Sphagnum Russowii Russow’S Bog-Moss Section Acutifolia

Total Page:16

File Type:pdf, Size:1020Kb

Sphagnum Russowii Russow’S Bog-Moss Section Acutifolia Sphagnales Sphagnum russowii Russow’s Bog-moss Section Acutifolia Stem leaf 1 mm 5 mm Identification S. russowii is a medium to large plant, found in soft hummocks or loose carpets. There is usually some red present, often with a banded appearance owing to irregular pigmentation; it is sometimes all deep red, but only rarely all green. The capitulum is flat-topped and stellate, with a definite but inconspicuous terminal bud. Fascicles have 2 spreading branches and 1 or 2 pendent branches. Branch leaves are usually in straight lines. The stem leaf is tongue-shaped, with a rounded tip that is usually notched or fringed (hence looks truncate). It is often necessary to examine several stem leaves before a clear example of this tip shape can be seen. Capsules are rare. Similar species In structure, this species is most like S. girgensohnii (p. 284), but that species never has any trace of red, has a more prominent terminal bud, branch leaves that are never in straight lines and stem leaves that differ in shape at the tip. S. capillifolium subsp. rubellum (p. 288) shares the flat-topped, stellate capitula, but lacks a terminal bud and the rather similar stem leaves are not truncate or notched at the tip. S. warnstorfii (p. 287) grows in more base-rich mires and is often an especially vivid red, with markedly 5-ranked branch leaves. S. quinquefarium (p. 286) has 3 spreading branches per fascicle. A central Norwegian species similar to S. russowii, not so far recorded from the British Isles, is S. rubiginosum. It has stem leaves like those of S. girgensohnii, most fascicles with 3 spreading branches, has some red pigmentation, and hence might have been overlooked in the field asS. russowii. Habitat A species of sites that are moderately enriched with nutrients, often found in wooded mires, flushed grassy and rocky banks, on moors, in woodland and occasionally on bogs. Also found on humid, north-east- to north-west-facing heather-dominated banks. Photo John Birks Drawing Sharon Pilkington Text Andy Amphlett & Sandy Payne 285.
Recommended publications
  • <I>Sphagnum</I> Peat Mosses
    ORIGINAL ARTICLE doi:10.1111/evo.12547 Evolution of niche preference in Sphagnum peat mosses Matthew G. Johnson,1,2,3 Gustaf Granath,4,5,6 Teemu Tahvanainen, 7 Remy Pouliot,8 Hans K. Stenøien,9 Line Rochefort,8 Hakan˚ Rydin,4 and A. Jonathan Shaw1 1Department of Biology, Duke University, Durham, North Carolina 27708 2Current Address: Chicago Botanic Garden, 1000 Lake Cook Road Glencoe, Illinois 60022 3E-mail: [email protected] 4Department of Plant Ecology and Evolution, Evolutionary Biology Centre, Uppsala University, Norbyvagen¨ 18D, SE-752 36, Uppsala, Sweden 5School of Geography and Earth Sciences, McMaster University, Hamilton, Ontario, Canada 6Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, SE-750 07, Uppsala, Sweden 7Department of Biology, University of Eastern Finland, P.O. Box 111, 80101, Joensuu, Finland 8Department of Plant Sciences and Northern Research Center (CEN), Laval University Quebec, Canada 9Department of Natural History, Norwegian University of Science and Technology University Museum, Trondheim, Norway Received March 26, 2014 Accepted September 23, 2014 Peat mosses (Sphagnum)areecosystemengineers—speciesinborealpeatlandssimultaneouslycreateandinhabitnarrowhabitat preferences along two microhabitat gradients: an ionic gradient and a hydrological hummock–hollow gradient. In this article, we demonstrate the connections between microhabitat preference and phylogeny in Sphagnum.Usingadatasetof39speciesof Sphagnum,withan18-locusDNAalignmentandanecologicaldatasetencompassingthreelargepublishedstudies,wetested
    [Show full text]
  • Université De Montréal Inuit Ethnobotany in the North American
    Université de Montréal Inuit Ethnobotany in the North American Subarctic and Arctic: Celebrating a Rich History and Expanding Research into New Areas Using Biocultural Diversity par Christian H. Norton Département de sciences biologiques Faculté des arts et des sciences Mémoire présenté à la Faculté des études supérieures en vue de l’obtention du grade de maîtrise en sciences biologiques Novembre 2018 © Christian H. Norton 2018 2 Résumé Historiquement, l'utilisation des plantes par les Inuits était considérée comme minimale. Notre compréhension de l'utilisation des plantes par les Inuits a commencé par suite de la prise en compte de concepts tels que la diversité bioculturelle et les espèces clés, et ces nouvelles idées ont commencé à dissiper les mythes sur le manque d’importance des plantes dans la culture inuite. Les Inuits peuvent être regroupés en quatre régions en fonction de la langue: l'Alaska, l'Arctique ouest canadien, l'Arctique et la région subarctique est canadienne et le Groenland. Le chapitre 1 passera en revue la littérature sur l'utilisation des plantes inuites de l'Alaska au Groenland. Au total, 311 taxons ont été mentionnés dans les quatre régions, ce qui correspond à 73 familles. Les niveaux de diversité étaient similaires dans les quatre régions. Seuls 25 taxons et 16 familles étaient communs à toutes les régions, mais 50%-75% des taxons et 75%-90% familles étaient signalés dans au moins deux régions, et les régions voisines ont généralement un chevauchement plus élevé que les régions plus éloignées. De la même manière, les Inuits des quatre régions ont indiqué comestible, médecine, incendie et design comme principales catégories d'utilisation, ainsi qu'une différenciation commune claire en ce qui concerne les taxons utilisés à des fins spécifiques.
    [Show full text]
  • Physical Growing Media Characteristics of Sphagnum Biomass Dominated by Sphagnum Fuscum (Schimp.) Klinggr
    Physical growing media characteristics of Sphagnum biomass dominated by Sphagnum fuscum (Schimp.) Klinggr. A. Kämäräinen1, A. Simojoki2, L. Lindén1, K. Jokinen3 and N. Silvan4 1 Department of Agricultural Sciences, University of Helsinki, Finland 2 Department of Food and Environmental Sciences, University of Helsinki, Finland 3 Natural Resources Institute Finland, Natural Resources and Bioproduction, Helsinki, Finland 4 Natural Resources Institute Finland, Bio-based Business and Industry, Parkano, Finland _______________________________________________________________________________________ SUMMARY The surface biomass of moss dominated by Sphagnum fuscum (Schimp.) Klinggr. (Rusty Bog-moss) was harvested from a sparsely drained raised bog. Physical properties of the Sphagnum moss were determined and compared with those of weakly and moderately decomposed peats. Water retention curves (WRC) and saturated hydraulic conductivities (Ks) are reported for samples of Sphagnum moss with natural structure, as well as for samples that were cut to selected fibre lengths or compacted to different bulk densities. The gravimetric water retention results indicate that, on a dry mass basis, Sphagnum moss can hold more water than both types of peat under equal matric potentials. On a volumetric basis, the water retention of Sphagnum moss can be linearly increased by compacting at a gravimetric water content of 2 (g water / g dry mass). The bimodal water retention curve of Sphagnum moss appears to be a consequence of the natural double porosity of the moss matrix. The 6-parameter form of the double-porosity van Genuchten equation is used to describe the volumetric water retention of the moss as its bulk density increases. Our results provide considerable insight into the physical growing media properties of Sphagnum moss biomass.
    [Show full text]
  • Life Cycle of Sphagnum
    Bhagalpur National College, Bhagalpur ( A Constituent unit of Tilka Manjhi Bhagalpur University, Bhagalpur) PPT Presentation for B.Sc. I- Life Cycle of Sphagnum Presented by - Dr. Amit Kishore Singh Department of Botany B.N. College, Bhagalpur Kingdom- Plantae (Plant) Division- Bryophyta Class- Musci (Moss) Order- Sphagnales Family- Sphagnaceae Genus- Sphagnum • Sphagnum is popularly known as bog moss, peat moss or turf moss because of its ecological importance in the development of peat or bog. • The plants are perennial and grow in swamps and moist habitat like rocky slopes where water accumulates or where water drips. Structure of Sphagnum External Morphology • The gametophyte phase of Sphagnum is represented by two distinct stages namely, (a) juvenile protonema, and (b) mature leafy or gametophore stage. • Very young gameto•phytes bear multicellular rhizoids with oblique septa. • Mature gametophytes, how•ever, do not bear rhizoids. • Gametophyte is differentiated into an upright branched axis and leaves. Main Axis and Branches: • The main axis is soft and weak at young stage, but becomes erect and stout at maturity. However, the main axis is much longer in aquatic species, but is relatively short in terrestrial form due to the progressive death of the older basal part. • The axis branches profusely on the lateral sides. Single branch or in tufts of 3 to 8 branches arise from the axils of every fourth leaf of the main axis. • At the apex of the main stem, many small branches of limited growth are densely crowded forming a compact head called coma. • The coma is formed near the apex due to the condensed growth of apical internodes.
    [Show full text]
  • Palaeoecology of Sphagnum Riparium (Ångström) in Northern Hemisphere Peatlands: Implications for Peatland Conservation and Palaeoecological Research
    Published in Review of Palaeobotany and Palynology 254, 1-7, 2018 1 which should be used for any reference to this work Palaeoecology of Sphagnum riparium (Ångström) in Northern Hemisphere peatlands: Implications for peatland conservation and palaeoecological research Mariusz Gałka a,⁎, Jennifer M. Galloway b, Natalie Lemonis c,YuriA.Mazeid,e,EdwardA.D.Mitchellc,f, Peter D. Morse b, R. Timothy Patterson g, Andrey N. Tsyganov e, Stephen A. Wolfe b, Graeme T. Swindles g,h a Department of Biogeography and Palaeoecology, Faculty of Geographical and Geological Sciences, Adam Mickiewicz University, B. Krygowskiego 10, PL-61 680 Poznań,Poland b Natural Resources Canada/Ressources naturelles Canada, Geological Survey of Canada/Commission géologique du Canada, Calgary, Alberta T2L 2A7, Canada c Laboratory of Soil Biodiversity, University of Neuchâtel, Switzerland d Department of Hydrobiology, Lomonosov Moscow State University, Leninskiye gory, 1, 119991 Moscow, Russia e Department of Zoology and Ecology, Penza State University, Krasnaya str., 40, Russia f Jardin Botanique de Neuchâtel, Chemin du Perthuis-du-Sault 58, CH-2000 Neuchâtel, Switzerland g Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, Ontario K1S 5B6, Canada h School of Geography, University of Leeds, LS2 9JT, United Kingdom abstract Sphagnum riparium (Ångström) is a rare constituent of modern peatland plant communities and is also very rarely found as a subfossil in peat archives. We present new data on the occurrence of Sphagnum riparium mac- Keywords: rofossils in three Northern Hemisphere peatlands from Yellowknife (NW Canada), Abisko (N Sweden), and the Plant macrofossils Northern Ural Mountains (NW Russia). Sphagnum riparium macrofossils were present in transitional phases be- Testate amoebae tween rich fen and oligotrophic bog.
    [Show full text]
  • Molecular Phylogenetics of Mosses and Relatives
    MOLECULAR PHYLOGENETICS OF MOSSES AND RELATIVES! by! Ying Chang! ! ! A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF ! DOCTOR OF PHILOSOPHY! in! The Faculty of Graduate Studies! (Botany)! ! ! THE UNIVERSITY OF BRITISH COLUMBIA! (Vancouver)! July 2011! © Ying Chang, 2011 ! ABSTRACT! Substantial ambiguities still remain concerning the broad backbone of moss phylogeny. I surveyed 17 slowly evolving plastid genes from representative taxa to reconstruct phylogenetic relationships among the major lineages of mosses in the overall context of land-plant phylogeny. I first designed 78 bryophyte-specific primers and demonstrated that they permit straightforward amplification and sequencing of 14 core genes across a broad range of bryophytes (three of the 17 genes required more effort). In combination, these genes can generate sturdy and well- resolved phylogenetic inferences of higher-order moss phylogeny, with little evidence of conflict among different data partitions or analyses. Liverworts are strongly supported as the sister group of the remaining land plants, and hornworts as sister to vascular plants. Within mosses, besides confirming some previously published findings based on other markers, my results substantially improve support for major branching patterns that were ambiguous before. The monogeneric classes Takakiopsida and Sphagnopsida likely represent the first and second split within moss phylogeny, respectively. However, this result is shown to be sensitive to the strategy used to estimate DNA substitution model parameter values and to different data partitioning methods. Regarding the placement of remaining nonperistomate lineages, the [[[Andreaeobryopsida, Andreaeopsida], Oedipodiopsida], peristomate mosses] arrangement receives moderate to strong support. Among peristomate mosses, relationships among Polytrichopsida, Tetraphidopsida and Bryopsida remain unclear, as do the earliest splits within sublcass Bryidae.
    [Show full text]
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2018 Revised October 19, 2018
    Natural Heritage Program List of Rare Plant Species of North Carolina 2018 Revised October 19, 2018 Compiled by Laura Gadd Robinson, Botanist North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1601 www.ncnhp.org STATE OF NORTH CAROLINA (Wataug>f Wnke8 /Madison V" Burke Y H Buncombe >laywoodl Swain f/~~ ?uthertor< /Graham, —~J—\Jo< Polk Lenoii TEonsylvonw^/V- ^ Macon V \ Cherokey-^"^ / /Cloy Union I Anson iPhmonf Ouptln Scotlar Ons low Robeson / Blodon Ponder Columbus / New>,arrfver Brunewlck Natural Heritage Program List of Rare Plant Species of North Carolina 2018 Compiled by Laura Gadd Robinson, Botanist North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1601 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate. The list is published every two years. Further information may be obtained by contacting the North Carolina Natural Heritage Program, Department of Natural and Cultural Resources, 1651 MSC, Raleigh, NC 27699-1651; by contacting the North Carolina Wildlife Resources Commission, 1701 MSC, Raleigh, NC 27699- 1701; or by contacting the North Carolina Plant Conservation Program, Department of Agriculture and Consumer Services, 1060 MSC, Raleigh, NC 27699-1060. Additional information on rare species, as well as a digital version of this list, can be obtained from the Natural Heritage Program’s website at www.ncnhp.org. Cover Photo of Allium keeverae (Keever’s Onion) by David Campbell. TABLE OF CONTENTS INTRODUCTION .................................................................................................................
    [Show full text]
  • A Comparison of PCR-Based Markers for the Molecular Identification of Sphagnum Species of the Section Acutifolia
    Acta Societatis Botanicorum Poloniae Journal homepage: pbsociety.org.pl/journals/index.php/asbp ORIGINAL RESEARCH PAPER Received: 2010.05.18 Accepted: 2010.07.23 Published electronically: 2011.07.29 Acta Soc Bot Pol 80(3):185-192 DOI: 10.5586/asbp.2011.017 A comparison of PCR-based markers for the molecular identification of Sphagnum species of the section Acutifolia Jakub Sawicki*, Monika Szczecińska Department of Botany and Nature Protection, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, 10-727 Olsztyn, Poland Abstract RAPDs, ISJs, ISSRs, ITS and katGs were applied to determine genetic relationships between common Sphagnum species of the section Acutifolia. Twenty populations were genotyped using ten ISJ primers, 12 pairs of katG primers, 10 ISSR and 10 RAPD primers, and a restriction analysis of ITS1 and ITS2. ISSR and katG markers revealed the greatest number of species-specific bands. An analysis of ITS1 and ITS2 regions with restriction enzymes also proved to be a highly effective tool for species identification. Keywords: Sphagnum, genetic similarity, molecular markers RAPD, ISJ, katG, ITS, ISSR Introduction of the genus Sphagnum [10,11]. However, their practical appli- cation is difficult, as in order to obtain stable and distinct iso- Due to their great phenotypic plasticity, the classification enzymatic patterns, plants should be grown under glass-house of peat moss species often requires microscopic identification, conditions to normalize their expression levels and increase vi- which is both labor- and time-consuming. In addition to a tality [12]. Electrophoresis of enzymatic proteins cannot be ap- standard morphological description, the classification of bryo- plied to herbaceous materials, either, which makes it useless phytes increasingly often involves the use of molecular markers as a tool for verifying the correctness of species identification.
    [Show full text]
  • Supplementary Information 1. Supplementary Methods
    Supplementary Information 1. Supplementary Methods Phylogenetic and age justifications for fossil calibrations The justifications for each fossil calibration are presented here for the ‘hornworts-sister’ topology (summarised in Table S2). For variations of fossil calibrations for the other hypothetical topologies, see Supplementary Tables S1-S7. Node 104: Viridiplantae; Chlorophyta – Streptophyta: 469 Ma – 1891 Ma. Fossil taxon and specimen: Tetrahedraletes cf. medinensis [palynological sample 7999: Paleopalynology Unit, IANIGLA, CCT CONICET, Mendoza, Argentina], from the Zanjón - Labrado Formations, Dapinigian Stage (Middle Ordovician), at Rio Capillas, Central Andean Basin, northwest Argentina [1]. Phylogenetic justification: Permanently fused tetrahedral tetrads and dyads found in palynomorph assemblages from the Middle Ordovician onwards are considered to be of embryophyte affinity [2-4], based on their similarities with permanent tetrads and dyads found in some extant bryophytes [5-7] and the separating tetrads within most extant cryptogams. Wellman [8] provides further justification for land plant affinities of cryptospores (sensu stricto Steemans [9]) based on: assemblages of permanent tetrads found in deposits that are interpreted as fully terrestrial in origin; similarities in the regular arrangement of spore bodies and size to extant land plant spores; possession of thick, resistant walls that are chemically similar to extant embryophyte spores [10]; some cryptospore taxa possess multilaminate walls similar to extant liverwort spores [11]; in situ cryptospores within Late Silurian to Early Devonian bryophytic-grade plants with some tracheophytic characters [12,13]. The oldest possible record of a permanent tetrahedral tetrad is a spore assigned to Tetrahedraletes cf. medinensis from an assemblage of cryptospores, chitinozoa and acritarchs collected from a locality in the Rio Capillas, part of the Sierra de Zapla of the Sierras Subandinas, Central Andean Basin, north-western Argentina [1].
    [Show full text]
  • Bryophyte Biology Second Edition
    This page intentionally left blank Bryophyte Biology Second Edition Bryophyte Biology provides a comprehensive yet succinct overview of the hornworts, liverworts, and mosses: diverse groups of land plants that occupy a great variety of habitats throughout the world. This new edition covers essential aspects of bryophyte biology, from morphology, physiological ecology and conservation, to speciation and genomics. Revised classifications incorporate contributions from recent phylogenetic studies. Six new chapters complement fully updated chapters from the original book to provide a completely up-to-date resource. New chapters focus on the contributions of Physcomitrella to plant genomic research, population ecology of bryophytes, mechanisms of drought tolerance, a phylogenomic perspective on land plant evolution, and problems and progress of bryophyte speciation and conservation. Written by leaders in the field, this book offers an authoritative treatment of bryophyte biology, with rich citation of the current literature, suitable for advanced students and researchers. BERNARD GOFFINET is an Associate Professor in Ecology and Evolutionary Biology at the University of Connecticut and has contributed to nearly 80 publications. His current research spans from chloroplast genome evolution in liverworts and the phylogeny of mosses, to the systematics of lichen-forming fungi. A. JONATHAN SHAW is a Professor at the Biology Department at Duke University, an Associate Editor for several scientific journals, and Chairman for the Board of Directors, Highlands Biological Station. He has published over 130 scientific papers and book chapters. His research interests include the systematics and phylogenetics of mosses and liverworts and population genetics of peat mosses. Bryophyte Biology Second Edition BERNARD GOFFINET University of Connecticut, USA AND A.
    [Show full text]
  • 2447 Introductions V3.Indd
    BRYOATT Attributes of British and Irish Mosses, Liverworts and Hornworts With Information on Native Status, Size, Life Form, Life History, Geography and Habitat M O Hill, C D Preston, S D S Bosanquet & D B Roy NERC Centre for Ecology and Hydrology and Countryside Council for Wales 2007 © NERC Copyright 2007 Designed by Paul Westley, Norwich Printed by The Saxon Print Group, Norwich ISBN 978-1-85531-236-4 The Centre of Ecology and Hydrology (CEH) is one of the Centres and Surveys of the Natural Environment Research Council (NERC). Established in 1994, CEH is a multi-disciplinary environmental research organisation. The Biological Records Centre (BRC) is operated by CEH, and currently based at CEH Monks Wood. BRC is jointly funded by CEH and the Joint Nature Conservation Committee (www.jncc/gov.uk), the latter acting on behalf of the statutory conservation agencies in England, Scotland, Wales and Northern Ireland. CEH and JNCC support BRC as an important component of the National Biodiversity Network. BRC seeks to help naturalists and research biologists to co-ordinate their efforts in studying the occurrence of plants and animals in Britain and Ireland, and to make the results of these studies available to others. For further information, visit www.ceh.ac.uk Cover photograph: Bryophyte-dominated vegetation by a late-lying snow patch at Garbh Uisge Beag, Ben Macdui, July 2007 (courtesy of Gordon Rothero). Published by Centre for Ecology and Hydrology, Monks Wood, Abbots Ripton, Huntingdon, Cambridgeshire, PE28 2LS. Copies can be ordered by writing to the above address until Spring 2008; thereafter consult www.ceh.ac.uk Contents Introduction .
    [Show full text]
  • QUBS Moss Species
    Queen’s University Biological Station Species List: Mosses The current list has been compiled by Dr. Ivy Schoepf, QUBS Research Coordinator, in 2018 and includes data gathered by direct observation, collected by researchers at the station and/or assembled using digital distribution maps. The list has been put together using resources from The Natural Heritage Information Centre (April 2018); The IUCN Red List of Threatened Species (February 2018); iNaturalist and GBIF. Contact Ivy to report any errors, omissions and/or new sightings. Based on the aforementioned criteria we can expect to find 37 species of mosses (phylum: Figure 1. The fire moss (Ceratodon purpureus) is Bryophyta) present at QUBS. All species are one of the most widespread species of mosses found considered QUBS residents. Species are in Canada, and is commonly seen at QUBS. Its reported using their full taxonomy; common prevalence can be traced back to its ability to tolerate name and status, based on whether the species is highly disturbed habitat and higher pollution levels of global or provincial concern (see Table 1 for than other mosses. Research in this species has details). revealed that fire mosses might have a plant- pollinator relationship with springtails that may be Table 1. Status classification reported for the analogous to those shown by other arthropods with mosses of QUBS. Global status based on IUCN Red flowering plants. Photo courtesy of Mark Conboy List of Threatened Species rankings. Provincial status based on Ontario Natural Heritage Information Centre
    [Show full text]