Development of Multi-Disciplinary Simulation Codes and Their Application for the Study of Future Space Transport Systems
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nasa X-15 Program
5 24,132 6 9 NASA X-15 PROGRAM By: T.D. Barnes - NASA Contractor - 1960s NASA contractors for the X-15 program were Bendix Field Engineering followed by Unitec, Inc. The NASA High Range Tracking stations were located at Ely and Beatty Nevada with main control being at Dryden/Edwards AFB in California. Personnel at the tracking stations consisted of a Station Manager, a Technical Advisor, and field engineers for the Mod-2 Radar, Data Transmission System, Communications, Telemetry, and Plant Maintenance/Generators. NASA had a site monitor at each tracking station to monitor our contractor operations. Though supporting flights of the X-15 was their main objective, they also participated in flights of the XB-70, the three Lifting Bodies, experimental Lunar Landing vehicles, and an occasional A-12/YF-12/SR-71 Blackbird flight. On mission days a NASA van picked up each member of the crew at their residence for the 4:20 a.m. trip to the tracking station 18 miles North of Beatty on the Tonopah Highway. Upon arrival each performed preflight calibrations and setup of their various systems. The liftoff of the B-52, with the X-15 tucked beneath its wing, seldom occurred after 9:00 a.m. due to the heat effect of the Mojave Desert making it difficult for the planes to acquire altitude. At approximately 0800 hours two pilots from Dryden would proceed uprange to evaluate the condition of the dry lake beds in the event of an emergency landing of the X-15 (always buzzing our station on the way up and back). -
MIT Japan Program Working Paper 01.10 the GLOBAL COMMERCIAL
MIT Japan Program Working Paper 01.10 THE GLOBAL COMMERCIAL SPACE LAUNCH INDUSTRY: JAPAN IN COMPARATIVE PERSPECTIVE Saadia M. Pekkanen Assistant Professor Department of Political Science Middlebury College Middlebury, VT 05753 [email protected] I am grateful to Marco Caceres, Senior Analyst and Director of Space Studies, Teal Group Corporation; Mark Coleman, Chemical Propulsion Information Agency (CPIA), Johns Hopkins University; and Takashi Ishii, General Manager, Space Division, The Society of Japanese Aerospace Companies (SJAC), Tokyo, for providing basic information concerning launch vehicles. I also thank Richard Samuels and Robert Pekkanen for their encouragement and comments. Finally, I thank Kartik Raj for his excellent research assistance. Financial suppport for the Japan portion of this project was provided graciously through a Postdoctoral Fellowship at the Harvard Academy of International and Area Studies. MIT Japan Program Working Paper Series 01.10 Center for International Studies Massachusetts Institute of Technology Room E38-7th Floor Cambridge, MA 02139 Phone: 617-252-1483 Fax: 617-258-7432 Date of Publication: July 16, 2001 © MIT Japan Program Introduction Japan has been seriously attempting to break into the commercial space launch vehicles industry since at least the mid 1970s. Yet very little is known about this story, and about the politics and perceptions that are continuing to drive Japanese efforts despite many outright failures in the indigenization of the industry. This story, therefore, is important not just because of the widespread economic and technological merits of the space launch vehicles sector which are considerable. It is also important because it speaks directly to the ongoing debates about the Japanese developmental state and, contrary to the new wisdom in light of Japan's recession, the continuation of its high technology policy as a whole. -
GAO-21-378, HYPERSONIC WEAPONS: DOD Should Clarify
United States Government Accountability Office Report to Congressional Addressees March 2021 HYPERSONIC WEAPONS DOD Should Clarify Roles and Responsibilities to Ensure Coordination across Development Efforts GAO-21-378 March 2021 HYPERSONIC WEAPONS DOD Should Clarify Roles and Responsibilities to Ensure Coordination across Development Efforts Highlights of GAO-21-378, a report to congressional addressees Why GAO Did This Study What GAO Found Hypersonic missiles, which are an GAO identified 70 efforts to develop hypersonic weapons and related important part of building hypersonic technologies that are estimated to cost almost $15 billion from fiscal years 2015 weapon systems, move at least five through 2024 (see figure). These efforts are widespread across the Department times the speed of sound, have of Defense (DOD) in collaboration with the Department of Energy (DOE) and, in unpredictable flight paths, and are the case of hypersonic technology development, the National Aeronautics and expected to be capable of evading Space Administration (NASA). DOD accounts for nearly all of this amount. today’s defensive systems. DOD has begun multiple efforts to develop Hypersonic Weapon-related and Technology Development Total Reported Funding by Type of offensive hypersonic weapons as well Effort from Fiscal Years 2015 through 2024, in Billions of Then-Year Dollars as technologies to improve its ability to track and defend against them. NASA and DOE are also conducting research into hypersonic technologies. The investments for these efforts are significant. This report identifies: (1) U.S. government efforts to develop hypersonic systems that are underway and their costs, (2) challenges these efforts face and what is being done to address them, and (3) the extent to which the U.S. -
Aerodynamic Study of a Small Hypersonic Plane
Università degli Studi di Napoli “Federico II” Dottorato di Ricerca in Ingegneria Aerospaziale, Navale e della Qualità XXVII Ciclo Aerodynamic study of a small hypersonic plane Coordinatore: Ch.mo Prof. L. De Luca Candidata: Tutors: Ing. Vera D'Oriano Ch.mo Prof. R. Savino Ing. M. Visone (BLUE Engineering) Acknowledgements First I wish to thank my academic tutor Prof. Raffaele Savino, for offering me this precious opportunity and for his enthusiastic guidance. Next, I am immensely grateful to my company tutor, Michele Visone (Mike, for friends) for his technical support, despite his busy schedule, and for his constant encouragements. I also would like to thank the HyPlane team members: Rino Russo, Prof. Battipede and Prof. Gili, Francesco and Gennaro, for the fruitful collaborations. A special thank goes to all Blue Engineering guys (especially to Myriam) for making our site a pleasant and funny place to work. Many thanks to queen Giuly and Peppe "il pazzo", my adoptive family during my stay in Turin, and also to my real family, for the unconditional love and care. My greatest gratitude goes to my unique friends - my potatoes (Alle & Esa), my mentor Valerius and Franca - and to my soul mate Naso, to whom I dedicate this work. Abstract Access to Space is still in its early stages of commercialization. Most of the attention is currently focused on sub-orbital flights, which allow Space tourists to experiment microgravity conditions for a few minutes and to see a large area of the Earth, along with its curvature, from the stratosphere. Secondary markets directly linked to the commercial sub-orbital flights may include microgravity research, remote sensing, high altitude Aerospace technological testing and astronauts training, while a longer term perspective can also foresee point-to-point hypersonic transportation. -
PRE-X EXPERIMENTAL RE-ENTRY LIFTING BODY: DESIGN of FLIGHT TEST EXPERIMENTS for CRITICAL AEROTHERMAL PHENOMENA Paolo Baiocco
PRE-X EXPERIMENTAL RE-ENTRY LIFTING BODY: DESIGN OF FLIGHT TEST EXPERIMENTS FOR CRITICAL AEROTHERMAL PHENOMENA Paolo Baiocco * * CNES Direction des Lanceurs Rond Point de l’Espace – 91023 Evry Cedex, France Phone : +33 (0)1.60.87.72.14 Fax : +33 (0)1.60.87.72.66 E-mail : [email protected] ABSTRACT Atmospheric glided re-entry is one of the main key technologies for future space vehicle applications. In this frame Pre-X is the CNES proposal to perform in-flight experimentation mainly on reusable thermal protections, aero-thermo-dynamics and guidance to secure the second generation of re-entry X vehicles. This paper describes the system principles and main aerothermodynamic experiences currently foreseen on board the vehicle. A preliminary in-flight experimentation and measurement plan has been assessed defining the main objectives in terms of reusable Thermal Protection System (TPS) and Aero Thermo Dynamics (ATD) data on the most critical phenomena. This flight aims also to take the opportunity to fly some innovative measurements. A complete system loop has been performed including the operations, ground system assessment, and visibility analysis. The vehicle re-entry point is at 120 km and the mission objectives are fulfilled between Mach 25 and 5. Then the vehicle has to pass to subsonic speeds, the parachute opens and it is finally recovered in the sea. The VEGA and DNEPR launch vehicles are compatible of the Pre-X experimental vehicle. ACRONYMS ACS Attitude Control System AEDB Aero Dynamic Data Base AoA Angle of Attack ARD Atmospheric Re-entry Demonstrator ATD Aero Termo Dynamics ATDB Aero Termodynamic Data Base CDG Centre of Gravity CFA Continuum Flow Aerodynamics CFD Computational Fluid Dynamics CMC Ceramic Matrix Composite C/SiC Carbon / Silicon Carbide FCS Flight Control System FEI Flexible External Insulation GNC Guidance Navigation and Control LTT Laminar to Turbulent Transition LV Launch Vehicle RCS Reaction Control System SEL Electrical System Baiocco, P. -
Contacts: Isabel Morales, Museum of Science and Industry, (773) 947-6003 Renee Mailhiot, Museum of Science and Industry, (773) 947-3133
Contacts: Isabel Morales, Museum of Science and Industry, (773) 947-6003 Renee Mailhiot, Museum of Science and Industry, (773) 947-3133 A GLOSSARY OF TERMS Aerodynamics: The study of the properties of moving air, particularly of the interaction between the air and solid bodies moving through it. Afterburner: An auxiliary burner fitted to the exhaust system of a turbojet engine to increase thrust. Airfoil: A structure with curved surfaces designed to give the most favorable ratio of lift to drag in flight, used as the basic form of the wings, fins and horizontal stabilizer of most aircraft. Armstrong limit: The altitude that produces an atmospheric pressure so low (0.0618 atmosphere or 6.3 kPa [1.9 in Hg]) that water boils at the normal temperature of the human body: 37°C (98.6°F). The saliva in your mouth would boil if you were not wearing a pressure suit at this altitude. Death would occur within minutes from exposure to the vacuum. Autothrottle: The autopilot function that increases or decreases engine power,typically on larger aircraft. Avatar: An icon or figure representing a particular person in computer games, Internet forums, etc. Aerospace: The branch of technology and industry concerned with both aviation and space flight. Carbon fiber: Thin, strong, crystalline filaments of carbon, used as a strengthening material, especially in resins and ceramics. Ceres: A dwarf planet that orbits within the asteroid belt and the largest asteroid in the solar system. Chinook: The Boeing CH-47 Chinook is an American twin-engine, tandem-rotor heavy-lift helicopter. CST-100: The crew capsule spacecraft designed by Boeing in collaboration with Bigelow Aerospace for NASA's Commercial Crew Development program. -
The National Aerospace Plane Program: a Revolutionary Concept
ROBERT R. BARTHELEMY THE NATIONAL AEROSPACE PLANE PROGRAM: A REVOLUTIONARY CONCEPT The National AeroSpace Plane program is aimed at developing and demonstrating hypersonic tech nologies with the goal of achieving orbit with a single-stage vehicle. This article describes the technologi cal, programmatic, utilitarian, and conceptual aspects of the program. INTRODUCTION The National AeroSpace Plane (NASP) is a look into The NASP demonstration aircraft, the X-30 (Fig. 1), the future. It is a vision of the ultimate airplane, one will reach speeds of Mach 25, eight times faster than has capable of flying at speeds greater than 17,000 miles per ever been achieved with airbreathing aircraft. As it flies hour, twenty-five times the speed of sound. It is the at through the atmosphere from subsonic speeds to orbital tainment of a vehicle that can routinely fly from Earth velocities (Mach 25), its structure will be subjected to to space and back, from conventional airfields, in afford average temperatures well beyond anything ever achieved able ways. It represents the achievement of major tech in aircraft. While rocket-powered space vehicles like the nological breakthroughs that will have an enormous im shuttle minimize their trajectories through the atmo pact on the future growth of this nation. It is more than sphere, the X-30 will linger in the atmosphere in order a national aircraft development program, more than the to use the air as the oxidizer for its ramjet and scramjet synergy of revolutionary technologies, more than a capa engines. The NASP aircraft must use liquid or slush bility that may change the way we move through the hydrogen as its fuel, which will present new challenges world and the aerospace around it. -
Preliminary Design of Winged Experimental Rocket by University Consortium
Trans. JSASS Space Tech. Japan Vol. 7, No. ists26, pp. Tg_21-Tg_26, 2009 Preliminary Design of Winged Experimental Rocket by University Consortium By Masashi WAKITA 1) , Koichi YONEMOTO 1) , Tomoki AKIYAMA 1) , Shigeru ASO 2) , Yuji KOHSETSU 2) , and Harunori NAGATA 3) 1) Department of Mechanical and Control Engineering, Kyushu Institute of Technology, Fukuoka, Japan 2) Department of Aeronautics and Astronautics, Kyushu University, Fukuoka, Japan 3) Graduate School of Engineering, Hokkaido University, Hokkaido, Japan (Received April 24th, 2008) The project of Winged Experimental Rocket described here is a proposal by the alliance of universities (University Consortium) expanding and integrating the research activities of reusable space transportation system performed by individual universities, and is the proposal that aims at flight proof of the results of advanced research conducted by the universities and JAXA using the university-centered experimental launch systems. This paper verifies the validity of the winged experimental rocket by surveying the technical issues that should be demonstrated and by estimating the airframe scale, weight and finally the total cost. The development schedule of this project was set to five years, where two airframes of different scales will be developed to minimize the risks. A 1.5-meter-long airframe will be first manufactured and conduct flight tests in the third year to verify the design issues. Then, a 2.5-meter-long airframe will be finally developed and conduct a complete flight demonstration of various research issues in the fifth year. Key Words: Winged Rocket, University Consortium 1. Introduction or the alliance of universities (University Consortium) and institutes to break down such a stagnation feeling after the Based on the long term vision of expanding ideal freeze of HOPE-X project. -
Status and Perspectives of Hypersonic Systems and Technologies with Emphasis on the Role of Sub-Orbital Flight ∗ S
Aerotecnica Missili & Spazio, The Journal of Aerospace Science, Technology and Systems Status and Perspectives of Hypersonic Systems and Technologies with Emphasis on the Role of Sub-Orbital Flight ∗ S. Chiesaa, G. Russob, M. Fioritia, S. Corpinoa a Politecnico di Torino Department of Mechanical and Aerospace Engineering b AIDAA Sez. Napoletana c/o Department of Industrial Engineering \Federico II" - University of Naples Abstract The relevance and the main features of Hypersonic Flight are shortly presented and discussed. A synthetic overview of the few realisations and of many studies, projects and technological demonstrators offers opportunity of point out many interesting aspects. Then the more actual realisations and studies are considered, with particular attention to the new sector of small suborbital planes for Space Tourism. That gives opportunity of proposing a Road Map for an affordable and logic development of Hypersonic Flight, passing through the development of a suborbital Space Tourism plane on the basis of an existing subsonic business jet. Then the suborbital plane will constitute the basis of developing an Hypersonic Cruise Business Jet and, as a next step, a TSTO. 1. Introduction 2. Hypersonic Flight Concept The hypersonic flight is a subject on which the ef- It is considered appropriate to establish a definition forts of basic and applied aerospace research have been of hypersonic aircraft, useful to define the topic of dis- focused over the years. These efforts consisted in cussion; we define hypersonic aircraft a system capable the development of several projects and correspond- of taking off and landing horizontally (HOTOL - Hori- ing technological fields, such as aerodynamics, propul- zontal Take Off and Landing), and capable of flying at sion, structures capable of withstanding high thermal a Mach higher than 4.5. -
Velivoli Ipersonici”
GRUPPO DI LAVORO “VELIVOLI IPERSONICI” FRAMEWORK Gruppo di Lavoro “Velivoli Ipersonici” Chairman: Gen. B.A. (r) Giuseppe Cornacchia, CESMA Framework (WP 1.0) Coordinatori: Ing. Ludovico Vecchione/Ing. Sara Di Benedetto, Centro Italiano Ricerche Aerospaziali (CIRA) 1 GRUPPO DI LAVORO “VELIVOLI IPERSONICI” FRAMEWORK Indice Work Breakdown Structure ..................................................................................................... 3 1 Introduzione ...................................................................................................................... 4 2 Tassonomia ....................................................................................................................... 4 3 Mappatura delle iniziative europee .................................................................................. 4 3.1 European eXPErimental Re-entry Test-bed (EXPERT) ......................................................... 5 3.2 Intermediate eXperimental Vehicle (IXV) ......................................................................... 6 3.3 PRIDE ............................................................................................................................ 7 3.4 Long-Term Advanced Propulsion Concepts and Technologies (LAPCAT-II) ............................ 8 3.5 Future High-Altitude High-Speed Transport 20XX (FAST20XX) ............................................ 9 3.6 High-Speed Experimental Fly Vehicles – International (HEXAFLY-INT) ............................... 10 4 Iniziative nazionali in Europa -
Design Evolution and AHP-Based Historiography of Lifting Reentry Vehicle Space Programs
AIAA 2016-5319 AIAA SPACE Forum 13 - 16 September 2016, Long Beach, California AIAA SPACE 2016 Design Evolution and AHP-based Historiography of Lifting Reentry Vehicle Space Programs Loveneesh Rana∗ and Bernd Chudoba y University of Texas at Arlington, TX-76019-0018 The term \Historiography" is defined as the writing of history based on the critical examination of sources. In the context of space access systems, a considerable body of lit- erature has been published addressing the history of lifting-reentry vehicle(LRV) research. Many technical papers and books have surveyed legacy research case studies, technology development projects and vehicle development programs to document the evolution of hy- personic vehicle design knowledge gained from the early 1950s onwards. However, these accounts tend to be subjective and qualitative in their discussion of the significance and level of progress made. Even though the information addressed in these surveys is consid- ered crucial, it may lack qualitative or quantitative organization for consistently measuring the contribution of an individual program. The goal of this study is to provide an anatomy aimed at addressing and quantifying the contribution of legacy programs towards the evolution of the hypersonic knowledge base. This paper applies quantified analysis to legacy lifting-reentry vehicle programs, aimed at comprehensively capturing the evolution of LRV hypersonic knowledge base. Beginning with an overview of literature surveys focusing on hypersonic research programs, a com- prehensive list of LRV programs, starting from the 1933 Silvervogel to the 2015 Dream Chaser, is assembled. These case-studies are assessed on the basis of contribution made towards major hypersonic disciplines. -
Computer Modelling of Aerothermodynamic Characteristics for Hypersonic Vehicles
Journal of Applied Mathematics and Physics, 2014, 2, 115-123 Published Online April 2014 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2014.25015 Computer Modelling of Aerothermodynamic Characteristics for Hypersonic Vehicles Yuri Ivanovich Khlopkov, Anton Yurievich Khlopkov, Zay Yar Myo Myint Department of Aeromechanics and Flight Engineering, Moscow Institute of Physics and Technology, Zhukovsky, Russia Email: [email protected], [email protected] Received December 2013 Abstract The purpose of this work is to describe the suitable methods for aerodynamic characteristics cal- culation of hypersonic vehicles in free molecular flow and the transitional regimes. Moving of the hypersonic vehicles at high altitude, it is necessary to know the behavior of its aerodynamic cha- racteristics for all flow regimes. Nowadays, various engineering approaches have been developed for modelling of aerodynamics of aircraft vehicle designs at initial state. The engineering method that described in this paper provides good results for the aerodynamic characteristics of various geometry designs of hypersonic vehicles in the transitional regime. In this paper present the cal- culation results of aerodynamic characteristics of various hypersonic vehicles in all range of re- gimes by using engineering method. Keywords Aerodynamic Characteristics, Computational Aerodynamics, Hypersonic Technology, Rarefied Gas Dynamics; Engineering Method, Aerodynamics in Transitional Regime 1. Introduction Theoretical studies of hypersonic flows associated with the creation of “Space Shuttle” to transport people and cargo into Earth orbit began in the last century. Research had been focused mainly on the department of TsAGI named after N.Y. Zhukovsky (Central Aerohydrodynamic Institute). Practical work on the creation of aerospace systems had been instructed engineering centre of the experimental design bureau named after A.I.