High Speed/Hypersonic Aircraft Propulsion Technology Development
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
CAAM 3 Report
3rd Technical Report On Propulsion System and Auxiliary Power Unit (APU) Related Aircraft Safety Hazards A joint effort of The Federal Aviation Administration and The Aerospace Industries Association March 30, 2017 Questions concerning distribution of this report should be addressed to: Federal Aviation Administration Manager, Engine and Propeller Directorate. TABLE OF CONTENTS Page Table of Contents iii List of Figures v I. Foreword 1 II. Background 1 III. Scope 2 IV. Discussion 3 V. Relationship to Previous CAAM Data 7 VI. General Notes and Comments 8 VII. Fleet Utilization 11 VIII. CAAM3 Team Members 12 IX. Appendices List of Appendices 13 Appendix 1: Standardized Aircraft Event Hazard Levels and Definitions 14 • General Notes Applicable to All Event Hazard Levels 19 • Rationale for Changes in Severity Classifications 19 • Table 1. Historical Comparison of Severity Level Descriptions and Rationale for CAAM3 Changes 21 Appendix 2: Event Definitions 39 Appendix 3: Propulsion System and Auxiliary Power Unit (APU) Related Aircraft Safety Hazards (2001 through 2012) 44 • Uncontained Blade 44 • Uncontained Disk 50 • Uncontained – Other 56 iii • Uncontained – All Parts 62 • High Bypass Comparison by Generation 63 • Relationship Among High Bypass Fleet 64 • Case Rupture 66 • Case Burnthrough 69 • Under-Cowl Fire 72 • Strut/Pylon Fire 76 • Fuel Leak 78 • Engine Separation 82 • Cowl Separation 85 • Propulsion System Malfunction Recognition and Response (PSMRR) 88 • Crew Error 92 • Reverser/Beta Malfunction – In-Flight Deploy 96 • Fuel Tank Rupture/Explosion 99 • Tailpipe Fire 102 • Multiple-Engine Powerloss – Non-Fuel 107 • Multiple-Engine Powerloss – Fuel-Related 115 • Fatal Human Ingestion / Propeller Contact 120 • IFSD Snapshot by Hazard Level – 2012 Data Only 122 • RTO Snapshot by Hazard Level – 2012 Data Only 123 • APU Events 123 • Turboprop Events 124 • Matrices of Event Counts, Hazard Ratios and Rates 127 • Data Comparison to Previous CAAM Data 135 [ The following datasets which were collected in CAAM2 were not collected in CAAM3. -
Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere
NPTEL –Aerospace Module 1: Hypersonic Atmosphere Lecture1: Characteristics of Hypersonic Atmosphere 1.1 Introduction Hypersonic flight has special traits, some of which are seen in every hypersonic flight. Presence of these particular features during a flight is highly dependant on type of trajectory, configuration etc. In short it is the mission requirement which decides the nature of hypersonic atmosphere encountered by the flight vehicle. Some missions are designed for high deceleration in outer atmosphere during reentry. Hence, those flight vehicles experience longer flight duration at high angle of attacks due to which blunt nosed configuration are generally preferred for such aircrafts. On the contrary, some missions are centered on low flight duration with major deceleration closer to earth surface hence these vehicles have sharp nose and low angle of attack flights. Reentry flight path of hypersonic vehicle is thus governed by the parameters called as ballistic parameter and lifting parameter. These parameters are obtained by applying momentum conservation equation in the direction of the flight path and normal to it. Velocity-altitude map of the flight is thus made from the knowledge of these governing flight parameters, weight and surface area. Ballistic parameter is considered for non lifting reentry flights like flight path of Apollo capsule, however lifting parameter is considered for lifting reentry trajectories like that of space shuttle. Therefore hypersonic flight vehicles are classified in four different types based on the design constraints imposed from mission specifications. 1. Reentry Vehicles (RV): These vehicles are typically launched using rocket propulsion system. Reentry of these vehicles is controlled by control surfaces. -
Different Types of Rocket Nozzles
Different Types of Rocket Nozzles 5322- Rocket Propulsion Project Report By Patel Harinkumar Rajendrabhai(1001150586) 1. Introduction 1.1 What is Nozzle and why they are used? A nozzle is a device designed to control the direction or characteristics of a fluid flow (especially to increase velocity) as it exits (or enters) an enclosed chamber or Pipe[9]. Nozzles are frequently used to control the rate of flow, speed, direction, mass, shape, and/or the pressure of the stream that emerges from them. In nozzle velocity of fluid increases on the expense of its pressure energy. A Water Nozzle[9] Rotator Style Pivot Sprinkler[9] 1.2 What is Rocket Nozzle? A rocket engine nozzle is a propelling nozzle (usually of the de Laval type) used in a rocket engine to expand and accelerate the hot gases from combustion so as to produce thrust according to Newton’s law of motion. Combustion gases are produced by burning the propellants in combustor, they exit the nozzle at very high Speed (hypersonic). 1.3 Properties of Rocket Nozzle Nozzle produces thrust. Exhaust gases from combustion are pushed into throat region of nozzle. Throat is smaller cross-sectional area than rest of engine, gases are compressed to high pressure. Nozzle gradually increases in cross-sectional area allowing gases to expand and push against walls creating thrust. Convert thermal energy of hot chamber gases into kinetic energy and direct that energy along nozzle axis.[1] Mathematically, ultimate purpose of nozzle is to expand gases as efficiently as possible so as to maximize exit velocity.[1] Rocket Engine[1] F m eVe Pe Pa Ae Neglecting Pressure losses F m eVe 2 Different types of Rocket Nozzle Configuration(shape) The rocket nozzles can have many shapes configurations. -
Notes on Earth Atmospheric Entry for Mars Sample Return Missions
NASA/TP–2006-213486 Notes on Earth Atmospheric Entry for Mars Sample Return Missions Thomas Rivell Ames Research Center, Moffett Field, California September 2006 The NASA STI Program Office . in Profile Since its founding, NASA has been dedicated to the • CONFERENCE PUBLICATION. Collected advancement of aeronautics and space science. The papers from scientific and technical confer- NASA Scientific and Technical Information (STI) ences, symposia, seminars, or other meetings Program Office plays a key part in helping NASA sponsored or cosponsored by NASA. maintain this important role. • SPECIAL PUBLICATION. Scientific, technical, The NASA STI Program Office is operated by or historical information from NASA programs, Langley Research Center, the Lead Center for projects, and missions, often concerned with NASA’s scientific and technical information. The subjects having substantial public interest. NASA STI Program Office provides access to the NASA STI Database, the largest collection of • TECHNICAL TRANSLATION. English- aeronautical and space science STI in the world. language translations of foreign scientific and The Program Office is also NASA’s institutional technical material pertinent to NASA’s mission. mechanism for disseminating the results of its research and development activities. These results Specialized services that complement the STI are published by NASA in the NASA STI Report Program Office’s diverse offerings include creating Series, which includes the following report types: custom thesauri, building customized databases, organizing and publishing research results . even • TECHNICAL PUBLICATION. Reports of providing videos. completed research or a major significant phase of research that present the results of NASA For more information about the NASA STI programs and include extensive data or theoreti- Program Office, see the following: cal analysis. -
Performances of a Small Hypersonic Airplane (Hyplane)
Politecnico di Torino Porto Institutional Repository [Proceeding] PERFORMANCES OF A SMALL HYPERSONIC AIRPLANE (HYPLANE) Original Citation: Savino R.; Russo G.; D’Oriano V.; Visone M.; Battipede M.; Gili P. (2014). PERFORMANCES OF A SMALL HYPERSONIC AIRPLANE (HYPLANE). In: 65th International Astronautical Congress„ Toronto, Canada, 29 September - 3 October 2014. pp. 1-13 Availability: This version is available at : http://porto.polito.it/2591763/ since: February 2015 Publisher: International Astronautical Federation (IAF) Terms of use: This article is made available under terms and conditions applicable to Open Access Policy Article ("Public - All rights reserved") , as described at http://porto.polito.it/terms_and_conditions. html Porto, the institutional repository of the Politecnico di Torino, is provided by the University Library and the IT-Services. The aim is to enable open access to all the world. Please share with us how this access benefits you. Your story matters. (Article begins on next page) 65th International Astronautical Congress, Toronto, Canada. Copyright ©2014 by the Authors. Published by the IAF, with permission and released to the IAF to publish in all forms. IAC-14-D2.4 PERFORMANCES OF A SMALL HYPERSONIC AIRPLANE (HYPLANE) Raffaele Savino Department of Industrial Engineering, University of Naples “Federico II”, Italy Gennaro Russo Trans-Tech srl and Space Renaissance Italia, Italy Vera D’Oriano*, Michele Visone Blue Engineering, Italy Manuela Battipede, Piero Gili Department of Mechanical and Aerospace Engineering, Polytechnic of Turin, Italy In the present work a preliminary performance study regarding a small hypersonic airplane named HyPlane is presented. It is designed for long duration sub-orbital space tourism missions, in the frame of the Space Renaissance (SR) Italia Space Tourism Program. -
Propeller Operation and Malfunctions Basic Familiarization for Flight Crews
PROPELLER OPERATION AND MALFUNCTIONS BASIC FAMILIARIZATION FOR FLIGHT CREWS INTRODUCTION The following is basic material to help pilots understand how the propellers on turbine engines work, and how they sometimes fail. Some of these failures and malfunctions cannot be duplicated well in the simulator, which can cause recognition difficulties when they happen in actual operation. This text is not meant to replace other instructional texts. However, completion of the material can provide pilots with additional understanding of turbopropeller operation and the handling of malfunctions. GENERAL PROPELLER PRINCIPLES Propeller and engine system designs vary widely. They range from wood propellers on reciprocating engines to fully reversing and feathering constant- speed propellers on turbine engines. Each of these propulsion systems has the similar basic function of producing thrust to propel the airplane, but with different control and operational requirements. Since the full range of combinations is too broad to cover fully in this summary, it will focus on a typical system for transport category airplanes - the constant speed, feathering and reversing propellers on turbine engines. Major propeller components The propeller consists of several blades held in place by a central hub. The propeller hub holds the blades in place and is connected to the engine through a propeller drive shaft and a gearbox. There is also a control system for the propeller, which will be discussed later. Modern propellers on large turboprop airplanes typically have 4 to 6 blades. Other components typically include: The spinner, which creates aerodynamic streamlining over the propeller hub. The bulkhead, which allows the spinner to be attached to the rest of the propeller. -
Brazilian 14-Xs Hypersonic Unpowered Scramjet Aerospace Vehicle
ISSN 2176-5480 22nd International Congress of Mechanical Engineering (COBEM 2013) November 3-7, 2013, Ribeirão Preto, SP, Brazil Copyright © 2013 by ABCM BRAZILIAN 14-X S HYPERSONIC UNPOWERED SCRAMJET AEROSPACE VEHICLE STRUCTURAL ANALYSIS AT MACH NUMBER 7 Álvaro Francisco Santos Pivetta Universidade do Vale do Paraíba/UNIVAP, Campus Urbanova Av. Shishima Hifumi, no 2911 Urbanova CEP. 12244-000 São José dos Campos, SP - Brasil [email protected] David Romanelli Pinto ETEP Faculdades, Av. Barão do Rio Branco, no 882 Jardim Esplanada CEP. 12.242-800 São José dos Campos, SP, Brasil [email protected] Giannino Ponchio Camillo Instituto de Estudos Avançados/IEAv - Trevo Coronel Aviador José Alberto Albano do Amarante, nº1 Putim CEP. 12.228-001 São José dos Campos, SP - Brasil. [email protected] Felipe Jean da Costa Instituto Tecnológico de Aeronáutica/ITA - Praça Marechal Eduardo Gomes, nº 50 Vila das Acácias CEP. 12.228-900 São José dos Campos, SP - Brasil [email protected] Paulo Gilberto de Paula Toro Instituto de Estudos Avançados/IEAv - Trevo Coronel Aviador José Alberto Albano do Amarante, nº1 Putim CEP. 12.228-001 São José dos Campos, SP - Brasil. [email protected] Abstract. The Brazilian VHA 14-X S is a technological demonstrator of a hypersonic airbreathing propulsion system based on supersonic combustion (scramjet) to fly at Earth’s atmosphere at 30km altitude at Mach number 7, designed at the Prof. Henry T. Nagamatsu Laboratory of Aerothermodynamics and Hypersonics, at the Institute for Advanced Studies. Basically, scramjet is a fully integrated airbreathing aeronautical engine that uses the oblique/conical shock waves generated during the hypersonic flight, to promote compression and deceleration of freestream atmospheric air at the inlet of the scramjet. -
Rocket Nozzles: 75 Years of Research and Development
Sådhanå Ó (2021) 46:76 Indian Academy of Sciences https://doi.org/10.1007/s12046-021-01584-6Sadhana(0123456789().,-volV)FT3](0123456789().,-volV) Rocket nozzles: 75 years of research and development SHIVANG KHARE1 and UJJWAL K SAHA2,* 1 Department of Energy and Process Engineering, Norwegian University of Science and Technology, 7491 Trondheim, Norway 2 Department of Mechanical Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, India e-mail: [email protected]; [email protected] MS received 28 August 2020; revised 20 December 2020; accepted 28 January 2021 Abstract. The nozzle forms a large segment of the rocket engine structure, and as a whole, the performance of a rocket largely depends upon its aerodynamic design. The principal parameters in this context are the shape of the nozzle contour and the nozzle area expansion ratio. A careful shaping of the nozzle contour can lead to a high gain in its performance. As a consequence of intensive research, the design and the shape of rocket nozzles have undergone a series of development over the last several decades. The notable among them are conical, bell, plug, expansion-deflection and dual bell nozzles, besides the recently developed multi nozzle grid. However, to the best of authors’ knowledge, no article has reviewed the entire group of nozzles in a systematic and comprehensive manner. This paper aims to review and bring all such development in one single frame. The article mainly focuses on the aerodynamic aspects of all the rocket nozzles developed till date and summarizes the major findings covering their design, development, utilization, benefits and limitations. -
Propulsion Systems for Aircraft. Aerospace Education II
. DOCUMENT RESUME ED 111 621 SE 017 458 AUTHOR Mackin, T. E. TITLE Propulsion Systems for Aircraft. Aerospace Education II. INSTITUTION 'Air Univ., Maxwell AFB, Ala. Junior Reserve Office Training Corps.- PUB.DATE 73 NOTE 136p.; Colored drawings may not reproduce clearly. For the accompanying Instructor Handbook, see SE 017 459. This is a revised text for ED 068 292 EDRS PRICE, -MF-$0.76 HC.I$6.97 Plus' Postage DESCRIPTORS *Aerospace 'Education; *Aerospace Technology;'Aviation technology; Energy; *Engines; *Instructional-. Materials; *Physical. Sciences; Science Education: Secondary Education; Textbooks IDENTIFIERS *Air Force Junior ROTC ABSTRACT This is a revised text used for the Air Force ROTC _:_progralit._The main part of the book centers on the discussion -of the . engines in an airplane. After describing the terms and concepts of power, jets, and4rockets, the author describes reciprocating engines. The description of diesel engines helps to explain why theseare not used in airplanes. The discussion of the carburetor is followed byan explanation of the lubrication system. The chapter on reaction engines describes the operation of,jets, with examples of different types of jet engines.(PS) . 4,,!It********************************************************************* * Documents acquired by, ERIC include many informal unpublished * materials not available from other souxces. ERIC makes every effort * * to obtain the best copravailable. nevertheless, items of marginal * * reproducibility are often encountered and this affects the quality * * of the microfiche and hardcopy reproductions ERIC makes available * * via the ERIC Document" Reproduction Service (EDRS). EDRS is not * responsible for the quality of the original document. Reproductions * * supplied by EDRS are the best that can be made from the original. -
The SKYLON Spaceplane
The SKYLON Spaceplane Borg K.⇤ and Matula E.⇤ University of Colorado, Boulder, CO, 80309, USA This report outlines the major technical aspects of the SKYLON spaceplane as a final project for the ASEN 5053 class. The SKYLON spaceplane is designed as a single stage to orbit vehicle capable of lifting 15 mT to LEO from a 5.5 km runway and returning to land at the same location. It is powered by a unique engine design that combines an air- breathing and rocket mode into a single engine. This is achieved through the use of a novel lightweight heat exchanger that has been demonstrated on a reduced scale. The program has received funding from the UK government and ESA to build a full scale prototype of the engine as it’s next step. The project is technically feasible but will need to overcome some manufacturing issues and high start-up costs. This report is not intended for publication or commercial use. Nomenclature SSTO Single Stage To Orbit REL Reaction Engines Ltd UK United Kingdom LEO Low Earth Orbit SABRE Synergetic Air-Breathing Rocket Engine SOMA SKYLON Orbital Maneuvering Assembly HOTOL Horizontal Take-O↵and Landing NASP National Aerospace Program GT OW Gross Take-O↵Weight MECO Main Engine Cut-O↵ LACE Liquid Air Cooled Engine RCS Reaction Control System MLI Multi-Layer Insulation mT Tonne I. Introduction The SKYLON spaceplane is a single stage to orbit concept vehicle being developed by Reaction Engines Ltd in the United Kingdom. It is designed to take o↵and land on a runway delivering 15 mT of payload into LEO, in the current D-1 configuration. -
Nasa X-15 Program
5 24,132 6 9 NASA X-15 PROGRAM By: T.D. Barnes - NASA Contractor - 1960s NASA contractors for the X-15 program were Bendix Field Engineering followed by Unitec, Inc. The NASA High Range Tracking stations were located at Ely and Beatty Nevada with main control being at Dryden/Edwards AFB in California. Personnel at the tracking stations consisted of a Station Manager, a Technical Advisor, and field engineers for the Mod-2 Radar, Data Transmission System, Communications, Telemetry, and Plant Maintenance/Generators. NASA had a site monitor at each tracking station to monitor our contractor operations. Though supporting flights of the X-15 was their main objective, they also participated in flights of the XB-70, the three Lifting Bodies, experimental Lunar Landing vehicles, and an occasional A-12/YF-12/SR-71 Blackbird flight. On mission days a NASA van picked up each member of the crew at their residence for the 4:20 a.m. trip to the tracking station 18 miles North of Beatty on the Tonopah Highway. Upon arrival each performed preflight calibrations and setup of their various systems. The liftoff of the B-52, with the X-15 tucked beneath its wing, seldom occurred after 9:00 a.m. due to the heat effect of the Mojave Desert making it difficult for the planes to acquire altitude. At approximately 0800 hours two pilots from Dryden would proceed uprange to evaluate the condition of the dry lake beds in the event of an emergency landing of the X-15 (always buzzing our station on the way up and back). -
Tethered Fixed-Wing Aircraft to Lift Payloads…
Tethered Fixed-Wing Aircraft to Lift Payloads: A Concept Enabled by Electric Propulsion David Rancourt Etienne Demers Bouchard Université de Sherbrooke Georgia Institute of Technology 3000 boul. Université – Pavillon P2 275 Ferst Drive NW Sherbrooke, QC Atlanta, GA CANADA USA [email protected] [email protected] Keywords: Electric propulsion, novel aircraft concept, VTOL, hybrid-electric powertrain ABSTRACT Helicopters have been essential to the military as they have been one of the only solutions for air-transporting substantial payloads with no need for complex mile-long runway infrastructures. However, they are fundamentally limited with high fuel consumption and reduced range. A disruptive concept to vertical lift uses tethered fixed-wing aircraft to lift a payload, where multiple aircraft collaborate and fly along a near circular flight path in hover. The Electric-Powered Reconfigurable Rotor concept (EPR2) leverages the recent progress in electric propulsion and modern controls to enable efficient load lifting using fixed-wing aircraft. The novel idea is to replace tethered manned aircraft (with onboard energy, fuel) with electric-powered fixed-wing aircraft with remote energy source to enable efficient collaborative load lifting. This paper presents the conceptual design of a heavy-lifting aircraft concept using electric-powered tethered fixed-wing aircraft for a ~30 metric ton lifting capability. A physics-based multidisciplinary design and simulation environment is used to predict the performance and optimize the aircraft flight path. It is demonstrated that this concept could hover with only 3.01 MW of power yet be able to translate to over 80 kts with minimal power increase by leveraging the benefits of complex non-circular flight paths.