Renewable Energy in the South

Total Page:16

File Type:pdf, Size:1020Kb

Renewable Energy in the South RENEWABLE ENERGY IN THE SOUTH Marilyn A. Brown,1 Etan Gumerman,2 Youngsun Baek,1 Joy Wang,1 Cullen Morris,2 and Yu Wang1 Sponsored by: Energy Foundation Kresge Foundation Turner Foundation Published by: Southeast Energy Efficiency Alliance Atlanta, GA December 2010 1Georgia Institute of Technology 2Duke University RENEWABLE ENERGY IN THE SOUTH – December 2010 ii RENEWABLE ENERGY IN THE SOUTH – December 2010 Contents RENEWABLE ENERGY IN THE SOUTH ...................................................................................................... i ACKNOWLEDGEMENTS ............................................................................................................................ ix EXECUTIVE SUMMARY ............................................................................................................................. xi 1. INTRODUCTION ....................................................................................................................................... 1 1.1 THE CURRENT STATUS OF RENEWABLE POWER IN THE SOUTH ............................................ 2 1.2 RENEWABLE ENERGY PROGRAMS AND POLICIES IN THE SOUTH .......................................... 9 1.3 NOTABLE RENEWABLE ENERGY PROJECTS AND PROGRAMS IN THE SOUTH .................... 11 1.4 BARRIERS TO RENEWABLE ENERGY IN THE SOUTH ............................................................... 12 2. METHODOLOGY .................................................................................................................................... 15 2.1 MODELING RENEWABLE ENERGY RESOURCES IN THE SOUTH ............................................ 15 2.2 NATIONAL ENERGY MODELING SYSTEM (NEMS) ...................................................................... 15 2.2.1 The Reference Scenario ............................................................................................................ 16 2.3 DEFINITION OF RENEWABLE RESOURCE POTENTIAL ............................................................. 17 2.3.1 Levelized Costs and other Cost-Effectiveness Tests ................................................................ 17 2.4 SCENARIOS ..................................................................................................................................... 18 2.5 SCENARIO: EXPANDED RENEWABLES ....................................................................................... 18 2.6 SCENARIO: RENEWABLE ELECTRICITY STANDARD ................................................................. 20 2.7 SCENARIO: CARBON CONSTRAINED FUTURE ........................................................................... 20 3. WIND POWER ........................................................................................................................................ 23 3.1 INTRODUCTION ............................................................................................................................... 23 3.2 WIND POWER IN THE SOUTH ....................................................................................................... 23 3.3 BARRIERS, DRIVERS, AND POLICIES .......................................................................................... 24 3.4 EXPANDED WIND ............................................................................................................................ 26 3.4.1 The Case for Expanded Wind .................................................................................................... 26 3.4.2 Modeling Scenario Assumptions ................................................................................................ 28 3.5 EXPANDED WIND SCENARIO RESULTS ...................................................................................... 29 3.6 COST EFFECTIVENESS.................................................................................................................. 30 3.7 CONCLUSIONS ................................................................................................................................ 31 4. BIOPOWER ............................................................................................................................................ 33 4.1 INTRODUCTION ............................................................................................................................... 33 4.2 BIOPOWER IN THE SOUTH ............................................................................................................ 33 4.3 BARRIERS, DRIVERS, AND POLICIES .......................................................................................... 35 4.4 EXPANDED BIOPOWER.................................................................................................................. 38 iii RENEWABLE ENERGY IN THE SOUTH – December 2010 4.4.1 The Case for Expanded Biopower ............................................................................................. 38 4.4.2 Modeling Scenario Assumptions ................................................................................................ 38 4.5 EXPANDED BIOPOWER SCENARIO RESULTS ............................................................................ 41 4.5.1 Potential from Financial Incentive Policy ................................................................................... 41 4.5.2 Supportive R&D ......................................................................................................................... 41 4.5.3 Improved Feedstock Supply ...................................................................................................... 42 4.5.4 Expanded Biopower Scenario .................................................................................................... 43 4.6 COST EFFECTIVENESS.................................................................................................................. 45 4.7 CONCLUSIONS ................................................................................................................................ 45 5. MUNICIPAL WASTE ............................................................................................................................... 47 5.1 INTRODUCTION ............................................................................................................................... 47 5.2 LANDFILL GAS IN THE SOUTH ...................................................................................................... 47 5.3 BARRIERS, DRIVERS, AND POLICIES .......................................................................................... 49 5.4 EXPANDED MSW POWER .............................................................................................................. 50 5.4.1 The Case for Expanded MSW Power ........................................................................................ 50 5.4.2 Modeling Assumptions ............................................................................................................... 50 5.5 EXPANDED MSW SCENARIO RESULTS ....................................................................................... 51 5.6 COST EFFECTIVENESS.................................................................................................................. 51 5.7 CONCLUSIONS ................................................................................................................................ 51 6. HYDROPOWER ...................................................................................................................................... 53 6.1 INTRODUCTION ............................................................................................................................... 53 6.2 HYDROPOWER IN THE SOUTH ..................................................................................................... 54 6.3 BARRIERS, DRIVERS, AND POLICIES .......................................................................................... 56 6.4 EXPANDED HYDROPOWER ........................................................................................................... 57 6.4.1 The Case for Expanded Hydropower ......................................................................................... 57 6.4.2 Modeling Scenario Assumptions ................................................................................................ 59 6.5 EXPANDED HYDROPOWER SCENARIO RESULTS ..................................................................... 60 6.6 CONCLUSIONS ................................................................................................................................ 61 7. SOLAR POWER AND THERMAL ENERGY .......................................................................................... 63 7.1 INTRODUCTION ............................................................................................................................... 63 7.2 SOLAR POWER IN THE SOUTH ..................................................................................................... 65 7.2.1 Utility-Scale Solar Power ............................................................................................................ 66 7.2.2 Demand-Side Solar Technologies ............................................................................................. 66 7.3 BARRIERS, DRIVERS, AND POLICIES .......................................................................................... 67 7.4 THE CASE FOR EXPANDED SOLAR PHOTOVOLTAICS .............................................................. 70 iv
Recommended publications
  • A Clean Energy Economy for Arkansas
    NRDC Issue Paper November 2009 A Clean Energy Economy for Arkansas Analysis of the Rural Economic Development Potential of Renewable Resources Author Martin R. Cohen NRDC Project Contact Pierre Bull About NRDC The Natural Resources Defense Council (NRDC) is an international nonprofit environmental organization with more than 1.3 million members and online activists. Since 1970, our lawyers, scientists, and other environmental specialists have worked to protect the world’s natural resources, public health, and the environment. NRDC has offices in New York City, Washington, D.C., Los Angeles, San Francisco, Chicago, Montana, and Beijing. Visit us at www.nrdc.org. Acknowledgments To come. For questions and further information on this report, please contact Pierre Bull, NRDC at [email protected] or (212) 727-4606. NRDC Director of Communications: Phil Gutis NRDC Marketing and Operations Director: Alexandra Kennaugh NRDC Publications Director: Lisa Goffredi NRDC Publications Editor: Anthony Clark Production: Jon Prinsky Copyright 2009 by the Natural Resources Defense Council. For additional copies of this report, send $5.00 plus $3.95 shipping and handling to NRDC Reports Department, 40 West 20th Street, New York, NY 10011. California residents must add 7.5% sales tax. Please make checks payable to NRDC in U.S. dollars. This report is printed on paper that is 100 percent postconsumer recycled fiber, processed chlorine free. Natural Resources Defense Council I ii A Clean Energy Economy for Arkansas: Analysis of the Rural Economic Development Potential
    [Show full text]
  • The Politics of Hydroelectric Power in Alaska: Rampart and Devil Canyon -A Case Study
    THE POLITICS OF HYDROELECTRIC POWER IN ALASKA: RAMPART AND DEVIL CANYON -A CASE STUDY INSTITUTE OF WATER RESOURCES University of Alaska Fairbanks, Alaska 99701 G-B {psI .A,/-3 n~.8'7 The Politics of Hydroelectric Power in Alaska: Rampart and Devil Canyon--A C~se Study Completion Report OWRT Agreement No. 14-34-0001-7003 Project No. A-060-ALAS Cl aus - M. Naske and Will iam R. Hunt Institute of Water Resources University of Alaska Fairbanks, Alaska 99701 The work upon which this completion report is based was supported by funds provided by the U. S. Department of the Interior, Office of Water Research and Technology as authorized under the Water Resources Research Act of 1964, Public Law 88-379, as amended. ARLIS January 1978 IWR-87 Alaska ResoutbM Library & Information ~€rViee§ AnchoraS1e' .. A1Mlea TABLE OF CONTENTS INTRODUCTION .... 1 EKLUTNA. ~ . 2 RAMPART DAM. 3 The Corps Promotes Rampart. .... 4 Bureau of Reclamation Competes. .. 6 Market Study..... 8 Gruening's ~eadership . 9 An Alternative? ....• 11 Market Favorable. .. 13 Division of Responsibility.... 13 Yukon Power for America .... • . 14 SUSITNA (DEVIL CANYON) .. 22 Energy Crisis. ... 26 Agency Involvement... 27 CONCLUSIONS. ............. 41 NOTES. .............. 43 APPENDIX .. 47 EKLUTNA. .... 48 APPENDIX NOTES 58 ii INTRODUCTION Hydroelectric power in Alaska has had a curious history--and an instructive one. This study focuses on three separate projects: Eklutna, Rampart, and Devil Canyon. The Eklutna project functions today; Rampart was not constructed; and the Devil Canyon project is still in the planning stage. Yet for all their differences in location, goals, and fate, the projects were related; and, taken together, their histories highlight all the essential political elements involved in hydroelectric power construction.
    [Show full text]
  • To Download This Report (PDF)
    September 2012 Prepared for: Indiana Utility Regulatory Commission and Regulatory Flexibility Committee of the Indiana General Assembly Indianapolis, Indiana State Utility Forecasting Group | Energy Center at Discovery Park | Purdue University | West Lafayette, Indiana 2012 INDIANA RENEWABLEENERGY RESOURCES STUDY 2012 INDIANA RENEWABLE ENERGY RESOURCES STUDY State Utility Forecasting Group Energy Center Purdue University West Lafayette, Indiana David Nderitu Emrah Ozkaya Douglas Gotham Paul Preckel Darla Mize Marco Velastegui Tim Phillips September 2012 Table of Contents List of Figures .................................................................................................................... iii List of Tables ...................................................................................................................... v Acronyms and Abbreviations ............................................................................................ vi Foreword……………………………… ………………………………………………. .ix 1. Overview ............................................................................................................... 1 1.1 Trends in renewable energy consumption in the United States ................ 1 1.2 Trends in renewable energy consumption in Indiana ................................ 4 1.3 References ................................................................................................. 6 2. Energy from Wind ................................................................................................. 9 2.1 Introduction
    [Show full text]
  • Electricity-Generating Alternatives in Arkansas: an Economic Analysis
    Electricity-Generating Alternatives in Arkansas: An Economic Analysis October 2007 © ECONorthwest 2007 Phone • (541) 687-0051 Suite 400 FAX • (541) 344-0562 99 W. 10th Avenue [email protected] Eugene, Oregon 97401 I. SUMMARY OF FINDINGS The Southwestern Electric Power Company (SWEPCo), which provides electricity to about 450,000 customers in the Arkansas-Louisiana-Texas region has projected that the demand for electric energy will grow by as much as 1,600 megawatts (MW) by 2011. Arkansans soon must choose between two alternatives for accommodating this growth. One alternative involves generating electricity by burning coal. SWEPCo, a subsidiary of American Electric Power, seeks to build one 600-MW, coal-fired generator near Texarkana, Arkansas, in Hempstead County, by 2011. Its preliminary estimate of the total cost is $1.3 billion. The coal for the generator would be shipped in by rail from Wyoming. The other alternative does not involve burning coal. Instead, it entails investing in energy efficiency, so that energy savings could be used to meet new demands, and in new generators powered by wind, biomass, and other renewable resources. The choice between the two alternatives will have important economic consequences for Arkansas’ workers, families, landowners, and businesses. This report describes the tradeoffs, focusing on these four areas: Environmental Consequences. The generator proposed by SWEPCo would annually emit: 2,628 tons of sulfur dioxide 1,840 tons of nitrogen oxides 3,942 tons of carbon monoxide 920 tons of particulate
    [Show full text]
  • Southeast Region Report
    RENEWABLE ENERGY IN THE 50 STATES: SOUTHEASTERN REGION 1 About ACORE ACORE, a 501(c)(3) non-profit membership organization, is dedicated to building a secure and prosperous America with clean, renewable energy. ACORE seeks to advance renewable energy through finance, policy, technology, and market development and is concentrating its member focus in 2014 on National Defense & Security, Power Generation & Infrastructure, and Transportation. Additional information is available at www.acore.org. Acknowledgements Lead Author: Lesley Hunter Contributors: James Griffith Torrey Beek Special Thanks: Bloomberg New Energy Finance Database of State Incentives for Renewables & Efficiency Energy Information Administration © 2014 American Council On Renewable Energy (ACORE) All Rights Reserved under U.S. and foreign law, treaties, and conventions. This work cannot be reproduced, downloaded, disseminated, published, or transferred in any form or by any means without the prior written permission of the copyright owner or pursuant to the License below: Published by: American Council On Renewable Energy (ACORE) 1600 K St. NW, Suite 650 Washington, DC 20006 202.393.0001 Questions or Comments: [email protected] Cover images: National Renewable Energy Laboratory (NREL) and Shutterstock American Council On Renewable Energy (ACORE) Updated January 2014 RENEWABLE ENERGY IN THE 50 STATES: SOUTHEASTERN REGION 2 Table of Contents Executive Summary ............................................................................................................................................
    [Show full text]
  • Our Solar Energy Business Our Business Operations
    Our Solar Energy Business Our Business Operations Based in Juno Beach, Florida, NextEra Energy Resources, LLC, Nationally recognized as a leading clean energy provider, NextEra is the competitive energy subsidiary of NextEra Energy, Inc., a Energy Resources has a portfolio of facilities, totaling more than Fortune 200 company and a leading clean energy provider with 23,900 net megawatts (MW) of generating capacity in the U.S. consolidated revenues of $18 billion in 2020. and Canada. In 2020, nearly all of the electricity we generated was derived from clean or renewable resources, including wind, NextEra Energy Resources is primarily a wholesale power solar, natural gas and nuclear energy. generator, operating power plants and selling the output to utilities, retail electricity providers, power cooperatives, municipal NextEra Energy Resources’ operations are diversified not electric providers and large industrial companies. only by fuel sources, but by geographic regions. This helps us manage our power generation business more efficiently and economically, especially in today’s volatile energy markets. NextEra Energy Resources Generation Facilities in Operation (As of 12/31/20) 2 Provider of Energy Services NextEra Energy Resources has established a strong reputation based on outstanding performance at every level. We continue to solidify our position as one of the nation’s leading energy providers by focusing on: Development, construction to working with businesses to meet their goals on renewable and operation energy generation or carbon emissions management. NextEra Energy Resources is a world leader in the Distributed generation development, construction and operation of solar and wind energy centers. Standardized processes, best practices and Our distributed generation (DG) team tailors solar solutions superior execution have earned us the top position in the field.
    [Show full text]
  • Operation Construction Development
    Major Solar Projects in the United States Operating, Under Construction, or Under Development Updated March 7, 2016 Overview This list is for informational purposes only, reflecting projects and completed milestones in the public domain. The information in this list was gathered from public announcements of solar projects in the form of company press releases, news releases, and, in some cases, conversations with individual developers. It is not a comprehensive list of all major solar projects under development. This list may be missing smaller projects that are not publicly announced. Particularly, many smaller projects located outside of California that are built on a short time-scale may be underrepresented on this list. Also, SEIA does not guarantee that every identified project will be built. Like any other industry, market conditions may impact project economics and timelines. SEIA will remove a project if it is publicly announced that it has been cancelled. SEIA actively promotes public policy that minimizes regulatory uncertainty and encourages the accelerated deployment of utility-scale solar power. This list includes ground-mounted solar power plants 1 MW and larger. Example Projects Nevada Solar One Sierra SunTower Nellis Air Force Base DeSoto Next Generation Solar Energy Center Developer: Acciona Developer: eSolar Developer: MMA Renewable Ventures Developer: Florida Power & Light Co. Electricity Purchaser: NV Energy Electricity Purchaser: Southern Electricity Purchaser: Nellis AFB Electricity Purchaser: Florida Power & California
    [Show full text]
  • An Introduction to the Petroleum Industry
    GOVERNMENTOF NEWFOUNDLANDANDLABRADOR DepartmentofMinesandEnergy AnIntroduction to THEPETROLEUMINDUSTRY AlphonsusFagan November,1991 Table of Contents Page i Table of Contents Acknowledgements iv Materials Used in Compiling This Manual v Introductory Remarks vi Chapter 1 Introduction to the Petroleum Industry 1-1 Terminology 1-1 A Source of Energy 1-2 Other Uses for Oil 1-3 Chapter 2 The History of Petroleum 2-1 Petroleum Used by Ancient Civilizations 2-1 The First Oil Wells 2-2 The Oil Booms Begins 2-2 The Present 2-3 Chapter 3 Part “A” 3A-1 Porous and Permeable Rocks 3A-1 Three Types of Rocks 3A-1 Porosity 3A-1 Permeability 3A-2 Part “B” 3B-1 How Sedimentary Rocks are Formed 3B-1 Erosion and Transport 3B-1 Sedimentation 3B-2 Subsidence 3B-3 Cementation 3B-3 Chapter 4 Hydrocarbon Traps 4-1 Reservoirs 4-1 Oil Floats 4-1 Natural Gas Reservoirs 4-2 Geological Structures Become Hydrocarbon Traps 4-2 Table of Contents Page ii Table of Contents Chapter 5 Petroleum Exploration I 5-1 Contour Mapping 5-1 Contour Maps 5-1 Chapter 6 Part “A” 6A-1 Petroleum Exploration II 6A-1 Surface Mapping, Gravity and Magnetic Surveys 6A-1 Surface Mapping 6A-1 Geophysics 6A-2 Basement Rocks 6A-2 Magnetic Surveys 6A-3 Gravity Surveys 6A-3 Part “B” 6B-1 Petroleum Exploration III 6B-1 Seismic Exploration 6B-1 Reconnaissance and Detailed Surveys 6B-1 The Seismic Survey 6B-1 Offshore Seismic 6B-4 Chapter 7 Acquiring Petroleum Rights 7-1 Surface Rights vs Petroleum Rights 7-1 Resource Ownership 7-1 The Lease 7-2 Obtaining a Lease 7-2 Chapter 8 Drilling 8-1 A Wildcat
    [Show full text]
  • A Comprehensive Guide to Different Fracturing Technologies: a Review
    energies Review A Comprehensive Guide to Different Fracturing Technologies: A Review M. S. Liew 1, Kamaluddeen Usman Danyaro 2,* and Noor Amila Wan Abdullah Zawawi 1 1 Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia; [email protected] (M.S.L.); [email protected] (N.A.W.A.Z.) 2 Offshore Engineering Centre, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia * Correspondence: [email protected] Received: 8 April 2020; Accepted: 20 May 2020; Published: 30 June 2020 Abstract: Hydraulic fracturing has made the production of gas more economical. Shale gas possesses the potential to arise as a main natural gas source worldwide. It has been assessed that the top 42 countries, including the U.S., are predicted to own 7299 trillion cubic feet (tcf) of technically recoverable shale gas resources. The main goal of this paper is to serve as a guide of different shale gas extraction methods. The significance of these methods and possible pros and cons are determined. Each technique was explained with the support of literature review. Specifically, this paper revealed that some fracking methods such as pulsed arc electrohydraulic discharges (PAED), plasma stimulation and fracturing technology (PSF), thermal (cryogenic) fracturing, enhanced bacterial methanogenesis, and heating of rock mass are at the concept stage for conventional and other unconventional resources. Thus, these found to be significant for stimulating natural gas wells, which provides very good production results. This paper also discovered that fracking remains the recommended technique used by the oil and gas industries. Keywords: guide to different fracturing technologies; shale gas extraction technologies; different hydraulic fracturing; natural gas extraction technologies 1.
    [Show full text]
  • Renewable Energy in America
    Renewable Energy in America: Markets, Economic Development and Policy in the 50 States Spring 2011 Update This Page Intentionally Blank Contents About the American Council On Renewable Energy ............................................................................................................. 2 User’s Guide ......................................................................................................................................................................................... 3 Glossary ................................................................................................................................................................................................. 7 State Summaries ............................................................................................................................................................................... 12 Alabama Alaska Arizona Arkansas California Colorado Connecticut Delaware District of Columbia Florida Georgia Hawaii Idaho Illinois Indiana Iowa Kansas Kentucky Louisiana Maine Maryland Massachusetts Michigan Minnesota Mississippi Missouri Montana Nebraska Nevada New Hampshire New Jersey New Mexico New York North Carolina North Dakota Ohio Oklahoma Oregon Pennsylvania Rhode Island South Carolina South Dakota Tennessee Texas Utah Vermont Virginia Washington West Virginia Wisconsin Wyoming International ACORE Members .................................................................................................................................................
    [Show full text]
  • Forward TOGETHER
    Forward TOGETHER 2020 INTEGRATED REPORT In a year defined by forces and events that threatened to divide us, Entergy’s 13,400 employees came together. One Entergy team, indivisible, united around a common purpose to Power Life and build the Premier Utility. Table of Contents Letter to Stakeholders 2 Prepared for the Extraordinary 7 Our Leadership 14 Our Company 20 Our Utility 29 Our Workplace 53 ICONS TO NOTE Environmental, Social, and Governance 73 In this report, the following icons indicate examples of economic, 2020 Financial Highlights 117 environmental, and social performance that demonstrate the progress we’ve made on 2020 Key Performance Indicators 131 our journey. About This Report 138 Forward-Looking Information and Regulation G Compliance 140 ECONOMIC ENVIRONMENTAL SOCIAL Investor Information 146 1 Forward Together // 2020 Integrated Report LETTER TO STAKEHOLDERS To all our stakeholders: While preparing to write this letter, I was acutely to protect our physical, emotional, and spiritual aware that 2020 would be one of the most wellbeing was to stay apart, hunker down, and analyzed and scrutinized years in modern hope for the best. history, the subject of countless books, essays, films, debates, dissertations, and conversations Thankfully, this mindset did not take hold at for decades to come. Entergy. For a company whose purpose is serving others, it became apparent early on that the The task of describing a year like no other seemed only response to division was unity. Our ability to a bit overwhelming at first. From a personal stay connected and united around a common and professional standpoint, I had never seen purpose, grounded in our core values, helped anything like it in my more than six decades on us stay true to ourselves and our legacy of service.
    [Show full text]
  • RE-Powering America's Land Initiative: Project Tracking Matrix October
    RE-Powering America’s Land Initiative: October 2016 Project Tracking Matrix The U.S. Environmental Protection Agency (EPA) recognizes the overall environmental RE-Powering America’s benefit of siting renewable energy projects on contaminated properties. Through Land Initiative the RE-Powering America’s Land Initiative, EPA is encouraging renewable energy development on current and formerly contaminated lands, landfills, and mine sites To provide information on renewable energy on when such development is aligned with the community’s vision for the site. contaminated land projects not currently appearing Using publicly available information, RE-Powering maintains a list of completed in this document, email [email protected]. renewable energy installations on contaminated sites and landfills. To date, the To receive updates, newsletters, and other RE-Powering Initiative has identified 190 renewable energy installations on 181 information about the RE-Powering program, contaminated lands, landfills, and mine sites1, with a cumulative installed capacity click the banner below. of just over 1,172 megawatts (MW) and consistent growth in total installations since the inception of the RE-Powering Initiative. Approximately 60% of these installations Subscribe are large-scale systems with a project capacity of 1 MW or more, either exporting EPA’s RE-Powering Listserv energy onto the utility grid, offsetting onsite energy demands, or powering cleanup. This document provides summary statistics of known installations and discusses emerging trends. In addition to the completed sites listed here, EPA is tracking more than 100 renewable energy projects on contaminated or disturbed properties in various stages of planning, approval, or construction. These include a 1.1-MW solar project under construction on a Meriden, CT landfill; a 2-MW solar project under construction on a landfill in Lake Worth, FL; and a 7.75-MW solar array ready for construction on a former oil refinery and fertilizer manufacturing site in Olean, NY.
    [Show full text]