NASA's Deep Space Network: Current Status and the Future

Total Page:16

File Type:pdf, Size:1020Kb

NASA's Deep Space Network: Current Status and the Future Lecture 10.1: NASA’s Deep Space Network: Current Status and the Future В. Г. Турышев Jet Propulsion Laboratory, California Institute of Technology 4800 Oak Grove Drive, Pasadena, CA 91009 USA Государственный Астрономический Институт им. П.К. Штернберга Университетский проспект, дом 13, Москва, 119991 Россия Курс Лекций: «Современные Проблемы Астрономии» для студентов Государственного Астрономического Института им. П.К. Штернберга 7 февраля –23мая 2011 FUTURE OF DEEP SPACE NAVIGATION Outline • General consideration • Strategy of DSN evolution – List of current capabilities – Future needs • Principles of Deep Space Communications • Progress 1962-2004 • Mission examples: – Voyager mission to outer planets – Galileo to Jupiter – Cassini to Saturn – Odyssey to Mars • Concluding Remarks Deep Space Network Goldstone, California Goldstone, California Madrid, Spain Canberra, Australia FUTURE OF DEEP SPACE NAVIGATION Future’s NASA Navigation System Formation In-Situ Flying In-Situ Assets Ascent Assets Vehicles Pinpoint Landing Complementary, Supplementary Data Types DSN Array Low-Thrust, Low-Energy Advanced Trajectories Interferometric Autonomous Data Types Small-body Optical Proximity Navigation Operations FUTURE OF DEEP SPACE NAVIGATION Reference Set for Navigation Requirements (2005) Crew Exploration Vehicle (2008, Moon in 2020, Mars in 2030) Lunar South Pole Sample Return (2010) Human rating of deep space Going back to the Moon after 30 years, navigation capabilities, emphasis on but with more demanding requirements: risk-reduction; complementary and landing in deep craters or at the pole; supplementary navigation methods. autonomous 6-DOF GNC for landing It will evolve to enable the human and ascent. exploration of the Moon and Mars. Jupiter Icy Moons Orbiter (2015?) Low-thrust and low-energy Mars Telecom Orbiter (2009-cancel) navigation inside the Jovian Demonstrating autonomous optical system, requiring innovative navigation for rendezvous; gimbaled trajectory optimization and camera; providing enhanced in-situ automated on-board control. navigation and telecom assets. Titan Aerorover (2025) Mars Science Laboratory (2009-11) Autonomous atmospheric The heaviest rover ever flown to Mars; a GNC in an unknown precursor to human missions environment. demonstrating powered, precision landing. Mars Sample Return (2013) Terrestrial Planet Finder (2018?) Pinpoint landing, ascent GNC, Formation-flying at an Mars-orbit rendezvous and unprecedented level of docking, first trip from Mars to accuracy. Earth. FUTURE OF DEEP SPACE NAVIGATION A Timeline of Capabilities (as seen in 2005) Mars Mars Mars Telecom Reconnaissance Telecom Orbiter Orbiter Orbiter JIMO Mars Science Mars Sample Lab Phoenix Return Next Next Low-Thrust Generation Autonomous Generation Trajectory Traj. Design Rendezvous Nav S/W Control Tools Ka-Band Mars UHF Autonomous Mars UHF Opti-metric Interferometric 2-way EDL Rendezvous 2-way EDL Ranging Demo Demo Demo Demo Demo 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 FUTURE OF DEEP SPACE NAVIGATION A Timeline of Capabilities (as seen in 2005) Human Lunar Missions Aerorover Next Generation MTO Human Mars Planet Missions Finder In-Situ Opti- Advanced Substantial Nav Network-Based Metric Autonomous Infrastructure at Navigation Ranging On-board Nav Mars 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 FUTURE OF DEEP SPACE NAVIGATION Performance-Enhancing Capabilities Key capabilities that enable Enhancing Capabilities ultimate Advanced Advanced performance Ground- Optical Software Re- Autonomous Frequency & In-Situ Based Radio- Systems Engineering Navigation Time Assets Performance Measure Metrics Systems High precision Orbit control accuracy Advanced Gimbaled On-board GNC dynamical and High precision VLBI, range, camera, moon using in-situ Tie to target on approach, Mars & measurement 1-way data Ka-band tracking radio, optical terrestrial bodies models High precision Orbit control accuracy Gimbaled Advanced VLBI, dynamical and On-board GNC High precision camera, moon - on approach, outer range, Ka-band measurement using optical 1-way data tracking planets models High precision High Precision On-board GNC Orbit control accuracy, Landmark dynamical and High precision Tie to planetary Doppler, using in-situ tracking measurement 1-way data reference frame in orbit Ka-band radio, optical models High precision On-board High Precision Orbit reconstruction dynamical and estimation High precision Tie to planetary Doppler, - measurement using in-situ 1-way data reference frame accuracy, in orbit Ka-band models radio, optical High precision On-board GNC Landing accuracy on dynamical and using in-situ Tie to planetary - Descent imager - surface measurement radio, optical, reference frame models IMU, radar, laser On-board High Precision High precision Position determination Landmark estimation High precision Tie to planetary Doppler, measurement tracking using in-situ 1-way data reference frame of landed vehicle range, Ka-band models radio FUTURE OF DEEP SPACE NAVIGATION Navigation Tracking-Metrics Requirements (12/2007) Tracking Error Source current 2010 2020 2030 units (1σ Accuracy) capability reqt reqt reqt Doppler/random (60s) mm/s 0.03 0.03 0.03 0.02 Doppler/systematic (60s) mm/s 0.001 0.003 0.003 0.002 Range/random m 0.3 0.5 0.3 0.1 Range/systematic m 1.1 2 2 1 Angles deg 0.01 .04 .04 .04 VLBI nrad 2.5 2 1 0.5 Troposphere zenith delay cm 0.8 0.5 0.5 0.3 Ionosphere TECU 5 5 3 2 Earth orientation (real-time) cm 7 5 3 2 Earth orientation (after cm 5 3 2 0.5 update) Station locations cm 3 2 2 1 (geocentric) Quasar coordinates nrad 1 1 1 0.5 Mars ephemeris nrad 2 3 2 1 FUTURE OF DEEP SPACE NAVIGATION Approved Mission Set: DSN Supports* Legacy LEO HEO, Lunar, L1 & L2 DEEP SPACE*** • RADARSAT (O) • CHANDRA (O) • GALILEO (O) • NEW HORIZONS (F) • WMAP (O) • MARS GLOBAL SURVEYOR (O) • NEW FRONTIERS (F) (X) • INTEGRAL (O) • CASSINI (O) • GRAVITY PROBE B • ISTP-GEOTAIL (O) • NOZOMI (O) (O)**** • ISTP-WIND (O) • STARDUST (O) • EVN (O)**** LEOP** • ISTP-SOHO (O) • 2001 MARS ODYSSEY (O) • GBRA (O)**** • ISTP-POLAR (O) • GSSR (O)**** • MEGA (O)**** • GOES N-P (C) • ACE (O) • MUSES-C (C), (F per MSD) • SIRTF (C) • NOAA N, N’ (C) • IMAGE (O) • MARS EXPRESS (C) • KEPLER (C) • PROSEDS (C) • IMP-8 (O) • MARS EXPLORATION ROVERS A & B (C) • SIM (F) • SOLAR-B (F) • ISTP-CLUSTER II • ROSETTA (C) • VOYAGERS 1 & 2 (O) (O) • DEEP IMPACT (C) • ULYSSES (O) • GENESIS (O) • MESSENGER (C) • STEREO A & B (C) • LUNAR-A (F) • MARS RECONNAISSANCE ORBITER (C) • ORBITAL DEBRIS (O) NOTES • ST-5 (C) • DAWN (C) • SPACE GEODESY (O) • MARS SCOUT (F) • DISCOVERY (F) (X) *~20 additional spacecraft fall under “Emergency Support Only” and are not shown. • MARS TELESAT (F) • MIDEX (F) (X) • MARS SCIENCE LABORATORY (F) • NMP (F) (X) **LEOP = Launch & Early Operations Phase; almost all DSN missions receive such support, but those listed as “LEOP” receive no other significant DSN support. KEY ***Deep Space includes missions utilizing Earth Structure & Evolution of Universe Theme Sun-Earth Connection Theme leading and trailing orbits, since spacecraft in Astronomical Search for Origins Theme Cross-Theme Affiliation such orbits drift out well beyond Lagrange point Exploration of the Solar System Theme distances. Unaffiliated with Space Science Enterprise (O) = Operating (as of 4/03) ****Support assumes the form of ground-based (C) = Commitment to support, but not yet operating (as of 4/03) observations for mission reference ties (e.g., GP- (F) = Future commitment to support anticipated (as of 4/03) B), VLBI co-observations, radio astronomy, solar (X) = Not specifically called out in Code S approved “Mission Set Database” or “Mission Set system radar, or orbital debris. Change Log” FUTURE OF DEEP SPACE NAVIGATION Future Science Missions from the SMD Roadmaps** • GLAST •LISA • CONSTELLATION-X • BIG BANG OBSERVER • GRAVITY PROBE B • DARK ENERGY PROBE • INFLATION PROBE • BLACK HOLE IMAGER •SWIFT • EXPLORER MISSIONS • BLACK HOLE FINDER • EXPLORER MISSIONS • SPIDR PROBE •EUSO • EXPLORER MISSIONS •WISE SEU • SPACE INFRARED • SPACE INTERFEROMETRY MISSION • TERRESTRIAL PLANET FINDER • SPACE ULTRAVIOLET / TELESCOPE FACILITY • SINGLE APERTURE FAR- OPTICAL TELESCOPE • KEPLER • JAMES WEBB SPACE INFRARED OBSERVATORY • LIFE FINDER TELESCOPE • EXPLORER MISSION • PLANET IMAGER • EXPLORER MISSION • DISCOVERY MISSION • EXPLORER MISSION • DISCOVERY MISSION • DISCOVERY MISSION ASO • DEEP IMPACT • DISCOVERY MISSIONS • DISCOVERY MISSIONS • DISCOVERY MISSIONS • MESSENGER • SOUTH POLE AITKEN BASIN • JUPITER POLAR ORBITER/PROBES* • MARS SCOUTS •DAWN SAMPLE RETURN • VENUS IN-SITU EXPLORER • MARS UPPER ATMOSPHERE ORBITER* • MARS SCOUT • JUPITER ICY MOONS ORBITER* • COMET SURFACE SAMPLE RETURN • MARS SAMPLE RETURN • NEW HORIZONS • MARS SCOUTS • MARS SCOUTS • EUROPA LANDER • MARS EXPLORATION ROVERS • MARS SCIENCE LABORATORY • MARS LONG-LIVED LANDER NETWORK• TITAN EXPLORER ESS** • MARS RECONNAISSANCE ORBITER • NEPTUNE ORBITER WITH PROBES* • SOLAR-TERRESTRIAL RELATIONS •MAGCON • AURORAL MULTISCALE OBSERVATORY • SOLAR PROBE • GEOSPACE SYSTEM RESPONSE IMAGER •THEMIS • TELEMACHUS • INTERSTELLAR PROBE • IONOSPHERE • SOLAR CONNECTIONS OBSERVATORY FOR PLANETARY ENVIRONS • GEOSPACE ELECTRODYNAMIC THERMOSPHERE • SOLAR POLAR IMAGER CONNECTIONS MESOSPHERE WAVES • DAYSIDE BOUNDARY LAYER CONSTELLATION • MAGNETOSPHERIC MULTISCALE COUPLER • MAGNETOSPHERE-IONOSPHERE OBSERVATORY SEC*** • SOLAR DYNAMICS OBSERVATORY • HELIOSPHERIC IMAGER AND • PARTICLE ACCELERATION SOLAR ORBITER • RADIATION BELT STORM
Recommended publications
  • Comparison of the Orbital Properties of Jupiter Trojan Asteroids and Trojan Dust Xiaodong Liu and Jürgen Schmidt
    A&A 614, A97 (2018) https://doi.org/10.1051/0004-6361/201832806 Astronomy & © ESO 2018 Astrophysics Comparison of the orbital properties of Jupiter Trojan asteroids and Trojan dust Xiaodong Liu and Jürgen Schmidt Astronomy Research Unit, University of Oulu, 90014 Oulu, Finland e-mail: [email protected] Received 10 February 2018 / Accepted 7 March 2018 ABSTRACT In a previous paper we simulated the orbital evolution of dust particles from the Jupiter Trojan asteroids ejected by the impacts of interplanetary particles, and evaluated their overall configuration in the form of dust arcs. Here we compare the orbital properties of these Trojan dust particles and the Trojan asteroids. Both Trojan asteroids and most of the dust particles are trapped in the Jupiter 1:1 resonance. However, for dust particles, this resonance is modified because of the presence of solar radiation pressure, which reduces the peak value of the semi-major axis distribution. We find also that some particles can be trapped in the Saturn 1:1 resonance and higher order resonances with Jupiter. The distributions of the eccentricity, the longitude of pericenter, and the inclination for Trojans and the dust are compared. For the Trojan asteroids, the peak in the longitude of pericenter distribution is about 60 degrees larger than the longitude of pericenter of Jupiter; in contrast, for Trojan dust this difference is smaller than 60 degrees, and it decreases with decreasing grain size. For the Trojan asteroids and most of the Trojan dust, the Tisserand parameter is distributed in the range of two to three. Key words. meteorites, meteors, meteoroids – planets and satellites: rings – minor planets, asteroids: general – zodiacal dust – celestial mechanics – solar wind 1.
    [Show full text]
  • NASA's STEREO Mission
    NASA’s STEREO Mission J.B. Gurman STEREO Project Scientist W.T. Thompson STEREO Chief Observer Solar Physics Laboratory, Helophysics Division NASA Goddard Space Flight Center 1 The STEREO Mission • Science and technology definition team report, 1997 December: • Understand the origin and consequences of coronal mass ejections (CMEs) • Two spacecraft in earth-leading and -lagging orbits near 1 AU (Solar Terrestrial Probe line) • “Beacon” mode for near-realtime warning of potentially geoeffective events 2 Level 1 Requirements • Understand the causes and mechanisms of CME initiation • Characterize the propagation of CMEs through the heliosphere • Discover the mechanisms and sites of energetic particle acceleration in the low corona and the interplanetary medium • Develop a 3D, time-dependent model of the magnetic topology, temperature, density, and velocity structure of the ambient solar wind 3 Implementation • Two nearly identical spacecraft launched by a single ELV • Bottom spacecraft in stack has adapter ring, some strengthening • Spacecraft built at Johns Hopkins University APL • Four science investigations 4 Scientific Instruments • S/WAVES - broad frequency response RF detection of Type II, III bursts • PLASTIC - solar wind plasma and suprathermal ion composition measurements • IMPACT - energetic electrons and ions, magnetic field • SECCHI - EUV, coronagraphs and heliospheric imagers (surface to 1.5 AU) 5 Instrument Hardware • PLASTIC IMPACT boom IMPACT boom SECCHI SCIP SECCHI HI S/WAVES 6 Orbit Design • Science team selected a separation
    [Show full text]
  • Nustar Observatory Guide
    NuSTAR Guest Observer Program NuSTAR Observatory Guide Version 3.2 (June 2016) NuSTAR Science Operations Center, California Institute of Technology, Pasadena, CA NASA Goddard Spaceflight Center, Greenbelt, MD nustar.caltech.edu heasarc.gsfc.nasa.gov/docs/nustar/index.html i Revision History Revision Date Editor Comments D1,2,3 2014-08-01 NuSTAR SOC Initial draft 1.0 2014-08-15 NuSTAR GOF Release for AO-1 Addition of more information about CZT 2.0 2014-10-30 NuSTAR SOC detectors in section 3. 3.0 2015-09-24 NuSTAR SOC Update to section 4 for release of AO-2 Update for NuSTARDAS v1.6.0 release 3.1 2016-05-10 NuSTAR SOC (nusplitsc, Section 5) 3.2 2016-06-15 NuSTAR SOC Adjustment to section 9 ii Table of Contents Revision History ......................................................................................................................................................... ii 1. INTRODUCTION ................................................................................................................................................... 1 1.1 NuSTAR Program Organization ..................................................................................................................................................................................... 1 2. The NuSTAR observatory .................................................................................................................................... 2 2.1 NuSTAR Performance ........................................................................................................................................................................................................
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • Collision Avoidance Operations in a Multi-Mission Environment
    AIAA 2014-1745 SpaceOps Conferences 5-9 May 2014, Pasadena, CA Proceedings of the 2014 SpaceOps Conference, SpaceOps 2014 Conference Pasadena, CA, USA, May 5-9, 2014, Paper DRAFT ONLY AIAA 2014-1745. Collision Avoidance Operations in a Multi-Mission Environment Manfred Bester,1 Bryce Roberts,2 Mark Lewis,3 Jeremy Thorsness,4 Gregory Picard,5 Sabine Frey,6 Daniel Cosgrove,7 Jeffrey Marchese,8 Aaron Burgart,9 and William Craig10 Space Sciences Laboratory, University of California, Berkeley, CA 94720-7450 With the increasing number of manmade object orbiting Earth, the probability for close encounters or on-orbit collisions is of great concern to spacecraft operators. The presence of debris clouds from various disintegration events amplifies these concerns, especially in low- Earth orbits. The University of California, Berkeley currently operates seven NASA spacecraft in various orbit regimes around the Earth and the Moon, and actively participates in collision avoidance operations. NASA Goddard Space Flight Center and the Jet Propulsion Laboratory provide conjunction analyses. In two cases, collision avoidance operations were executed to reduce the risks of on-orbit collisions. With one of the Earth orbiting THEMIS spacecraft, a small thrust maneuver was executed to increase the miss distance for a predicted close conjunction. For the NuSTAR observatory, an attitude maneuver was executed to minimize the cross section with respect to a particular conjunction geometry. Operations for these two events are presented as case studies. A number of experiences and lessons learned are included. Nomenclature dLong = geographic longitude increment ΔV = change in velocity dZgeo = geostationary orbit crossing distance increment i = inclination Pc = probability of collision R = geostationary radius RE = Earth radius σ = standard deviation Zgeo = geostationary orbit crossing distance I.
    [Show full text]
  • The Deep Space Network - a Technology Case Study and What Improvements to the Deep Space Network Are Needed to Support Crewed Missions to Mars?
    The Deep Space Network - A Technology Case Study and What Improvements to the Deep Space Network are Needed to Support Crewed Missions to Mars? A Master’s Thesis Presented to Department of Telecommunications State University of New York Polytechnic Institute Utica, New York In Partial Fulfillment of the Requirements for the Master of Science Degree By Prasad Falke May 2017 Abstract The purpose of this thesis research is to find out what experts and interested people think about Deep Space Network (DSN) technology for the crewed Mars mission in the future. The research document also addresses possible limitations which need to be fix before any critical missions. The paper discusses issues such as: data rate, hardware upgrade and new install requirement and a budget required for that, propagation delay, need of dedicated antenna support for the mission and security constraints. The Technology Case Study (TCS) and focused discussion help to know the possible solutions and what everyone things about the DSN technology. The public platforms like Quora, Reddit, StackExchange, and Facebook Mars Society group assisted in gathering technical answers from the experts and individuals interested in this research. iv Acknowledgements As the thesis research was challenging and based on the output of the experts and interested people in this field, I would like to express my gratitude and appreciation to all the participants. A special thanks go to Dr. Larry Hash for his guidance, encouragement, and support during the whole time. Additionally, I also want to thank my mother, Mrs. Mangala Falke for inspiring me always. Last but not the least, I appreciate the support from Maricopa County Emergency Communications Group (MCECG) and Arizona Near Space Research (ANSR) Organization for helping me to find the experts in space and communications field.
    [Show full text]
  • Complete List of Contents
    Complete List of Contents Volume 1 Cape Canaveral and the Kennedy Space Center ......213 Publisher’s Note ......................................................... vii Chandra X-Ray Observatory ....................................223 Introduction ................................................................. ix Clementine Mission to the Moon .............................229 Preface to the Third Edition ..................................... xiii Commercial Crewed vehicles ..................................235 Contributors ............................................................. xvii Compton Gamma Ray Observatory .........................240 List of Abbreviations ................................................. xxi Cooperation in Space: U.S. and Russian .................247 Complete List of Contents .................................... xxxiii Dawn Mission ..........................................................254 Deep Impact .............................................................259 Air Traffic Control Satellites ........................................1 Deep Space Network ................................................264 Amateur Radio Satellites .............................................6 Delta Launch Vehicles .............................................271 Ames Research Center ...............................................12 Dynamics Explorers .................................................279 Ansari X Prize ............................................................19 Early-Warning Satellites ..........................................284
    [Show full text]
  • Template for Manuscripts in Advances in Space Research
    DISCUS - The Deep Interior Scanning CubeSat mission to a rubble pile near-Earth asteroid Patrick Bambach1* Jakob Deller1 Esa Vilenius1 Sampsa Pursiainen2 Mika Takala2 Hans Martin Braun3 Harald Lentz3 Manfred Wittig4 1 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, 37077 G¨ottingen,Germany 2 Tampere University of Technology, PO Box 527, FI-33101 Tampere, Finland 3 RST Radar Systemtechnik AG, Ebenaustrasse 8, 9413 Oberegg, Switzerland 4 MEW-Aerospace UG, Hameln, Germany * [email protected] Submitted to Advances in Space Research Abstract We have performed an initial stage conceptual design study for the Deep Interior Scanning CubeSat (DIS- CUS), a tandem 6U CubeSat carrying a bistatic radar as the main payload. DISCUS will be operated either as an independent mission or accompanying a larger one. It is designed to determine the internal macro- porosity of a 260{600 m diameter Near Earth Asteroid (NEA) from a few kilometers distance. The main goal will be to achieve a global penetration with a low-frequency signal as well as to analyze the scattering strength for various different penetration depths and measurement positions. Moreover, the measurements will be inverted through a computed radar tomography (CRT) approach. The scientific data provided by DISCUS would bring more knowledge of the internal configuration of rubble pile asteroids and their colli- sional evolution in the Solar System. It would also advance the design of future asteroid deflection concepts. We aim at a single-unit (1U) radar design equipped with a half-wavelength dipole antenna. The radar will utilize a stepped-frequency modulation technique the baseline of which was developed for ESA's technology projects GINGER and PIRA.
    [Show full text]
  • Interaktiv 3D-Visualisering Av Nasas Deep Space Network Kommunikation Lovisa Hassler Agnes Heppich
    LIU-ITN-TEK-A-19/005--SE Interaktiv 3D-visualisering av NASAs Deep Space Network kommunikation Lovisa Hassler Agnes Heppich 2019-04-30 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet nedewS ,gnipökrroN 47 106-ES 47 ,gnipökrroN nedewS 106 47 gnipökrroN LIU-ITN-TEK-A-19/005--SE Interaktiv 3D-visualisering av NASAs Deep Space Network kommunikation Examensarbete utfört i Medieteknik vid Tekniska högskolan vid Linköpings universitet Lovisa Hassler Agnes Heppich Handledare Emil Axelsson Examinator Anders Ynnerman Norrköping 2019-04-30 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances.
    [Show full text]
  • Radio Astronomy Users Guide
    The Deep Space Network Radio Astronomy User Guide April 3, 2021 Document Owner: Joseph Lazio (Jet Propulsion Laboratory, California Institute of Technology) ⃝c 2021. California Institute of Technology. Government sponsorship acknowledged. Contents Changes to this Document . v Acknowledgments . vi 1 Introduction 1 2 Proposal Submission and DSN Scheduling 3 3 70 m Subnetwork 4 3.1 Antennas . 4 3.2 Efficiency and Gain . 4 3.3 Resolution . 5 4 34 m Subnetwork 7 4.1 Antennas . 7 4.2 Efficiency and Gain . 8 4.3 Resolution . 9 4.4 Polarization . 10 5 Receiving Systems 12 5.1 Radio Astronomical K Band (17 GHz{27 GHz) . 12 5.2 Radio Astronomical Q Band (38 GHz{50 GHz) . 13 5.3 L Band (1628 MHz{1708 MHz) . 13 5.4 S Band (2200 MHz{2300 MHz) . 13 5.5 X Band (8200 MHz{8600 MHz) . 14 5.6 Spacecraft Tracking K Band (25.5 GHz{27 GHz) . 14 5.7 Ka Band (31.8 GHz{32.3 GHz) . 14 5.8 Phase Calibration Tones for VLBI . 14 6 Signal Transport 20 7 Backends 23 7.1 Fast Fourier Transform Spectrometer (FFTS)-Madrid . 23 7.2 DSN Radio Astronomy Spectrometer-Canberra . 23 7.2.1 Level 0 Data . 24 7.2.2 Level 1 Data . 24 7.3 DSN Pulsar Processor-Canberra . 24 7.4 Open Loop Recorder . 25 7.5 VLBI Radio Astronomy (VRA) Assembly . 26 i A Proposal Preparation and Observation Planning 27 ii List of Figures 1.1 The DSN radio antennas and locations. 1 3.1 DSS-43, the 70 m antenna at the Canberra Complex .
    [Show full text]
  • Astrodynamic Fundamentals for Deflecting Hazardous Near-Earth Objects
    IAC-09-C1.3.1 Astrodynamic Fundamentals for Deflecting Hazardous Near-Earth Objects∗ Bong Wie† Asteroid Deflection Research Center Iowa State University, Ames, IA 50011, United States [email protected] Abstract mate change caused by this asteroid impact may have caused the dinosaur extinction. On June 30, 1908, an The John V. Breakwell Memorial Lecture for the As- asteroid or comet estimated at 30 to 50 m in diameter trodynamics Symposium of the 60th International As- exploded in the skies above Tunguska, Siberia. Known tronautical Congress (IAC) presents a tutorial overview as the Tunguska Event, the explosion flattened trees and of the astrodynamical problem of deflecting a near-Earth killed other vegetation over a 500,000-acre area with an object (NEO) that is on a collision course toward Earth. energy level equivalent to about 500 Hiroshima nuclear This lecture focuses on the astrodynamic fundamentals bombs. of such a technically challenging, complex engineering In the early 1990s, scientists around the world initi- problem. Although various deflection technologies have ated studies to prevent NEOs from striking Earth [1]. been proposed during the past two decades, there is no However, it is now 2009, and there is no consensus on consensus on how to reliably deflect them in a timely how to reliably deflect them in a timely manner even manner. Consequently, now is the time to develop prac- though various mitigation approaches have been inves- tically viable technologies that can be used to mitigate tigated during the past two decades [1-8]. Consequently, threats from NEOs while also advancing space explo- now is the time for initiating a concerted R&D effort for ration.
    [Show full text]
  • The Deep Space Network: a Functional Description
    Chapter 2 The Deep Space Network: A Functional Description Jim Taylor All deep-space missions—defined as those operating at or beyond the orbit of the Earth’s Moon—require some form of telecommunications network with a ground system to transmit to and receive data from the spacecraft. The Deep Space Network or DSN is one of the largest and most sophisticated of such networks. NASA missions in low Earth orbit communicate through either the Near Earth Network (NEN) or the SN (Space Network), with the SN, both operated by the NASA Goddard Space Flight Center (GSFC). The SN has of a number of Tracking and Data Relay Satellites (TDRS) in geosynchronous orbits. In addition, the European Space Agency operates a number of ground stations that may be used to track NASA deep space missions during the hours after launch. In addition, commercial companies operate ground stations that can communicate with NASA missions. The remainder of this book describes only the Deep Space Network operated for NASA by JPL. The lessons and techniques of the DSN replicate many comparable issues of the other networks. The lessons from the missions described in the following chapters are widely applicable to all deep space telecommunications systems. This includes post-launch support that was negotiated and planned using stations belonging to networks other than the DSN. The description and performance summary of the DSN in this chapter come from the DSN Telecommunications Link Design Handbook, widely known 15 16 Chapter 2 within NASA as the 810-5 document [1]. This modular handbook has been approved by the DSN Project Office, and its modules are updated to define current DSN capabilities.
    [Show full text]