) (51) International Patent Classification: Columbia V5G 1G3

Total Page:16

File Type:pdf, Size:1020Kb

) (51) International Patent Classification: Columbia V5G 1G3 ) ( (51) International Patent Classification: Columbia V5G 1G3 (CA). PANDEY, Nihar R.; 10209 A 61K 31/4525 (2006.01) C07C 39/23 (2006.01) 128A St, Surrey, British Columbia V3T 3E7 (CA). A61K 31/05 (2006.01) C07D 405/06 (2006.01) (74) Agent: ZIESCHE, Sonia et al.; Gowling WLG (Canada) A61P25/22 (2006.01) LLP, 2300 - 550 Burrard Street, Vancouver, British Colum¬ (21) International Application Number: bia V6C 2B5 (CA). PCT/CA2020/050165 (81) Designated States (unless otherwise indicated, for every (22) International Filing Date: kind of national protection av ailable) . AE, AG, AL, AM, 07 February 2020 (07.02.2020) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (25) Filing Language: English DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, (26) Publication Language: English HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, (30) Priority Data: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, 16/270,389 07 February 2019 (07.02.2019) US OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (63) Related by continuation (CON) or continuation-in-part SC, SD, SE, SG, SK, SL, ST, SV, SY, TH, TJ, TM, TN, TR, (CIP) to earlier application: TT, TZ, UA, UG, US, UZ, VC, VN, WS, ZA, ZM, ZW. US 16/270,389 (CON) (84) Designated States (unless otherwise indicated, for every Filed on 07 Februaiy 2019 (07.02.2019) kind of regional protection available) . ARIPO (BW, GH, (71) Applicant: MEDIPURE PHARMACEUTICALS INC. GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, [CA/CA]; 302 - 267 West Esplanade Ave, North Vancou¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, ver, British Columbia V7M 1A5 (CA). TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, (72) Inventors: TIWARI-PANDEY, Rashmi; 10209 128A St, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, Surrey, British Columbia V3T 3E7 (CA). KODEKALRA, TR), OAPI (BF, BJ, CF, CG, Cl, CM, GA, GN, GQ, GW, Rakshit Devappa; 5291 Norfolk Street, Burnaby, British KM, ML, MR, NE, SN, TD, TG). (54) Title: CANNABINOID RECEPTOR AGONISTS AND SERINE HYDROLASE ENZYME INHIBITOR BASED ANXIOLYTIC THERAPEUTIC PRODUCT Figure 1 (57) Abstract: Provided herein are formulations for treating affective mood disorders. The formulations comprise one or more than one CB receptor agonist and one or more than one serine hydrolase enzyme inhibitor. [Continued on next page] Published: with international search report (Art. 21(3)) with amended claims (Art. 19(1)) in black and white; the international application as fded contained color or greyscale and is available for download from PATENTSCOPE CANNABIN OID RECEPTOR AGONISTS AND SERINE HYDROLASE ENZYME INHIBITOR BASED ANXIOLYTIC THERAPEUTIC PRODUCT FIELD OF INVENTION [0001] This disclosure relates to formulations for treating mood disorders. Specifically, the present disclosure is related to formulations that combine one or more than one cannabinoid receptor agonist and one or more than one serine hydrolase enzyme inhibitor to treat mood disorders. BACKGROUND OF THE INVENTION [0002] Anxiety stems from and perpetuates dysregulation of neurobiological systems, but the exact mechanisms of anxiety disorders are still only partially understood. Low levels of gamma-aminobutyric acid (GABA), a neurotransmitter that reduces activity in the central nervous system, contribute to anxiety. A number of anxiolytics achieve their effect by modulating the GABA receptors. [0003] The GABA receptors are a class of receptors that respond to GABA, which is the chief inhibitory neurotransmitter in the mature vertebrate central nervous system. There are two classes of GABA receptors: GABA A (or GABA (A)) and GABA B (or GABA(B)). GABA A receptors are ligand-gated ion channels (also known as ionotropic receptors), whereas GABA B receptors are G protein-coupled receptors (also known as metabotropic receptors). [0004] All GABA A receptors contain an ion channel that conducts chloride ions across neuronal cell membranes and two binding sites for GABA, while a subset of GABA A receptor complexes also contain a single binding site for benzodiazepines. Binding of benzodiazepines to this receptor complex does not alter binding of GABA. Unlike other positive allosteric modulators that increases ligand binding, benzodiazepine binding acts as a positive allosteric modulator by increasing the total conduction of chloride ions across the neuronal cell membrane when GABA is already bound to its receptor. Therefore, benzodiazepines enhance the effect of GABA at the GABA A receptor, resulting in sedative, hypnotic (sleep-inducing), anxiolytic (anti anxiety), anticonvulsant, and muscle relaxant properties. [0005] While benzodiazepine products have been in the market to treat anxiety and associated mood disorders for some time, their use by many patients is poorly tolerated and include side effects such as: drowsiness, dizziness, decreased alertness and concentration, decreased libido, erection problems, depression, disinhibition, nausea, changes in appetite, blurred vision, confusion, euphoria, depersonalization, nightmares, liver toxicity, aggression, violence, impulsivity, irritability, suicidal behavior, seizures in people with epilepsy, anterograde amnesia, confusion, ataxia, hangover effects, falls, benzodiazepine dependence, and benzodiazepine withdrawal syndrome. [0006] Cannabis has been used as an anxiolytic, however the use has been limited to dry plant product which is smoked or a crude or standardized extract containing a mixture of uncharacterized phytochemical bioactives, including psychoactive cannabinoids such as tetrahydrocannabinol (THC) at concentrations which may produce negative side effects such as decrease in short-term memory, dry mouth, impaired motor skills, reddening of the eyes, increased heart rate, increased appetite and consumption of food, lowered blood pressure, impairment of short-term and working memory, reduced psychomotor coordination and concentration, and an increased risk of developing schizophrenia with adolescent use. [0007] Cannabinoids are a class of diverse chemical compounds that act on cannabinoid receptors on cells that repress neurotransmitter release in the brain. Ligands for these receptor proteins include the endocannabinoids (produced naturally in the body by humans and animals), the phytocannabinoids (found in cannabis and some other plants), and synthetic cannabinoids (manufactured artificially). Over 100 different cannabinoids have been isolated from cannabis, exhibiting varied effects [1]. The most notable cannabinoid is the phytocannabinoid tetrahydrocannabinol (THC), the primary psychoactive compound of cannabis mentioned above. Cannabidiol (CBD), one major non-psychotomimetic compound of the plant, shows psychological effects substantially different from those of THC, by having anxiolytic effects both in humans and in animals. [0008] Oral administration of CBD to healthy volunteers has been shown to attenuate the anxiogenic effect of THC and does not seem to involve any pharmacokinetic interactions [2] In animal studies, CBD has similar effects to anxiolytic drugs in different paradigms including conditioned emotional response, the Vogel conflict test, and the elevated plus-maze test [3] In human studies, the anxiolytic effects of CBD have been elicited in subjects submitted to the Simulation Public Speaking Test (SPST) [4] No signs of toxicity or serious side effects have been observed following chronic administration of cannabidiol to healthy volunteers [5], even in large acute doses of 700 mg/day [6] [0009] There are currently no cannabinoid prescription products on the market to treat mood disorders, particularly anxiety. [0010] The endocannabinoid system (ECS) is a group of endogenous cannabinoid receptors located in the mammalian brain and throughout the central and peripheral nervous systems, consisting of neuromodulatory lipids and their receptors. The ECS is involved in a variety of physiological processes including appetite, pain-sensation, mood, and memory, and in mediating the psychoactive effects of cannabis. Two primary endocannabinoid receptors have been identified: CB1 and CB2. CB1 receptors are found predominantly in the brain and nervous system, as well as in peripheral organs and tissues, and are the main molecular target of the endocannabinoid ligand Anandamide (AEA), as well as its mimetic phytocannabinoid, delta 9-tetrahydrocannabinol (THC). Cannabinoids such as psychoactive THC activate CB1 and CB2 receptors, but mainly exhibits its neuro-behavioural effects by interacting with CB1 receptors. CB1 agonism produces medicinally useful activities, such as analgesia, but also a number of undesirable side effects, including locomotor and cognitive impairments, as well as abuse liability. To date, it has proved difficult to uncouple these beneficial and untoward properties, thus limiting the therapeutic utility of direct CB1 agonists. [0011] One other main endocannabinoid is 2-Arachidonoylglycerol (2-AG) which is active at both cannabinoid receptors, along with its own mimetic phytocannabinoid, CBD. 2-AG and CBD are involved in the regulation of appetite, immune system functions and pain management. [0012] Endogenous cannabinoids (i.e., endocannabinoids), such as AEA and 2-AG, are produced throughout the limbic system and other brain regions associated with emotionality and are believed to modulate behavioral responses to stress-related conditions. Inhibition of AEA and
Recommended publications
  • TITLE PAGE Oxidative Stress and Response to Thymidylate Synthase
    Downloaded from molpharm.aspetjournals.org at ASPET Journals on October 2, 2021 -Targeted -Targeted 1 , University of of , University SC K.W.B., South Columbia, (U.O., Carolina, This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted. The final version may differ from this version. This article has not been copyedited and formatted.
    [Show full text]
  • Synthetic Cannabinoids (60 Substances) A) Classical Cannabinoid
    Synthetic cannabinoids (60 substances) a) Classical cannabinoid OH H OH H O Common name Chemical name CAS number Molecular Formula HU-210 3-(1,1’-dimethylheptyl)-6aR,7,10,10aR-tetrahydro-1- Synonym: 112830-95-2 C H O hydroxy-6,6-dimethyl-6H-dibenzo[b,d]pyran-9-methanol 25 38 3 11-Hydroxy-Δ-8-THC-DMH b) Nonclassical cannabinoids OH OH R2 R3 R4 R1 CAS Molecular Common name Chemical name R1 R2 R3 R4 number Formula rel-2[(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methyloctan- 2- yl) CP-47,497 70434-82-1 C H O CH H H H phenol 21 34 2 3 rel-2[(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methylheptan- 2- yl) CP-47,497-C6 - C H O H H H H phenol 20 32 2 CP-47,497-C8 rel-2- [(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methylnonan- 2- yl) 70434-92-3 C H O C H H H H Synonym: Cannabicyclohexanol phenol 22 36 2 2 5 CAS Molecular Common name Chemical name R1 R2 R3 R4 number Formula rel-2[(1 S,3 R)-3- hydroxycyclohexyl]- 5- (2- methyldecan- 2- yl) CP-47,497-C9 - C H O C H H H H phenol 23 38 2 3 7 rel-2- ((1 R,2 R,5 R)-5- hydroxy- 2- (3- hydroxypropyl)cyclohexyl)- 3-hydroxy CP-55,940 83003-12-7 C H O CH H H 5-(2- methyloctan- 2- yl)phenol 24 40 3 3 propyl rel-2- [(1 S,3 R)-3- hydroxy-5,5-dimethylcyclohexyl]- 5- (2- Dimethyl CP-47,497-C8 - C H O C H CH CH H methylnonan-2- yl)phenol 24 40 2 2 5 3 3 c) Aminoalkylindoles i) Naphthoylindoles 1' R R3' R2' O N CAS Molecular Common name Chemical name R1’ R2’ R3’ number Formula [1-[(1- methyl- 2- piperidinyl)methyl]- 1 H-indol- 3- yl]- 1- 1-methyl-2- AM-1220 137642-54-7 C H N O H H naphthalenyl-methanone 26 26 2 piperidinyl
    [Show full text]
  • Synthetic Cannabinoids, Forensic & Legal Aspects
    Synthetic Cannabinoids, Forensic & Legal Aspects Marilyn A. Huestis, PhD Chief, Chemistry & Drug Metabolism National Institute on Drug Abuse, National Institutes of Health Council of Forensic Medicine Istanbul, Turkey August 18, 2011 Synthetic Cannabinoid Overview Cannabinoid pharmacology Chemistry of synthetic cannabinoids Metabolism of synthetic cannabinoids Controlled drug administration studies Analytical methods for the identification of synthetic cannabinoids in biological & non-biological matrices Current legal status of synthetic cannabinoids Cannabis Mechanisms of Action THC binds to cannabinoid receptors & modulates endogenous cannabinoid & other neurotransmitter systems CB-1 receptors primarily in central nervous & cardiovascular systems CB-2 receptors primarily in immune system Non-CB1, non-CB2 receptors G-protein receptors discovered & cloned in late 1980’s Endogenous cannabinoids include anandamide, 2-AG, virodhamine, N-arachidonyl dopamine (NADA), oleamide, 2-arachidonyl glyceryl ether (noladin ether) & others High CB1 Receptor Density Hypothalamus Appetite, Hormones & Sexual behavior Neocortex High cognitive function & Sensory data Basal Ganglia integration Motor control & planning Hippocampus Memory & Learning Amygdala Anxiety, Emotion & Fear Cerebellum Brain Stem Motor control & Spinal Cord & coordination Vomiting reflex & Pain sensation Cannabinoid Mechanisms of Action Receptor distribution in brain correlates with areas involved in physiological, psychomotor & cognitive effects High density in caudate
    [Show full text]
  • The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z
    REVIEW pubs.acs.org/CR The Metabolic Serine Hydrolases and Their Functions in Mammalian Physiology and Disease Jonathan Z. Long* and Benjamin F. Cravatt* The Skaggs Institute for Chemical Biology and Department of Chemical Physiology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States CONTENTS 2.4. Other Phospholipases 6034 1. Introduction 6023 2.4.1. LIPG (Endothelial Lipase) 6034 2. Small-Molecule Hydrolases 6023 2.4.2. PLA1A (Phosphatidylserine-Specific 2.1. Intracellular Neutral Lipases 6023 PLA1) 6035 2.1.1. LIPE (Hormone-Sensitive Lipase) 6024 2.4.3. LIPH and LIPI (Phosphatidic Acid-Specific 2.1.2. PNPLA2 (Adipose Triglyceride Lipase) 6024 PLA1R and β) 6035 2.1.3. MGLL (Monoacylglycerol Lipase) 6025 2.4.4. PLB1 (Phospholipase B) 6035 2.1.4. DAGLA and DAGLB (Diacylglycerol Lipase 2.4.5. DDHD1 and DDHD2 (DDHD Domain R and β) 6026 Containing 1 and 2) 6035 2.1.5. CES3 (Carboxylesterase 3) 6026 2.4.6. ABHD4 (Alpha/Beta Hydrolase Domain 2.1.6. AADACL1 (Arylacetamide Deacetylase-like 1) 6026 Containing 4) 6036 2.1.7. ABHD6 (Alpha/Beta Hydrolase Domain 2.5. Small-Molecule Amidases 6036 Containing 6) 6027 2.5.1. FAAH and FAAH2 (Fatty Acid Amide 2.1.8. ABHD12 (Alpha/Beta Hydrolase Domain Hydrolase and FAAH2) 6036 Containing 12) 6027 2.5.2. AFMID (Arylformamidase) 6037 2.2. Extracellular Neutral Lipases 6027 2.6. Acyl-CoA Hydrolases 6037 2.2.1. PNLIP (Pancreatic Lipase) 6028 2.6.1. FASN (Fatty Acid Synthase) 6037 2.2.2. PNLIPRP1 and PNLIPR2 (Pancreatic 2.6.2.
    [Show full text]
  • Model Scheduling New/Novel Psychoactive Substances Act (Third Edition)
    Model Scheduling New/Novel Psychoactive Substances Act (Third Edition) July 1, 2019. This project was supported by Grant No. G1799ONDCP03A, awarded by the Office of National Drug Control Policy. Points of view or opinions in this document are those of the author and do not necessarily represent the official position or policies of the Office of National Drug Control Policy or the United States Government. © 2019 NATIONAL ALLIANCE FOR MODEL STATE DRUG LAWS. This document may be reproduced for non-commercial purposes with full attribution to the National Alliance for Model State Drug Laws. Please contact NAMSDL at [email protected] or (703) 229-4954 with any questions about the Model Language. This document is intended for educational purposes only and does not constitute legal advice or opinion. Headquarters Office: NATIONAL ALLIANCE FOR MODEL STATE DRUG 1 LAWS, 1335 North Front Street, First Floor, Harrisburg, PA, 17102-2629. Model Scheduling New/Novel Psychoactive Substances Act (Third Edition)1 Table of Contents 3 Policy Statement and Background 5 Highlights 6 Section I – Short Title 6 Section II – Purpose 6 Section III – Synthetic Cannabinoids 13 Section IV – Substituted Cathinones 19 Section V – Substituted Phenethylamines 23 Section VI – N-benzyl Phenethylamine Compounds 25 Section VII – Substituted Tryptamines 28 Section VIII – Substituted Phenylcyclohexylamines 30 Section IX – Fentanyl Derivatives 39 Section X – Unclassified NPS 43 Appendix 1 Second edition published in September 2018; first edition published in 2014. Content in red bold first added in third edition. © 2019 NATIONAL ALLIANCE FOR MODEL STATE DRUG LAWS. This document may be reproduced for non-commercial purposes with full attribution to the National Alliance for Model State Drug Laws.
    [Show full text]
  • NIDA Drug Supply Program Catalog, 25Th Edition
    RESEARCH RESOURCES DRUG SUPPLY PROGRAM CATALOG 25TH EDITION MAY 2016 CHEMISTRY AND PHARMACEUTICS BRANCH DIVISION OF THERAPEUTICS AND MEDICAL CONSEQUENCES NATIONAL INSTITUTE ON DRUG ABUSE NATIONAL INSTITUTES OF HEALTH DEPARTMENT OF HEALTH AND HUMAN SERVICES 6001 EXECUTIVE BOULEVARD ROCKVILLE, MARYLAND 20852 160524 On the cover: CPK rendering of nalfurafine. TABLE OF CONTENTS A. Introduction ................................................................................................1 B. NIDA Drug Supply Program (DSP) Ordering Guidelines ..........................3 C. Drug Request Checklist .............................................................................8 D. Sample DEA Order Form 222 ....................................................................9 E. Supply & Analysis of Standard Solutions of Δ9-THC ..............................10 F. Alternate Sources for Peptides ...............................................................11 G. Instructions for Analytical Services .........................................................12 H. X-Ray Diffraction Analysis of Compounds .............................................13 I. Nicotine Research Cigarettes Drug Supply Program .............................16 J. Ordering Guidelines for Nicotine Research Cigarettes (NRCs)..............18 K. Ordering Guidelines for Marijuana and Marijuana Cigarettes ................21 L. Important Addresses, Telephone & Fax Numbers ..................................24 M. Available Drugs, Compounds, and Dosage Forms ..............................25
    [Show full text]
  • Monoacylglycerol Lipase Inhibition in Human and Rodent Systems Supports Clinical Evaluation of Endocannabinoid Modulators S
    Supplemental material to this article can be found at: http://jpet.aspetjournals.org/content/suppl/2018/10/10/jpet.118.252296.DC1 1521-0103/367/3/494–508$35.00 https://doi.org/10.1124/jpet.118.252296 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS J Pharmacol Exp Ther 367:494–508, December 2018 Copyright ª 2018 The Author(s). This is an open access article distributed under the CC BY Attribution 4.0 International license. Monoacylglycerol Lipase Inhibition in Human and Rodent Systems Supports Clinical Evaluation of Endocannabinoid Modulators s Jason R. Clapper, Cassandra L. Henry, Micah J. Niphakis, Anna M. Knize, Aundrea R. Coppola, Gabriel M. Simon, Nhi Ngo, Rachel A. Herbst, Dylan M. Herbst, Alex W. Reed, Justin S. Cisar, Olivia D. Weber, Andreu Viader, Jessica P. Alexander, Mark L. Cunningham, Todd K. Jones, Iain P. Fraser, Cheryl A. Grice, R. Alan B. Ezekowitz, ’ Gary P. O Neill, and Jacqueline L. Blankman Downloaded from Abide Therapeutics, San Diego, California Received July 26, 2018; accepted October 5, 2018 ABSTRACT Monoacylglycerol lipase (MGLL) is the primary degradative whether selective MGLL inhibition would affect prostanoid pro- jpet.aspetjournals.org enzyme for the endocannabinoid 2-arachidonoylglycerol (2- duction in several human assays known to be sensitive AG). The first MGLL inhibitors have recently entered clinical to cyclooxygenase inhibitors. ABD-1970 robustly elevated brain development for the treatment of neurologic disorders. To 2-AG content and displayed antinociceptive and antipru- support this clinical path, we report the pharmacological ritic activity in a battery of rodent models (ED50 values of characterization of the highly potent and selective MGLL inhibitor 1–2 mg/kg).
    [Show full text]
  • The Combined Effect of Branching and Elongation on the Bioactivity Profile of Phytocannabinoids
    biomedicines Article The Combined Effect of Branching and Elongation on the Bioactivity Profile of Phytocannabinoids. Part I: Thermo-TRPs Daiana Mattoteia 1,†, Aniello Schiano Moriello 2,3,†, Orazio Taglialatela-Scafati 4 , Pietro Amodeo 2 , Luciano De Petrocellis 2 , Giovanni Appendino 1, Rosa Maria Vitale 2,* and Diego Caprioglio 1,* 1 Dipartimento di Scienze del Farmaco, Università del Piemonte Orientale, Largo Donegani 2, 28100 Novara, Italy; [email protected] (D.M.); [email protected] (G.A.) 2 Institute of Biomolecular Chemistry, National Research Council (ICB-CNR), Via Campi Flegrei 34, 80078 Pozzuoli, Italy; [email protected] (A.S.M.); [email protected] (P.A.); [email protected] (L.D.P.) 3 Epitech Group SpA, Saccolongo, 35100 Padova, Italy 4 Dipartimento di Farmacia, Università di Napoli Federico II, Via Montesano 49, 80131 Napoli, Italy; [email protected] * Correspondence: [email protected] (R.M.V.); [email protected] (D.C.); Tel.: +39-081-8675316 (R.M.V.); +39-0321-375843 (D.C.) † These authors contributed equally to this work. Abstract: The affinity of cannabinoids for their CB1 and CB2 metabotropic receptors is dramatically affected by a combination of α-branching and elongation of their alkyl substituent, a maneuver exemplified by the n-pentyl -> α,α-dimethylheptyl (DMH) swap. The effect of this change on other Citation: Mattoteia, D.; Schiano cannabinoid end-points is still unknown, an observation surprising since thermo-TRPs are targeted Moriello, A.; Taglialatela-Scafati, O.; by phytocannabinoids with often sub-micromolar affinity. To fill this gap, the α,α-dimethylheptyl Amodeo, P.; De Petrocellis, L.; analogues of the five major phytocannabinoids [CBD (1a), D8-THC (6a), CBG (7a), CBC (8a) and Appendino, G.; Vitale, R.M.; CBN (9a)] were prepared by total synthesis, and their activity on thermo-TRPs (TRPV1-4, TRPM8, Caprioglio, D.
    [Show full text]
  • JWH-073 Critical Review Report Agenda Item 4.11
    JWH-073 Critical Review Report Agenda item 4.11 Expert Committee on Drug Dependence Thirty-eight Meeting Geneva, 14-18 November 2016 38th ECDD (2016) Agenda item 4.11 JWH-073 Page 2 of 29 38th ECDD (2016) Agenda item 4.11 JWH-073 Contents Acknowledgements ................................................................................................................... 5 Summary ................................................................................................................................... 6 1. Substance identification .................................................................................................... 7 A. International Nonproprietary Name (INN) .................................................................. 7 B. Chemical Abstract Service (CAS) Registry Number .................................................. 7 C. Other Chemical Names ................................................................................................ 7 D. Trade Names ................................................................................................................ 7 E. Street Names ................................................................................................................ 7 F. Physical Appearance .................................................................................................... 7 G. WHO Review History ................................................................................................. 7 2. Chemistry ..........................................................................................................................
    [Show full text]
  • Sox2 Promotes Malignancy in Glioblastoma by Regulating
    Volume 16 Number 3 March 2014 pp. 193–206.e25 193 www.neoplasia.com Artem D. Berezovsky*, Laila M. Poisson†, Sox2 Promotes Malignancy in ‡ ‡ David Cherba , Craig P. Webb , Glioblastoma by Regulating Andrea D. Transou*, Nancy W. Lemke*, Xin Hong*, Laura A. Hasselbach*, Susan M. Irtenkauf*, Plasticity and Astrocytic Tom Mikkelsen*,§ and Ana C. deCarvalho* Differentiation1,2 *Department of Neurosurgery, Henry Ford Hospital, Detroit, MI; †Department of Public Health Sciences, Henry Ford Hospital, Detroit, MI; ‡Program of Translational Medicine, Van Andel Research Institute, Grand Rapids, MI; §Department of Neurology, Henry Ford Hospital, Detroit, MI Abstract The high-mobility group–box transcription factor sex-determining region Y–box 2 (Sox2) is essential for the maintenance of stem cells from early development to adult tissues. Sox2 can reprogram differentiated cells into pluripotent cells in concert with other factors and is overexpressed in various cancers. In glioblastoma (GBM), Sox2 is a marker of cancer stemlike cells (CSCs) in neurosphere cultures and is associated with the proneural molecular subtype. Here, we report that Sox2 expression pattern in GBM tumors and patient-derived mouse xenografts is not restricted to a small percentage of cells and is coexpressed with various lineage markers, suggesting that its expression extends beyond CSCs to encompass more differentiated neoplastic cells across molecular subtypes. Employing a CSC derived from a patient with GBM and isogenic differentiated cell model, we show that Sox2 knockdown in the differentiated state abolished dedifferentiation and acquisition of CSC phenotype. Furthermore, Sox2 deficiency specifically impaired the astrocytic component of a biphasic gliosarcoma xenograft model while allowing the formation of tumors with sarcomatous phenotype.
    [Show full text]
  • The Molecular Biology of Pancreatic Adenocarcinoma: Translational Challenges and Clinical Perspectives
    Signal Transduction and Targeted Therapy www.nature.com/sigtrans REVIEW ARTICLE OPEN The molecular biology of pancreatic adenocarcinoma: translational challenges and clinical perspectives Shun Wang1, Yan Zheng1, Feng Yang2, Le Zhu1, Xiao-Qiang Zhu3, Zhe-Fang Wang4, Xiao-Lin Wu4, Cheng-Hui Zhou4, Jia-Yan Yan4,5, Bei-Yuan Hu1, Bo Kong6, De-Liang Fu2, Christiane Bruns4, Yue Zhao4, Lun-Xiu Qin1 and Qiong-Zhu Dong 1,7 Pancreatic cancer is an increasingly common cause of cancer mortality with a tight correspondence between disease mortality and incidence. Furthermore, it is usually diagnosed at an advanced stage with a very dismal prognosis. Due to the high heterogeneity, metabolic reprogramming, and dense stromal environment associated with pancreatic cancer, patients benefit little from current conventional therapy. Recent insight into the biology and genetics of pancreatic cancer has supported its molecular classification, thus expanding clinical therapeutic options. In this review, we summarize how the biological features of pancreatic cancer and its metabolic reprogramming as well as the tumor microenvironment regulate its development and progression. We further discuss potential biomarkers for pancreatic cancer diagnosis, prediction, and surveillance based on novel liquid biopsies. We also outline recent advances in defining pancreatic cancer subtypes and subtype-specific therapeutic responses and current preclinical therapeutic models. Finally, we discuss prospects and challenges in the clinical development of pancreatic cancer therapeutics.
    [Show full text]
  • Liquid Biopsy Biomarkers in Bladder Cancer: a Current Need for Patient Diagnosis and Monitoring
    Review Liquid Biopsy Biomarkers in Bladder Cancer: A Current Need for Patient Diagnosis and Monitoring Iris Lodewijk 1,2, Marta Dueñas 1,2,3, Carolina Rubio 1,2,3, Ester Munera-Maravilla 1,2, Cristina Segovia 1,2,3, Alejandra Bernardini 1,2,3, Alicia Teijeira 1, Jesús M. Paramio 1,2,3 and Cristian Suárez-Cabrera 1,2,* 1 Molecular Oncology Unit, CIEMAT (Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas), Avenida Complutense nº 40, 28040 Madrid, Spain; [email protected] (I.L.); [email protected] (M.D.); [email protected] (C.R.); [email protected] (E.M.-M.); [email protected] (C.S.); [email protected] (A.B.); [email protected] (A.T.); [email protected] (J.M.P.) 2 Biomedical Research Institute I+12, University Hospital “12 de Octubre”, Av Córdoba s/n, 28041 Madrid, Spain 3 Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain * Correspondence: [email protected]; Tel.: +34-91-496-6438 Received: 28 July 2018; Accepted: 21 August 2018; Published: 24 August 2018 Abstract: Bladder Cancer (BC) represents a clinical and social challenge due to its high incidence and recurrence rates, as well as the limited advances in effective disease management. Currently, a combination of cytology and cystoscopy is the routinely used methodology for diagnosis, prognosis and disease surveillance. However, both the poor sensitivity of cytology tests as well as the high invasiveness and big variation in tumour stage and grade interpretation using cystoscopy, emphasizes the urgent need for improvements in BC clinical guidance.
    [Show full text]