Computer Modelling of Aerothermodynamic Characteristics for Hypersonic Vehicles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Nasa X-15 Program
5 24,132 6 9 NASA X-15 PROGRAM By: T.D. Barnes - NASA Contractor - 1960s NASA contractors for the X-15 program were Bendix Field Engineering followed by Unitec, Inc. The NASA High Range Tracking stations were located at Ely and Beatty Nevada with main control being at Dryden/Edwards AFB in California. Personnel at the tracking stations consisted of a Station Manager, a Technical Advisor, and field engineers for the Mod-2 Radar, Data Transmission System, Communications, Telemetry, and Plant Maintenance/Generators. NASA had a site monitor at each tracking station to monitor our contractor operations. Though supporting flights of the X-15 was their main objective, they also participated in flights of the XB-70, the three Lifting Bodies, experimental Lunar Landing vehicles, and an occasional A-12/YF-12/SR-71 Blackbird flight. On mission days a NASA van picked up each member of the crew at their residence for the 4:20 a.m. trip to the tracking station 18 miles North of Beatty on the Tonopah Highway. Upon arrival each performed preflight calibrations and setup of their various systems. The liftoff of the B-52, with the X-15 tucked beneath its wing, seldom occurred after 9:00 a.m. due to the heat effect of the Mojave Desert making it difficult for the planes to acquire altitude. At approximately 0800 hours two pilots from Dryden would proceed uprange to evaluate the condition of the dry lake beds in the event of an emergency landing of the X-15 (always buzzing our station on the way up and back). -
Glex-2021 – 6.1.1
Global Space Exploration Conference (GLEX 2021), St Petersburg, Russian Federation, 14-18 June 2021. Copyright ©2021 by Christophe Bonnal (CNES). All rights reserved. GLEX-2021 – 6.1.1 Human spaceflight from Guiana Space Center Ch. Bonnal1* – J-M. Bahu1 – Ph. Berthe2 – J. Bertrand1 – Ch. Bonhomme1 – M. Caporicci2 J-F. Clervoy3 – N. Costedoat4 – E. Coletti5 – G. Collange5 – G. Debas5 – R. Delage6 – J. Droz5 E. Louaas1 – P. Marx8 – B. Muller6 – S. Perezzan1 – I. Quinquis5 – S. Sandrone7 D. Schmitt2 – V. Taponier1 1 CNES Launcher Directorate, Pairs, France – 2 ESA Human & Robotic Exploration Directorate, ESTEC, Noordwijk, Netherlands – 3 Astronaut Novespace, Paris, France – 4CNES Guiana Space Center, Kourou, France 5ArianeGroup, Les Mureaux, France – 6Airbus Defence & Space, Toulouse, France – 7Airbus Defence & Space, Bremen Germany – 8Consultant, Paris, France * Corresponding Author Abstract The use of Space has drastically evolved these last ten years. Tomorrow will see easier and cheaper access to Space, satellite servicing, in-orbit manufacturing, human private spaceflights to ever increasing number of Orbital Stations, road to the Moon, Asteroids, Mars. It seems fundamental to make sure we can rely on robust, reliable, frequent and affordable access to and from LEO with both automatic systems and human missions; such systems are the bricks with which all the future operations in Space will be built. Independent human access to space from Europe for our astronauts is a key to any future in Space. It has been studied in depth since the 80's with Hermes Spaceplane, then through numerous studies, pre- development activities, and demonstrations such as ARD, X38-CRV or IXV, which now allow Europe to reconsider such an endeavor with a much higher confidence. -
Nasa's Commercial Crew Development
NASA’S COMMERCIAL CREW DEVELOPMENT PROGRAM: ACCOMPLISHMENTS AND CHALLENGES HEARING BEFORE THE COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HOUSE OF REPRESENTATIVES ONE HUNDRED TWELFTH CONGRESS FIRST SESSION WEDNESDAY, OCTOBER 26, 2011 Serial No. 112–46 Printed for the use of the Committee on Science, Space, and Technology ( Available via the World Wide Web: http://science.house.gov U.S. GOVERNMENT PRINTING OFFICE 70–800PDF WASHINGTON : 2011 For sale by the Superintendent of Documents, U.S. Government Printing Office Internet: bookstore.gpo.gov Phone: toll free (866) 512–1800; DC area (202) 512–1800 Fax: (202) 512–2104 Mail: Stop IDCC, Washington, DC 20402–0001 COMMITTEE ON SCIENCE, SPACE, AND TECHNOLOGY HON. RALPH M. HALL, Texas, Chair F. JAMES SENSENBRENNER, JR., EDDIE BERNICE JOHNSON, Texas Wisconsin JERRY F. COSTELLO, Illinois LAMAR S. SMITH, Texas LYNN C. WOOLSEY, California DANA ROHRABACHER, California ZOE LOFGREN, California ROSCOE G. BARTLETT, Maryland BRAD MILLER, North Carolina FRANK D. LUCAS, Oklahoma DANIEL LIPINSKI, Illinois JUDY BIGGERT, Illinois GABRIELLE GIFFORDS, Arizona W. TODD AKIN, Missouri DONNA F. EDWARDS, Maryland RANDY NEUGEBAUER, Texas MARCIA L. FUDGE, Ohio MICHAEL T. MCCAUL, Texas BEN R. LUJA´ N, New Mexico PAUL C. BROUN, Georgia PAUL D. TONKO, New York SANDY ADAMS, Florida JERRY MCNERNEY, California BENJAMIN QUAYLE, Arizona JOHN P. SARBANES, Maryland CHARLES J. ‘‘CHUCK’’ FLEISCHMANN, TERRI A. SEWELL, Alabama Tennessee FREDERICA S. WILSON, Florida E. SCOTT RIGELL, Virginia HANSEN CLARKE, Michigan STEVEN M. PALAZZO, Mississippi VACANCY MO BROOKS, Alabama ANDY HARRIS, Maryland RANDY HULTGREN, Illinois CHIP CRAVAACK, Minnesota LARRY BUCSHON, Indiana DAN BENISHEK, Michigan VACANCY (II) C O N T E N T S Wednesday, October 26, 2011 Page Witness List ............................................................................................................ -
Federated Hermes Investment Funds Public Limited Company
Federated Hermes Investment Funds Public Limited Company (An umbrella investment company with variable capital and having segregated liability between its Sub-Funds incorporated with limited liability in Ireland) Interim Report and Unaudited Financial Statements For the financial period ended 30 June 2020 Company Registration Number: 463628 Federated Hermes Investment Funds Public Limited Company Contents Management and Administration ������������������������������������������������������������������������������������������������������������������������������� 3 Manager Information ������������������������������������������������������������������������������������������������������������������������������������������������� 4 Investment Manager’s Report ����������������������������������������������������������������������������������������������������������������������������������� 6 Unaudited Portfolio Statements ������������������������������������������������������������������������������������������������������������������������������� 41 Unaudited Balance Sheet �������������������������������������������������������������������������������������������������������������������������������������� 191 Unaudited Income Statement �������������������������������������������������������������������������������������������������������������������������������� 201 Unaudited Statement of Changes in Net Assets Attributable to Holders of Redeemable Participating Shares ���� 210 Unaudited Cash Flow Statement ��������������������������������������������������������������������������������������������������������������������������� -
GAO-21-378, HYPERSONIC WEAPONS: DOD Should Clarify
United States Government Accountability Office Report to Congressional Addressees March 2021 HYPERSONIC WEAPONS DOD Should Clarify Roles and Responsibilities to Ensure Coordination across Development Efforts GAO-21-378 March 2021 HYPERSONIC WEAPONS DOD Should Clarify Roles and Responsibilities to Ensure Coordination across Development Efforts Highlights of GAO-21-378, a report to congressional addressees Why GAO Did This Study What GAO Found Hypersonic missiles, which are an GAO identified 70 efforts to develop hypersonic weapons and related important part of building hypersonic technologies that are estimated to cost almost $15 billion from fiscal years 2015 weapon systems, move at least five through 2024 (see figure). These efforts are widespread across the Department times the speed of sound, have of Defense (DOD) in collaboration with the Department of Energy (DOE) and, in unpredictable flight paths, and are the case of hypersonic technology development, the National Aeronautics and expected to be capable of evading Space Administration (NASA). DOD accounts for nearly all of this amount. today’s defensive systems. DOD has begun multiple efforts to develop Hypersonic Weapon-related and Technology Development Total Reported Funding by Type of offensive hypersonic weapons as well Effort from Fiscal Years 2015 through 2024, in Billions of Then-Year Dollars as technologies to improve its ability to track and defend against them. NASA and DOE are also conducting research into hypersonic technologies. The investments for these efforts are significant. This report identifies: (1) U.S. government efforts to develop hypersonic systems that are underway and their costs, (2) challenges these efforts face and what is being done to address them, and (3) the extent to which the U.S. -
Aerodynamic Study of a Small Hypersonic Plane
Università degli Studi di Napoli “Federico II” Dottorato di Ricerca in Ingegneria Aerospaziale, Navale e della Qualità XXVII Ciclo Aerodynamic study of a small hypersonic plane Coordinatore: Ch.mo Prof. L. De Luca Candidata: Tutors: Ing. Vera D'Oriano Ch.mo Prof. R. Savino Ing. M. Visone (BLUE Engineering) Acknowledgements First I wish to thank my academic tutor Prof. Raffaele Savino, for offering me this precious opportunity and for his enthusiastic guidance. Next, I am immensely grateful to my company tutor, Michele Visone (Mike, for friends) for his technical support, despite his busy schedule, and for his constant encouragements. I also would like to thank the HyPlane team members: Rino Russo, Prof. Battipede and Prof. Gili, Francesco and Gennaro, for the fruitful collaborations. A special thank goes to all Blue Engineering guys (especially to Myriam) for making our site a pleasant and funny place to work. Many thanks to queen Giuly and Peppe "il pazzo", my adoptive family during my stay in Turin, and also to my real family, for the unconditional love and care. My greatest gratitude goes to my unique friends - my potatoes (Alle & Esa), my mentor Valerius and Franca - and to my soul mate Naso, to whom I dedicate this work. Abstract Access to Space is still in its early stages of commercialization. Most of the attention is currently focused on sub-orbital flights, which allow Space tourists to experiment microgravity conditions for a few minutes and to see a large area of the Earth, along with its curvature, from the stratosphere. Secondary markets directly linked to the commercial sub-orbital flights may include microgravity research, remote sensing, high altitude Aerospace technological testing and astronauts training, while a longer term perspective can also foresee point-to-point hypersonic transportation. -
INTRODUCTION This Study of Reentry Vehicle (RV)
INTRODUCTION This study of Reentry Vehicle (RV) systems and their associated operations was conducted for the Department of Transportation/Office of Commercial Space Transportation. The purpose of the study was to investigate and present an overview of reentry vehicle systems and to identify differences in mission requirements and operations. This includes reentry vehicle system background, system design considerations, description of past/present/future reentry systems, and hazards associated with reentry vehicles that attain orbit, reenter, and are recovered. A general literature search that included the OCST data base, NASA, Air Force, and other technical libraries and personal contact with various government or private industry organizations knowledgeable in reentry system vehicles was performed. A reference page is provided at the end of this report. A history of early manned reentry vehicle launches is shown in Appendix I. A listing of some of the agencies and companies found to be most knowledgeable in the reentry vehicle area is provided in Appendix II. The following sections provide more detailed information on reentry system vehicles. A. Background - The development of reentry vehicles began in the late 1950's due to the need for Department of Defense and Central Intelligence Agency photo reconnaissance of Soviet ICBM sites. NASA has also been involved in the use of reentry vehicles since the early 1960's, including manned space programs Mercury, Gemini and Apollo. The following sections describe the evolution of reentry system development in the United States and foreign countries: 1. Discoverer1 - The Discoverer program was of major importance because it provided a vehicle for testing orbital maneuvering capability and reentry techniques and it played a large role in enabling the first United States manned space flights to be conducted in Project Mercury. -
Air Transport
The History of Air Transport KOSTAS IATROU Dedicated to my wife Evgenia and my sons George and Yianni Copyright © 2020: Kostas Iatrou First Edition: July 2020 Published by: Hermes – Air Transport Organisation Graphic Design – Layout: Sophia Darviris Material (either in whole or in part) from this publication may not be published, photocopied, rewritten, transferred through any electronical or other means, without prior permission by the publisher. Preface ommercial aviation recently celebrated its first centennial. Over the more than 100 years since the first Ctake off, aviation has witnessed challenges and changes that have made it a critical component of mod- ern societies. Most importantly, air transport brings humans closer together, promoting peace and harmo- ny through connectivity and social exchange. A key role for Hermes Air Transport Organisation is to contribute to the development, progress and promo- tion of air transport at the global level. This would not be possible without knowing the history and evolu- tion of the industry. Once a luxury service, affordable to only a few, aviation has evolved to become accessible to billions of peo- ple. But how did this evolution occur? This book provides an updated timeline of the key moments of air transport. It is based on the first aviation history book Hermes published in 2014 in partnership with ICAO, ACI, CANSO & IATA. I would like to express my appreciation to Professor Martin Dresner, Chair of the Hermes Report Committee, for his important role in editing the contents of the book. I would also like to thank Hermes members and partners who have helped to make Hermes a key organisa- tion in the air transport field. -
Contacts: Isabel Morales, Museum of Science and Industry, (773) 947-6003 Renee Mailhiot, Museum of Science and Industry, (773) 947-3133
Contacts: Isabel Morales, Museum of Science and Industry, (773) 947-6003 Renee Mailhiot, Museum of Science and Industry, (773) 947-3133 A GLOSSARY OF TERMS Aerodynamics: The study of the properties of moving air, particularly of the interaction between the air and solid bodies moving through it. Afterburner: An auxiliary burner fitted to the exhaust system of a turbojet engine to increase thrust. Airfoil: A structure with curved surfaces designed to give the most favorable ratio of lift to drag in flight, used as the basic form of the wings, fins and horizontal stabilizer of most aircraft. Armstrong limit: The altitude that produces an atmospheric pressure so low (0.0618 atmosphere or 6.3 kPa [1.9 in Hg]) that water boils at the normal temperature of the human body: 37°C (98.6°F). The saliva in your mouth would boil if you were not wearing a pressure suit at this altitude. Death would occur within minutes from exposure to the vacuum. Autothrottle: The autopilot function that increases or decreases engine power,typically on larger aircraft. Avatar: An icon or figure representing a particular person in computer games, Internet forums, etc. Aerospace: The branch of technology and industry concerned with both aviation and space flight. Carbon fiber: Thin, strong, crystalline filaments of carbon, used as a strengthening material, especially in resins and ceramics. Ceres: A dwarf planet that orbits within the asteroid belt and the largest asteroid in the solar system. Chinook: The Boeing CH-47 Chinook is an American twin-engine, tandem-rotor heavy-lift helicopter. CST-100: The crew capsule spacecraft designed by Boeing in collaboration with Bigelow Aerospace for NASA's Commercial Crew Development program. -
The National Aerospace Plane Program: a Revolutionary Concept
ROBERT R. BARTHELEMY THE NATIONAL AEROSPACE PLANE PROGRAM: A REVOLUTIONARY CONCEPT The National AeroSpace Plane program is aimed at developing and demonstrating hypersonic tech nologies with the goal of achieving orbit with a single-stage vehicle. This article describes the technologi cal, programmatic, utilitarian, and conceptual aspects of the program. INTRODUCTION The National AeroSpace Plane (NASP) is a look into The NASP demonstration aircraft, the X-30 (Fig. 1), the future. It is a vision of the ultimate airplane, one will reach speeds of Mach 25, eight times faster than has capable of flying at speeds greater than 17,000 miles per ever been achieved with airbreathing aircraft. As it flies hour, twenty-five times the speed of sound. It is the at through the atmosphere from subsonic speeds to orbital tainment of a vehicle that can routinely fly from Earth velocities (Mach 25), its structure will be subjected to to space and back, from conventional airfields, in afford average temperatures well beyond anything ever achieved able ways. It represents the achievement of major tech in aircraft. While rocket-powered space vehicles like the nological breakthroughs that will have an enormous im shuttle minimize their trajectories through the atmo pact on the future growth of this nation. It is more than sphere, the X-30 will linger in the atmosphere in order a national aircraft development program, more than the to use the air as the oxidizer for its ramjet and scramjet synergy of revolutionary technologies, more than a capa engines. The NASP aircraft must use liquid or slush bility that may change the way we move through the hydrogen as its fuel, which will present new challenges world and the aerospace around it. -
Round Trip to Orbit: Human Spaceflight Alternatives
Round Trip to Orbit: Human Spaceflight Alternatives August 1989 NTIS order #PB89-224661 Recommended Citation: U.S. Congress, Office of Technology Assessment, Round Trip to Orbit: Human Spaceflight Alternatives Special Report, OTA-ISC-419 (Washington, DC: U.S. Government Printing Office, August 1989). Library of Congress Catalog Card Number 89-600744 For sale by the Superintendent of Documents U.S. Government Printing Office, Washington, DC 20402-9325 (order form can be found in the back of this special report) Foreword In the 20 years since the first Apollo moon landing, the Nation has moved well beyond the Saturn 5 expendable launch vehicle that put men on the moon. First launched in 1981, the Space Shuttle, the world’s first partially reusable launch system, has made possible an array of space achievements, including the recovery and repair of ailing satellites, and shirtsleeve research in Spacelab. However, the tragic loss of the orbiter Challenger and its crew three and a half years ago reminded us that space travel also carries with it a high element of risk-both to spacecraft and to people. Continued human exploration and exploitation of space will depend on a fleet of versatile and reliable launch vehicles. As this special report points out, the United States can look forward to continued improvements in safety, reliability, and performance of the Shuttle system. Yet, early in the next century, the Nation will need a replacement for the Shuttle. To prepare for that eventuality, NASA and the Air Force have begun to explore the potential for advanced launch systems, such as the Advanced Manned Launch System and the National Aerospace Plane, which could revolutionize human access to space. -
Status and Perspectives of Hypersonic Systems and Technologies with Emphasis on the Role of Sub-Orbital Flight ∗ S
Aerotecnica Missili & Spazio, The Journal of Aerospace Science, Technology and Systems Status and Perspectives of Hypersonic Systems and Technologies with Emphasis on the Role of Sub-Orbital Flight ∗ S. Chiesaa, G. Russob, M. Fioritia, S. Corpinoa a Politecnico di Torino Department of Mechanical and Aerospace Engineering b AIDAA Sez. Napoletana c/o Department of Industrial Engineering \Federico II" - University of Naples Abstract The relevance and the main features of Hypersonic Flight are shortly presented and discussed. A synthetic overview of the few realisations and of many studies, projects and technological demonstrators offers opportunity of point out many interesting aspects. Then the more actual realisations and studies are considered, with particular attention to the new sector of small suborbital planes for Space Tourism. That gives opportunity of proposing a Road Map for an affordable and logic development of Hypersonic Flight, passing through the development of a suborbital Space Tourism plane on the basis of an existing subsonic business jet. Then the suborbital plane will constitute the basis of developing an Hypersonic Cruise Business Jet and, as a next step, a TSTO. 1. Introduction 2. Hypersonic Flight Concept The hypersonic flight is a subject on which the ef- It is considered appropriate to establish a definition forts of basic and applied aerospace research have been of hypersonic aircraft, useful to define the topic of dis- focused over the years. These efforts consisted in cussion; we define hypersonic aircraft a system capable the development of several projects and correspond- of taking off and landing horizontally (HOTOL - Hori- ing technological fields, such as aerodynamics, propul- zontal Take Off and Landing), and capable of flying at sion, structures capable of withstanding high thermal a Mach higher than 4.5.