Status and Perspectives of Hypersonic Systems and Technologies with Emphasis on the Role of Sub-Orbital Flight ∗ S

Total Page:16

File Type:pdf, Size:1020Kb

Status and Perspectives of Hypersonic Systems and Technologies with Emphasis on the Role of Sub-Orbital Flight ∗ S Aerotecnica Missili & Spazio, The Journal of Aerospace Science, Technology and Systems Status and Perspectives of Hypersonic Systems and Technologies with Emphasis on the Role of Sub-Orbital Flight ∗ S. Chiesaa, G. Russob, M. Fioritia, S. Corpinoa a Politecnico di Torino Department of Mechanical and Aerospace Engineering b AIDAA Sez. Napoletana c/o Department of Industrial Engineering \Federico II" - University of Naples Abstract The relevance and the main features of Hypersonic Flight are shortly presented and discussed. A synthetic overview of the few realisations and of many studies, projects and technological demonstrators offers opportunity of point out many interesting aspects. Then the more actual realisations and studies are considered, with particular attention to the new sector of small suborbital planes for Space Tourism. That gives opportunity of proposing a Road Map for an affordable and logic development of Hypersonic Flight, passing through the development of a suborbital Space Tourism plane on the basis of an existing subsonic business jet. Then the suborbital plane will constitute the basis of developing an Hypersonic Cruise Business Jet and, as a next step, a TSTO. 1. Introduction 2. Hypersonic Flight Concept The hypersonic flight is a subject on which the ef- It is considered appropriate to establish a definition forts of basic and applied aerospace research have been of hypersonic aircraft, useful to define the topic of dis- focused over the years. These efforts consisted in cussion; we define hypersonic aircraft a system capable the development of several projects and correspond- of taking off and landing horizontally (HOTOL - Hori- ing technological fields, such as aerodynamics, propul- zontal Take Off and Landing), and capable of flying at sion, structures capable of withstanding high thermal a Mach higher than 4.5. Please note that exceptions stress, the system design, etc. By considering such regarding the takeoff may befound, as: efforts, if great progresses have been achieved on the a) aircraft VTOHOL - Vertical Take Off and Hori- side of the technological insights in most of the areas zontal Landing - can be conceived, that is a solution covered, very poor results were obtained in terms of imposed by technological constraints and in any case realization of operational products; the only practi- not to be considered definitive cal achievements were experimental vehicles or tech- b) Always for "not definitive"aircraft (and therefore nological demonstrators, capable of performing only for many of the "technology demonstrators" realized) partially the mission of a real hypersonic aircraft, and the landing may be horizontal but not on runway, with consequently with low operational capability. The aim a landing gear like airplane, but with parachute and / of this work is to summarise the great mass of ac- or paraglide, on ground or on water. As to the abil- cumulated experiences and, considering the current ity of achieving hypersonic speed (for characterization achievements and projects now under study, to suggest of the aerodynamic behavior at high Mach numbers strategies that can promote advancement in the field, greater than 4.5, please refer to the many excellent in particular leading to the development of hypersonic texts, particularly [1]) we can make some considera- aircraft more and more complex, tending to achieve a tions: complete and mature ability to fly hypersonically. a) When hypersonic speed (Mach 4.5 or even more) has been reached, if the plane can sustain such speed for periods of the order of a few hours, it will obviously get extremely interesting autonomies of flight. The hy- ∗Based on paper presented at the XXII Conference personic cruise (for containment of dynamic pressure AIDAA, September 2013 Naples, Italy values and then for containment of structures heat- 1 c AIDAA, Associazione Italiana di Aeronautica e Astronautica 100 Status and Perspectives of Hypersonic Systems and Technologies with Emphasis on the Role of Sub-Orbital Flight 101 ing) must be carried out at altitudes of about 30 km or more, i.e. at altitudes higher than those of the sub- sonic jet airplanes (9-12 km) and of those, higher, of the SST (Supersonic Transport) like the Concorde (17- 18 km). b) By considering, with reference to the previous point, the flight altitude at which hypersonic speed can be reached, at conceptual level it can be hypothesized that the energy, in the previous case used to support the hypersonic cruise, could be instead utilized for fur- ther increasing altitude and speed. In case when both the speed and altitude increase, it can be assumed that the reduction of aerodynamic lift (because of the de- Figure 1. Kinds of Hypersonic Planes. [3] crease of the atmospheric density and despite the in- crease in speed) is compensated by the effect of cen- trifugal force due to the curved trajectory (because of the terrestrial curvature), with the possibility of reach- the Vertical Take Off-VTO Systems such as rockets, ing the orbital speed [2] at a given height (generally at provides a much more long stay in the dense layers of least 100 km for containing the atmospheric drag). In the Earth atmosphere (Figure 3); this leads to the op- this case, the hypersonic vehicle, capable of achieving portunity of providing \air breathing" engines even if a low orbit around the Earth and, of course, in case it with constraint of switching on the Ramjet over Mach transports payloads, can be defined orbital transport. 3.5. It is clear that, through a de-orbiting maneuver, the In this way we confirm that three different kinds of aircraft will return to earth with a trajectory, without Hypersonic Planes can be envisaged, i.e. the ones ca- propulsion, except any action of slowing down or brak- pable of sustaining hypersonic cruise without further ing. This return trajectory will be critical in order to increase of altitude and speed, or the others capable the capacity to dispose all kinetic and potential energy of increasing altitude and speed, both till to reach the possessed. If the carried payload will consist of artifi- orbit or to perform suborbital flight aimed to cover ex- cial satellites to be released in orbit, we can define the tended ranges on the Earth surface.It should be noted vehicle a Reusable Launcher-RL. that the boundary of Mach 6.5 for the Ramjet im- c) An intermediate situation between the two above poses, for higher speed, the switch to either the Scram- considered is to climb at altitude of the order of orbital jet (Supersonic Combustion Ram-Jet) or the Rocket. ones, even without reaching the orbital speed, proceed- The Scramjet technology is not fully acquiredyet and ing then to a trajectory of descent (non-propelled), there is a doubt concerning the speed limit while, cer- with ability to return to land far from the departure tainly, there is one about the altitude as, in any case, point; with this type of \sub-orbital" flight, range and an air breathing engine cannot be able to operate in flight duration comparable with those seen in the pre- vacuum, while the rocket, as known, will not have any vious point a) can be obtained. The three types of constraint of operation.Figure 4 reminds how the Spe- hypersonic missions just described are schematically cific Impulse for various kinds of engines evolves with shown in Figure 1.The 3 different types have of course Mach. It is clear the opportunity of using the types different characteristics and utilization strategies, but with better specific impulse just till the speed at which they show affinities and a common logical ratio that is they must be substituted by another engine with lower summarized in Figure 2. In this figure we show how, specific impulse. In any case it is clear the advantage, starting from the need of increasing speed and range for each kind of engines, to use, as fuel, LH2 rather of flight for air transports (in order to make accessible than hydrocarbons. in a few hours any point on the Earth) we have to in- With regard to the aforesaid considerations about en- crease the flight altitude and to adopt different engines gines and reminding that Ramjet and Scramjet have from turbojets (which, even with after-burner, cannot also a lower limit of speed for their operation, in Figure fly over Mach 3.5) obtaining a type of machine that 5 we present the more logical combinations of engines we can define \AirSpacePlane". that can be envisaged for Hypersonic Planes with dif- Figure 2 also shows that a similar result can ferent values of maximum speed and maximum alti- be reached, by imagining that we want to make tudes that they can reach. \reusable" a Launcher by providing it with a lifting To complete the overview of theHypersonic Planes surface that allows it to return to ground safely, after possible configurations, we have to consider the possi- its mission has been performed. From this first step, ble adoption of a multi-stage solution, aiming to the the next is to use such lifting surface also for the phase same advantage in order that it is absolutely manda- of ascent, with a trajectory that, compared to that of tory for Reusable Launchers; in factit is well known Aerotecnica Vol.88, No.1/2, January-June 2009 102 S. Chiesa, G. Russo, M. Fioriti, S. Corpino that advantage lies in ridding the vehicle itself by the no longer necessary parts (i.e. \inert masses") due to the progressive exhaustion of the propellants. The downside is the criticality in the operation of separa- tion and the duplication of Crew or GNC Systems (in the case of \Unmanned" solutions) for the return to earth of the early stage (Figure 6).
Recommended publications
  • Nasa X-15 Program
    5 24,132 6 9 NASA X-15 PROGRAM By: T.D. Barnes - NASA Contractor - 1960s NASA contractors for the X-15 program were Bendix Field Engineering followed by Unitec, Inc. The NASA High Range Tracking stations were located at Ely and Beatty Nevada with main control being at Dryden/Edwards AFB in California. Personnel at the tracking stations consisted of a Station Manager, a Technical Advisor, and field engineers for the Mod-2 Radar, Data Transmission System, Communications, Telemetry, and Plant Maintenance/Generators. NASA had a site monitor at each tracking station to monitor our contractor operations. Though supporting flights of the X-15 was their main objective, they also participated in flights of the XB-70, the three Lifting Bodies, experimental Lunar Landing vehicles, and an occasional A-12/YF-12/SR-71 Blackbird flight. On mission days a NASA van picked up each member of the crew at their residence for the 4:20 a.m. trip to the tracking station 18 miles North of Beatty on the Tonopah Highway. Upon arrival each performed preflight calibrations and setup of their various systems. The liftoff of the B-52, with the X-15 tucked beneath its wing, seldom occurred after 9:00 a.m. due to the heat effect of the Mojave Desert making it difficult for the planes to acquire altitude. At approximately 0800 hours two pilots from Dryden would proceed uprange to evaluate the condition of the dry lake beds in the event of an emergency landing of the X-15 (always buzzing our station on the way up and back).
    [Show full text]
  • Corporate Initiative for Space Tourism
    UNIVERSITY OF LJUBLJANA FACULTY OF ECONOMICS MASTER’S THESIS “OUT OF THIS WORLD” BUSINESS: CORPORATE INITIATIVE FOR SPACE TOURISM Ljubljana, March 2014 JAN KRIŠTOF RAMOVŠ AUTHORSHIP STATEMENT The undersigned Jan K. Ramovš, a student at the University of Ljubljana, Faculty of Economics, (hereafter: FELU), declare that I am the author of the master’s thesis entitled “Out Of This World” Business: Corporate Initiative for Space Tourism, written under supervision of Prof. Dr. Metka Tekavčič. In accordance with the Copyright and Related Rights Act (Official Gazette of the Republic of Slovenia, Nr. 21/1995 with changes and amendments) I allow the text of my master’s thesis to be published on the FELU website. I further declare the text of my master’s thesis to be based on the results of my own research; the text of my master’s thesis to be language-edited and technically in adherence with the FELU’s Technical Guidelines for Written Works which means that I o cited and / or quoted works and opinions of other authors in my master’s thesis in accordance with the FELU’s Technical Guidelines for Written Works and o obtained (and referred to in my master’s thesis) all the necessary permits to use the works of other authors which are entirely (in written or graphical form) used in my text; to be aware of the fact that plagiarism (in written or graphical form) is a criminal offence and can be prosecuted in accordance with the Criminal Code (Official Gazette of the Republic of Slovenia, Nr. 55/2008 with changes and amendments); to be aware of the consequences a proven plagiarism charge based on the submitted master’s thesis could have for my status at the FELU in accordance with the relevant FELU Rules on Master’s Thesis.
    [Show full text]
  • Computational Fluid Dynamic Analysis of Scaled Hypersonic Re-Entry Vehicles
    Computational Fluid Dynamic Analysis of Scaled Hypersonic Re-Entry Vehicles A project presented to The Faculty of the Department of Aerospace Engineering San Jose State University In partial fulfillment of the requirements for the degree Master of Science in Aerospace Engineering by Simon H.B. Sorensen March 2019 approved by Dr. Periklis Papadopoulous Faculty Advisor 1 i ABSTRACT With the advancement of technology in space, reusable re-entry space planes have become a focus point with their ability to save materials and utilize existing flight data. Their ability to not only supply materials to space stations or deploy satellites, but also in atmosphere flight makes them versatile in their deployment and recovery. The existing design of vehicles such as the Space Shuttle Orbiter and X-37 Orbital Test Vehicle can be used to observe the effects of scaling existing vehicle geometry and how it would operate in identical conditions to the full-size vehicle. These scaled vehicles, if viable, would provide additional options depending on mission parameters without losing the advantages of reusable re-entry space planes. 2 Table of Contents Abstract . i Nomenclature . .1 1. Introduction. .1 2. Literature Review. 2 2.1 Space Shuttle Orbiter. 2 2.2 X-37 Orbital Test Vehicle. 3 3. Assumptions & Equations. 3 3.1 Assumptions. 3 3.2 Equations to Solve. 4 4. Methodology. 5 5. Base Sized Vehicles. 5 5.1 Space Shuttle Orbiter. 5 5.2 X-37. 9 6. Scaled Vehicles. 11 7. Simulations. 12 7.1 Initial Conditions. 12 7.2 Initial Test Utilizing X-37. .13 7.3 X-37 OTV.
    [Show full text]
  • Overview of Dream Chaser Space Vehicle
    Overview of Dream Chaser Space Vehicle 2018 Exploration Masters Contest © 2018 Sierra Nevada Corporation 1 Sierra Nevada Corporation’s Space Systems A Legacy of Flight Heritage and Innovation Proven Experience • 30 year of spaceflight heritage • 450 space missions supported • 4,000 products delivered on-orbit • Launching products ~every 3 weeks • 70+ successful NASA missions • Supplier to nearly all flagship and interplanetary NASA missions • Providing cargo services to the International Space Station under NASA resupply contract © 2018 Sierra Nevada Corporation 2 Dream Chaser Space Vehicle • Only runway-landing Space Vehicle actively in development • Capable of landing at spaceports and airports that can accommodate large commercial planes Credit: NASA • Crewed or uncrewed transportation to and from Low Crewed Dream Chaser Earth Orbit (LEO) • Non-toxic propulsion for launch abort, orbital translations, attitude control, deorbit • < 1.5g re-entry profile and >1,500 km cross-range capability • Designed to launch on a variety of launch vehicles Uncrewed Dream Chaser © 2018 Sierra Nevada Corporation 3 © 2018 Sierra Nevada Corporation 4 4 History: Dream Chaser Program • 1982-84: ½ scale Russian BOR-4 orbital flights • Recovery photographed by Australian Royal Air Force P-3 Orion aircraft • 1983-95: NASA Langley development of HL-20 (based on BOR-4 images) • 2005-10: SpaceDev (later acquired by SNC) modified the HL-20 into the Dream Chaser spacecraft • 2010-14: SNC awarded NASA’s CCDev 1, CCDev2, CCiCap and CPC contracts to continue development
    [Show full text]
  • Enhancing Suborbital Science Through Better Understanding of Wind Effects
    Space Traffic Management Conference 2019 Progress through Collaboration Feb 26th, 11:00 AM Enhancing suborbital science through better understanding of wind effects Pedro Llanos Embry-Riddle Aeronautical University - Daytona Beach, [email protected] Diane Howard University of Texas at Austin Follow this and additional works at: https://commons.erau.edu/stm Part of the Aviation and Space Education Commons, Educational Technology Commons, Operational Research Commons, and the Space Vehicles Commons Llanos, Pedro and Howard, Diane, "Enhancing suborbital science through better understanding of wind effects" (2019). Space Traffic Management Conference. 25. https://commons.erau.edu/stm/2019/presentations/25 This Event is brought to you for free and open access by the Conferences at Scholarly Commons. It has been accepted for inclusion in Space Traffic Management Conference by an authorized administrator of Scholarly Commons. For more information, please contact [email protected]. Enhancing suborbital science through better understanding of wind effects Pedro Llanos,1 and Diane Howard2 Embry-Riddle Aeronautical University, Daytona Beach, Florida, 32114, USA This paper highlights the importance of understanding some key factors, such as winds effects, trajectory and vehicle parameters variations in order to streamline the space vehicle operations and enhance science in the upper mesosphere at about 85 km. Understanding these effects is crucial to refine current space operations and establish more robust procedures. These procedures will involve training new space operators to conduct and coordinate space operations in class E above FL600 airspace within the Air Traffic Organization (ATO). Space vehicles such as Space Ship Two can spend up to 6 minutes in class E airspace above FL600 after launch.
    [Show full text]
  • A Pictorial History of Rockets
    he mighty space rockets of today are the result A Pictorial Tof more than 2,000 years of invention, experi- mentation, and discovery. First by observation and inspiration and then by methodical research, the History of foundations for modern rocketry were laid. Rockets Building upon the experience of two millennia, new rockets will expand human presence in space back to the Moon and Mars. These new rockets will be versatile. They will support Earth orbital missions, such as the International Space Station, and off- world missions millions of kilometers from home. Already, travel to the stars is possible. Robotic spacecraft are on their way into interstellar space as you read this. Someday, they will be followed by human explorers. Often lost in the shadows of time, early rocket pioneers “pushed the envelope” by creating rocket- propelled devices for land, sea, air, and space. When the scientific principles governing motion were discovered, rockets graduated from toys and novelties to serious devices for commerce, war, travel, and research. This work led to many of the most amazing discoveries of our time. The vignettes that follow provide a small sampling of stories from the history of rockets. They form a rocket time line that includes critical developments and interesting sidelines. In some cases, one story leads to another, and in others, the stories are inter- esting diversions from the path. They portray the inspirations that ultimately led to us taking our first steps into outer space. NASA’s new Space Launch System (SLS), commercial launch systems, and the rockets that follow owe much of their success to the accomplishments presented here.
    [Show full text]
  • The New American Space Age: a Progress Report on Human Spaceflight the New American Space Age: a Progress Report on Human Spaceflight the International Space
    The New American Space Age: A PROGRESS REPORT ON HUMAN SpaCEFLIGHT The New American Space Age: A Progress Report on Human Spaceflight The International Space Station: the largest international scientific and engineering achievement in human history. The New American Space Age: A Progress Report on Human Spaceflight Lately, it seems the public cannot get enough of space! The recent hit movie “Gravity” not only won 7 Academy Awards – it was a runaway box office success, no doubt inspiring young future scientists, engineers and mathematicians just as “2001: A Space Odyssey” did more than 40 years ago. “Cosmos,” a PBS series on the origins of the universe from the 1980s, has been updated to include the latest discoveries – and funded by a major television network in primetime. And let’s not forget the terrific online videos of science experiments from former International Space Station Commander Chris Hadfield that were viewed by millions of people online. Clearly, the American public is eager to carry the torch of space exploration again. Thankfully, NASA and the space industry are building a host of new vehicles that will do just that. American industry is hard at work developing new commercial transportation services to suborbital altitudes and even low Earth orbit. NASA and the space industry are also building vehicles to take astronauts beyond low Earth orbit for the first time since the Apollo program. Meanwhile, in the U.S. National Lab on the space station, unprecedented research in zero-g is paving the way for Earth breakthroughs in genetics, gerontology, new vaccines and much more.
    [Show full text]
  • ミルスペース 140730------[What’S New in Virtual Library?]
    - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -ミルスペース 140730- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - [What’s New in Virtual Library?] AW&ST Aviation Week & Space Technology Inside GNSS 140714AWST_Contents.pdf, Cover.jpg 1405&06InsideGNSS_Contents.pdf, Cover.jpg [What’s New in Real Library?] InsideGNSS May/June2014 収蔵。 [謝辞] JAXA 宇宙科学研より ISAS News 2014.7 No.400 寄贈、感謝。 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Jul. 30, 2014 (Wed.) mainichi.jp 米国は中国が衛星攻撃ミサイルをテストしたと述べる U.S. says China tested anti-satellite missile WASHINGTON (AP) -- The U.S. says China has tested a missile sustainability of the outer-space environment that all nations designed to destroy satellites and is urging Beijing to refrain from depend upon. China's state-run Xinhua (shihn-wah) news agency, destabilizing actions. State Department spokeswoman Marie Harf citing a Defense Ministry statement, reported a successful said the "non-destructive" test occurred Wednesday. She said a missile interception test conducted from land within Chinese previous destructive test of the system in 2007 created territory late Wednesday. Xinhua did not refer to it as an thousands of pieces of dangerous debris in space. Harf said anti-satellite system. It said such tests could strengthen Friday that the continued development and testing of destructive Chinese air defense against ballistic missiles. July 26, 2014(Mainichi anti-satellite systems threaten the long-term security and Japan) http://mainichi.jp/english/english/newsselect/news/20140726p2g00m0in022000c.html
    [Show full text]
  • Nasa's Commercial Crew Development
    NASA’S COMMERCIAL CREW DEVELOPMENT PROGRAM: ACCOMPLISHMENTS AND CHALLENGES HEARING BEFORE THE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED TWELFTH CONGRESS FIRST SESSION WEDNESDAY, OCTOBER 26, 2011 Serial No. 112–46 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PRINTING OFFICE 70–800PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. RALPH M. HALL, Texas, Chair F. JAMES SENSENBRENNER, JR., EDDIE BERNICE JOHNSON, Texas Wisconsin JERRY F. COSTELLO, Illinois LAMAR S. SMITH, Texas LYNN C. WOOLSEY, California DANA ROHRABACHER, California ZOE LOFGREN, California ROSCOE G. BARTLETT, Maryland BRAD MILLER, North Carolina FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois JUDY BIGGERT, Illinois GABRIELLE GIFFORDS, Arizona W. TODD AKIN, Missouri DONNA F. EDWARDS, Maryland RANDY NEUGEBAUER, Texas MARCIA L. FUDGE, Ohio MICHAEL T. MCCAUL, Texas BEN R. LUJA´ N, New Mexico PAUL C. BROUN, Georgia PAUL D. TONKO, New York SANDY ADAMS, Florida JERRY MCNERNEY, California BENJAMIN QUAYLE, Arizona JOHN P. SARBANES, Maryland CHARLES J. ‘‘CHUCK’’ FLEISCHMANN, TERRI A. SEWELL, Alabama Tennessee FREDERICA S. WILSON, Florida E. SCOTT RIGELL, Virginia HANSEN CLARKE, Michigan STEVEN M. PALAZZO, Mississippi VACANCY MO BROOKS, Alabama ANDY HARRIS, Maryland RANDY HULTGREN, Illinois CHIP CRAVAACK, Minnesota LARRY BUCSHON, Indiana DAN BENISHEK, Michigan VACANCY (II) C O N T E N T S Wednesday, October 26, 2011 Page Witness List ............................................................................................................
    [Show full text]
  • GAO-21-378, HYPERSONIC WEAPONS: DOD Should Clarify
    United States Government Accountability Office Report to Congressional Addressees March 2021 HYPERSONIC WEAPONS DOD Should Clarify Roles and Responsibilities to Ensure Coordination across Development Efforts GAO-21-378 March 2021 HYPERSONIC WEAPONS DOD Should Clarify Roles and Responsibilities to Ensure Coordination across Development Efforts Highlights of GAO-21-378, a report to congressional addressees Why GAO Did This Study What GAO Found Hypersonic missiles, which are an GAO identified 70 efforts to develop hypersonic weapons and related important part of building hypersonic technologies that are estimated to cost almost $15 billion from fiscal years 2015 weapon systems, move at least five through 2024 (see figure). These efforts are widespread across the Department times the speed of sound, have of Defense (DOD) in collaboration with the Department of Energy (DOE) and, in unpredictable flight paths, and are the case of hypersonic technology development, the National Aeronautics and expected to be capable of evading Space Administration (NASA). DOD accounts for nearly all of this amount. today’s defensive systems. DOD has begun multiple efforts to develop Hypersonic Weapon-related and Technology Development Total Reported Funding by Type of offensive hypersonic weapons as well Effort from Fiscal Years 2015 through 2024, in Billions of Then-Year Dollars as technologies to improve its ability to track and defend against them. NASA and DOE are also conducting research into hypersonic technologies. The investments for these efforts are significant. This report identifies: (1) U.S. government efforts to develop hypersonic systems that are underway and their costs, (2) challenges these efforts face and what is being done to address them, and (3) the extent to which the U.S.
    [Show full text]
  • “From HL-20 to Dream Chaser” the Long Story of a Little Spaceplane
    “From HL-20 to Dream Chaser” The Long story of a little spaceplane Giuseppe De Chiara 19.11. 2012 All the drawings are copyright of the author Foreword (1/2) It’s not an easy task to track down the history of the development of the actual Dream Chaser spaceplane, since it started with Russian efforts almost 50 years ago. In origin, Russians started (as Americans) a lot of studies regarding lifting bodies as spacecraft’s architecture. In particular they launched the ambitious project Spiral OS 50/50 as response to the Boeing X-20 Dyna Soar, essentially it was a TSTO with a large Mach 4 mothership (to be developed by Sukhoi OKB) and a small single seat spaceplane launched atop (to be developed by MiG OKB). For the Spiral OS spacecraft Russians studied a peculiar lifting body configuration dubbed “Lapot” (a Russian term that means “wooden shoe” since the shape resembled it). As often happened in the history of US-USSR aerospace confrontation the withdraw of X-20 program (in 1963) didn’t ceased the Russian effort on its counterpart, even as low priority program. During the 70’s MiG OKB realized one full scale test demonstrator called MiG105-11 and tested it several times launched by a Tupolev Tu-95. During the first part of 80’s the Lapot concretized into a real spacecraft with the advent of the Bor-4 subscale unmanned program as forerunner for the ongoing Buran OS. The Bor-4 performed 4 spaceflights between 1982 and 1984, in particular the first flights were spotted by Australian P-3 Orion aircrafts made available to Western analyzer a lot of photos regarding this brand new spacecraft.
    [Show full text]
  • Aerodynamic Study of a Small Hypersonic Plane
    Università degli Studi di Napoli “Federico II” Dottorato di Ricerca in Ingegneria Aerospaziale, Navale e della Qualità XXVII Ciclo Aerodynamic study of a small hypersonic plane Coordinatore: Ch.mo Prof. L. De Luca Candidata: Tutors: Ing. Vera D'Oriano Ch.mo Prof. R. Savino Ing. M. Visone (BLUE Engineering) Acknowledgements First I wish to thank my academic tutor Prof. Raffaele Savino, for offering me this precious opportunity and for his enthusiastic guidance. Next, I am immensely grateful to my company tutor, Michele Visone (Mike, for friends) for his technical support, despite his busy schedule, and for his constant encouragements. I also would like to thank the HyPlane team members: Rino Russo, Prof. Battipede and Prof. Gili, Francesco and Gennaro, for the fruitful collaborations. A special thank goes to all Blue Engineering guys (especially to Myriam) for making our site a pleasant and funny place to work. Many thanks to queen Giuly and Peppe "il pazzo", my adoptive family during my stay in Turin, and also to my real family, for the unconditional love and care. My greatest gratitude goes to my unique friends - my potatoes (Alle & Esa), my mentor Valerius and Franca - and to my soul mate Naso, to whom I dedicate this work. Abstract Access to Space is still in its early stages of commercialization. Most of the attention is currently focused on sub-orbital flights, which allow Space tourists to experiment microgravity conditions for a few minutes and to see a large area of the Earth, along with its curvature, from the stratosphere. Secondary markets directly linked to the commercial sub-orbital flights may include microgravity research, remote sensing, high altitude Aerospace technological testing and astronauts training, while a longer term perspective can also foresee point-to-point hypersonic transportation.
    [Show full text]