Fouad Sheriff6, Mahfoudh Ould Taleb Sidih et Daniel Pauly1 a Centre Commun de Recherche (CCR/IES), IMW Unit (TP 272), 21020 Ispra (VA), Italie b Centre National des Sciences Halieutiques de Boussoura (CNSHB), B.P. 3738, Conakry, Guinée ° Department of Fisheries, 6, Coi. Muammar Ghaddafi Avenue, Banjul, Gambie d Institut National de Développement des Pêches (INDP), CP 132, Mindelo, San Vicente, Cap Vert e Centre de Recherches Océanographiques de Dakar-Thiaroye (CRODT), BP 2241. Dakar, Sénégal f Centro de Investigaçao Pesqueira Aplicada (CIPA), C.P. 102, Bissau, Guinée-Bissau 8 Dep. of Fisheries, Ministry of Agriculture, Forestry & Marine Resources, Freetown, Sierra Leone b Inst. Mauritanien de Recherches Océanographiques et des Pêches (IMROP), B.P. 22, Nouadhibou, Mauritanie ' Fisheries Centre, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 2002 EUR 20379 FR LEGAL NOTICE Neither the European Commission nor any person acting on behalf of the Commission is responsible for the use, which might be made of the following information.
    [Show full text]
  • Deepwater Redfish/Acadian Redfish Complex Sebastes Mentella and Sebastes Fasciatus
    COSEWIC Assessment and Status Report on the Deepwater Redfish/Acadian Redfish complex Sebastes mentella and Sebastes fasciatus Deepwater Redfish Gulf of St. Lawrence - Laurentian Channel Population Deepwater Redfish Northern Population Acadian Redfish Atlantic Population Acadian Redfish Bonne Bay Population in Canada Deepwater Redfish Gulf of St. Lawrence - Laurentian Channel Population – ENDANGERED Deepwater Redfish Northern Population – THREATENED Acadian Redfish Atlantic Population – THREATENED Acadian Redfish Bonne Bay Population – SPECIAL CONCERN 2010 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2010. COSEWIC assessment and status report on the Deepwater Redfish/Acadian Redfish complex Sebastes mentella and Sebastes fasciatus, in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. x + 80 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Production note: COSEWIC would like to acknowledge Red Méthot for writing the status report on the Deepwater Redfish/Acadian Redfish complex Sebastes mentella and Sebastes fasciatus in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Alan Sinclair, Co-Chair of the COSEWIC Marine Fishes Specialist Subcommittee, and Howard Powles, previous Co-Chair of the COSEWIC Marine Fishes Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur le complexe sébaste atlantique/ sébaste d’Acadie (Sebastes mentella et Sebastes fasciatus) au Canada.
    [Show full text]
  • The First Two Complete Mitochondrial Genomes for the Family Triglidae
    www.nature.com/scientificreports OPEN The first two complete mitochondrial genomes for the family Triglidae and implications Received: 20 January 2017 Accepted: 31 March 2017 for the higher phylogeny of Published: xx xx xxxx Scorpaeniformes Lei Cui1, Yuelei Dong1, Fenghua Liu1, Xingchen Gao2, Hua Zhang1, Li Li1, Jingyi Cen1 & Songhui Lu1 The mitochondrial genome (mitogenome) can provide useful information for analyzing phylogeny and molecular evolution. Scorpaeniformes is one of the most diverse teleostean orders and has great commercial importance. To develop mitogenome data for this important group, we determined the complete mitogenomes of two gurnards Chelidonichthys kumu and Lepidotrigla microptera of Triglidae within Scorpaeniformes for the first time. The mitogenomes are 16,495 bp long in C. kumu and 16,610 bp long in L. microptera. Both the mitogenomes contain 13 protein-coding genes (PCGs), 2 ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes and two non-coding regions. All PCGs are initiated by ATG codons, except for the cytochrome coxidase subunit 1 (cox1) gene. All of the tRNA genes could be folded into typical cloverleaf secondary structures, with the exception of tRNASer(AGN) lacks a dihydrouracil (DHU) stem. The control regions are both 838 bp and contain several features common to Scorpaeniformes. The phylogenetic relationships of 33 fish mitogenomes using Bayesian Inference (BI) and Maximum Likelihood (ML) based on nucleotide and amino acid sequences of 13 PCGs indicated that the mitogenome sequences could be useful in resolving higher-level relationship of Scorpaeniformes. The results may provide more insight into the mitogenome evolution of teleostean species. Generally, the fish mitogenome is a circular and double-stranded molecule ranging from 15 to 19 kilobases in length.
    [Show full text]