<<

A quote of the week (or camel of the week):

A life spent making mistakes is not only more honorable, but more useful than a life spent doing nothing. George Bernard Shaw

Physical Chemistry EPM/08 1

Examples of galvanic cells analysis

From the structure of the cell, the reactions may be deduced:

Zn(s)|ZnCl 2(aq)|AgCl(s)|Ag(s)

Cathode (right): AgCl(s) + e – = Ag 0(s) + Cl –(aq) (left): Zn 0(s) = Zn +2 (aq) + 2e – Overall (cell): 2AgCl(s) + Zn 0(s) = 2Ag 0(s) + Zn +2 (aq) + 2Cl –(aq) = ⋅ 2 = 3 Assuming activity coefficients are equal to 1: Q c 2+ c − 4c Zn Cl ZnCl 2

0 = 0 − 0 0 RT E E − E 2+ E = E − ln Q cell Ag |AgCl |Cl Zn |Zn cell cell 2F

Physical Chemistry EPM/08 2

Examples of galvanic cells analysis (2) From the overall reaction, the half-reactions and cell structure may be deduced: – + – +2 3I (aq) + MnO 2(s) + 4H (aq) = I 3 (aq) + Mn (aq) + 2H 2O(l)

+ – +2 (reduction): MnO 2(s) + 4H (aq) + 2e = Mn (aq) + 2H 2O(l) – – – Anode (oxidation): 3I (aq) = I 3 (aq) + 2e – – +2 + Cell diagram: Pt| I 3 (aq),I (aq)||Mn (aq),H (aq)|MnO 2(s)|C ⋅ cMn 2+ cI − Q = 3 Assuming activity coefficients are equal to 1: 3 ⋅ 4 cI − cH +

0 0 0 0 RT = + + − − − = − Ecell EMnO |Mn 2 ,H EI |I Ecell Ecell ln Q 2 3 2F

Physical Chemistry EPM/08 3 and cell potential

Once more moving back to the study of chemical equilibria: ∆ = ∆ 0 + Gr Gr RT ln Q we can find that at equilibrium hence ∆ = = ∆ 0 = − Gr 0 and Q K Gr RT ln K 0 0 At the same time: ∆ = − Gr zFE zFE 0 0 Therefore: zFE = RT ln K and K = e RT

Physical Chemistry EPM/08 4

Faraday law

The law says that mass of an electrolysis product at a given is directly proportional to the charge passed across the electrode and molar mass of the product. M m = k ⋅q = k∫ (ti )dt = ∫ (ti )dt zF 1 Number of moles of product is n = ∫ (ti )dt equal to: zF In well defined half-cells the law is obeyed exactly. For many years before the SI system, Coulomb was the basic electrical unit and it was defined using Faraday law for a silver/silver nitrate cathode.

Physical Chemistry EPM/08 5

Primary batteries

Leclanché cell: carbon rod with a cap (cathode) E0=1,5-1,6V seal

housing (anode)

MnO 2 paste

paste

Physical Chemistry EPM/08 6 Primary batteries (2)

Zn(s)|NH 4Cl(aq)|MnO 2(s)|C A: Zn(s) = Zn 2+ (aq) + 2e – – – C: 2MnO 2(s) + 2H 2O(l) + 2e = 2MnOOH(s) + 2OH (aq) 2+ – E: Zn (aq) + 2NH 4Cl(aq) + 2OH (aq) = Zn(NH 3)2Cl 2(aq) + 2H 2O(l)

O: 2MnO 2(s) + Zn(s) + 2NH 4Cl(aq) = 2MnOOH(s) + Zn(NH 3)2Cl 2(aq) This is chemistry for normal discharge rate.

Batteries with ZnCl 2 electrolyte are also known.

Alkaline batteries: Zn(s)|NaOH(aq)|MnO 2(s)|C

2MnO 2(s) + Zn(s) + 2H 2O(l) = 2MnOOH(s) +Zn(OH) 2(s)

Physical Chemistry EPM/08 7

Secondary batteries

R Lead battery mV E0 = 2,14 V

Gaston Planté, 1859

Pb PbO 2

H2 SO 4 ; 36%

Physical Chemistry EPM/08 8

Secondary batteries (2)

discharging → + + − Pb + H 2SO 4←  PbSO 4 + 2H e2 charging discharging → + - ←  PbO 2 + H 2SO 4 + 2H + 2e charging PbSO 4 + 2H 2O

discharging → PbO 2 + Pb + 2H 2SO 4←  2PbSO 4 + 2H 2O charging

Physical Chemistry EPM/08 9 Secondary batteries (3)

Other secondary batteries:

Nickel- battery, E 0=1,26 V Thomas Alva Edison discharging → 2NiOOH + Cd + 2H 2O←  2Ni(OH) 2 + Cd(OH) 2 charging (non-aqueous), E 0<4 V discharging → nLi + MO 2←  Li nMO 2 charging

Physical Chemistry EPM/08 10

Fuel cells

Traditional (conventional) way of production of electric energy: chemical energy → heat → mechanical energy → electric energy fuel combustion steam rotation current furnace boiler turbine generator

Overall efficiency is low, esp. the heat → work (mechanical energy) transition is strictly limited by the II law of thermodynamics.

The new approach, environmentally friendly to some extent, though also afflicted by some weaknesses is using fuel cells (FCs).

Physical Chemistry EPM/08 11

Fuel cells (2)

William Robert Grove First 1118111811811811--- 18181896 18 969696 TheTheTheLondon InstitutionInstitution, , 1818183918 393939

Physical Chemistry EPM/08 12 Fuel cells (3a)

Almost any reaction may be carried out in a galvanic cell !!!

Anode(–): Zn 0=Zn 2+ + 2e – Cathode(+): Cu 2+ + 2e – =Cu 0

Overall: Zn 0 + Cu 2+ = Cu 0 + Zn 2+

Physical Chemistry EPM/08 13

Fuel cells (3b)

Almost any reaction may be carried out in a galvanic cell !!!

+ – Anode(–): 2H 2(g) = 4H + 4e

– + Cathode(+): O 2(g) + 4e +4H = 2H 2O

Overall: 2H 2(g) +O 2(g) = 2H 2O

Physical Chemistry EPM/08 14

Fuel cells (3c)

Almost any reaction may be carried out in a galvanic cell !!!

+ – Anode(–): CH 3OH + H 2O = CO 2 + 6H + 6e

+ – Cathode(+): 1½O2 + 6H + 6e = 3H 2O

Overall: CH 3OH + 1½O2 = CO 2 + 2H 2O

Physical Chemistry EPM/08 15 Fuel cells (4)

R

mV

The simplest model of Liquidmostek elektrolitycznyjunction

a hydrogen/oxygen FC H2 O2 p=1 Atm p=1 Atm E0 = 1,23 V Pt Pt

H2 SO 4 H2 SO 4

0 + + 0 Pt(black)|H 2(g,P )|H (aq,1M)||H (aq,1M)|O 2(g,P )|Pt

Physical Chemistry EPM/08 16

Fuel cells (5)

A real hydrogen/oxygen PEMFC

obwód elektryczny external circuit

paliwofuel katalizatoranodic membrana membrane, katalizatorcathodic catalystanodowy (elektrolit polimerowy) katodowy (polymeric electrolyte) catalyst

exhaustspaliny gases

Physical Chemistry EPM/08 17

Fuel cells (6)

Main types of FCs: • alkaline FCs • proton exchange membrane FCs • phosphoric acid FCs • molten carbonate FCs • solid oxides FCs • direct methanol FCs

Physical Chemistry EPM/08 18 Battery discharging curve

EMF

short circuit Physical Chemistry EPM/08 19