Interaktiv 3D-Visualisering Av Nasas Deep Space Network Kommunikation Lovisa Hassler Agnes Heppich

Total Page:16

File Type:pdf, Size:1020Kb

Interaktiv 3D-Visualisering Av Nasas Deep Space Network Kommunikation Lovisa Hassler Agnes Heppich LIU-ITN-TEK-A-19/005--SE Interaktiv 3D-visualisering av NASAs Deep Space Network kommunikation Lovisa Hassler Agnes Heppich 2019-04-30 Department of Science and Technology Institutionen för teknik och naturvetenskap Linköping University Linköpings universitet nedewS ,gnipökrroN 47 106-ES 47 ,gnipökrroN nedewS 106 47 gnipökrroN LIU-ITN-TEK-A-19/005--SE Interaktiv 3D-visualisering av NASAs Deep Space Network kommunikation Examensarbete utfört i Medieteknik vid Tekniska högskolan vid Linköpings universitet Lovisa Hassler Agnes Heppich Handledare Emil Axelsson Examinator Anders Ynnerman Norrköping 2019-04-30 Upphovsrätt Detta dokument hålls tillgängligt på Internet – eller dess framtida ersättare – under en längre tid från publiceringsdatum under förutsättning att inga extra- ordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka kopior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervisning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säkerheten och tillgängligheten finns det lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsmannens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/ Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a considerable time from the date of publication barring exceptional circumstances. The online availability of the document implies a permanent permission for anyone to read, to download, to print out single copies for your own use and to use it unchanged for any non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional on the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its WWW home page: http://www.ep.liu.se/ © Lovisa Hassler, Agnes Heppich Linköping University | Department of Science and Technology Master’s thesis, 30 ECTS | Medieteknik 202019 | LIU-ITN/LITH-EX-A--2019/001--SE Interactive 3D Visualization of the NASA Deep Space Network activity – Visualizing communication across great distances Interaktiv 3D visualisering av NASAs Deep Space Network kom- munikation Agnes Heppich, Lovisa Hassler Supervisor : Emil Axelsson, Carter Emmart Examiner : Anders Ynnerman Linköpings universitet SE–581 83 Linköping +46 13 28 10 00 , www.liu.se Upphovsrätt Detta dokument hålls tillgängligt på Internet - eller dess framtida ersättare - under 25 år från publicer- ingsdatum under förutsättning att inga extraordinära omständigheter uppstår. Tillgång till dokumentet innebär tillstånd för var och en att läsa, ladda ner, skriva ut enstaka ko- pior för enskilt bruk och att använda det oförändrat för ickekommersiell forskning och för undervis- ning. Överföring av upphovsrätten vid en senare tidpunkt kan inte upphäva detta tillstånd. All annan användning av dokumentet kräver upphovsmannens medgivande. För att garantera äktheten, säker- heten och tillgängligheten finns lösningar av teknisk och administrativ art. Upphovsmannens ideella rätt innefattar rätt att bli nämnd som upphovsman i den omfattning som god sed kräver vid användning av dokumentet på ovan beskrivna sätt samt skydd mot att dokumentet ändras eller presenteras i sådan form eller i sådant sammanhang som är kränkande för upphovsman- nens litterära eller konstnärliga anseende eller egenart. För ytterligare information om Linköping University Electronic Press se förlagets hemsida http://www.ep.liu.se/. Copyright The publishers will keep this document online on the Internet - or its possible replacement - for a period of 25 years starting from the date of publication barring exceptional circumstances. The online availability of the document implies permanent permission for anyone to read, to down- load, or to print out single copies for his/hers own use and to use it unchanged for non-commercial research and educational purpose. Subsequent transfers of copyright cannot revoke this permission. All other uses of the document are conditional upon the consent of the copyright owner. The publisher has taken technical and administrative measures to assure authenticity, security and accessibility. According to intellectual property law the author has the right to be mentioned when his/her work is accessed as described above and to be protected against infringement. For additional information about the Linköping University Electronic Press and its procedures for publication and for assurance of document integrity, please refer to its www home page: http://www.ep.liu.se/. © Agnes Heppich, Lovisa Hassler Abstract This report describe the master thesis project developed by students from Linkoping University. The project was executed at the American Museum of Natural History and is a contribution to an open source software called OpenSpace. The report presents the design and development of an interactive visualization of the NASA Deep Space Network (DSN). Data from the Jet Propulsion Laboratory (JPL) was used to create a visualization de- signed to enhance the public understanding of the network as well as highlighting the chal- lenges of interplanetary communication. The research topics for this work has been how to visualize communication while considering the temporal aspects in space communication as well as showing all of the active components of the DSN in a comprehensible manner for laypeople. The result was an interactive visualization showing all spacecrafts, commu- nication complexes and radio wave communication that are part of the NASA Deep Space Network between 2014 and 2019. User tests showed that the visualization was in general satisfying the main goals of the project. Some future improvements have been identified and described as well. Acknowledgments We would like to express our gratitude to everyone at Linköping University (LiU) and The American Museum of Natural History (AMNH) who made it possible for us to conduct this work. Thanks to our examiner Anders Ynnerman and Carter Emmart who arranged this collaboration. Thanks again to Carter for his enthusiastic ideas about visualization and his great knowledge about space as well as his eagerness to share it. Thanks to Emil Axelsson for being our educational supervisor and supporting us with valuable guidance throughout our whole project. We are also appreciative of Alexander Bock for providing fast feedback on Slack and even working after hours in other time zones to help us out. Also great thanks to Micah Acinapura who introduced us to the project code and for his great patience whenever we needed his help. Thanks again, to all of you for making us feel welcome into the OpenSpace team. We want to show our gratitude to Kevin Hussey at Jet Propulsion Laboratory who con- nected us to people with expertise about DSN. Special thanks to Shan Malhotra for his willingness to generate custom file formats with the necessary data for this project. This work could not have been possible without your help. We also want to extend our appre- ciation to everybody at AMNH who made our stay an unforgettable experience. Thanks to Vivian Trakinski and Ro Kinzler who showed interest in our work and invited us to after work events. Also thanks to Camera Walrond-Joshua, Barbara Green and Eric Hamilton at AMNH who helped us with administrative tasks. Agnes Karlsson-Heppich and Lovisa Hassler, March 2019 iv Contents Abstract iii Acknowledgments iv Contents v List of Figures vii List of Tables ix 1 Introduction 1 1.1 The Deep Space Network . 1 1.2 OpenSpace software . 2 1.3 Motivation and Aim . 2 1.4 Research questions . 2 1.5 Delimitations . 3 2 Related Work 4 2.1 Three-dimensional analysis of deep space network antenna coverage . 4 2.2 Deep Space Network Now . 5 3 Theory 6 3.1 Technical details of the Deep Space Network and Communication . 6 3.2 Precision issues while navigating in OpenSpace . 9 3.3 Date reference frames and celestial coordinate systems . 10 3.4 JPL data . 11 3.5 DSN Now XML data . 12 4 Visual representation 13 4.1 Spacecraft . 13 4.2 Ground stations and their coverage . 14 4.3 Radio wave communication . 14 5 Implementation 17 5.1 Preprocessing of raw data and Data formats . 17 5.2 Stations . 20 5.3 Spacecraft . 20 5.4 Radio wave communication . 22 5.5 Station field of view . 24 6 Results 26 6.1 Visualization of the DSN stations . 26 6.2 Visualization of the spacecraft . 27 6.3 Visualization of the radio wave communication . 28 v 6.4 Ground station field of view . 28 7 User test 31 7.1 Design and purpose . 31 7.2 Result . 31 8 Discussion and analysis 33 8.1 Results . 33 8.2 Implementation . 35 8.3 Future improvements . 36 9 Conclusion 37 Bibliography 39 vi List of Figures 2.1 Main page of DSN Now observed at 2019-02-20.The center and left shows the communication complex sites and their individual stations. Above each station there are names of spacecraft that are in current communication. Animated radio waves indicate activity and goes in different directions. To the right more detailed information can be found about the spacecraft and the transmission. 5 3.1 Illustration of the coverage of the communication complexes.The dotted line rep- resents 30 000 kilometers from Earth. Outside of that radius the DSN stations coverage overlap, and there are nearly no blind spots left.
Recommended publications
  • The Messenger Spacecraft Power System Design and Early Mission Performance
    THE MESSENGER SPACECRAFT POWER SYSTEM DESIGN AND EARLY MISSION PERFORMANCE G. Dakermanji, C. Person, J. Jenkins, L. Kennedy, D. Temkin Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Rd., Laurel, Maryland, 20723-6099, USA Email: [email protected] ABSTRACT The MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging) spacecraft was launched on August 3, 2004. The spacecraft will be inserted into Mercury orbit in March 2011 for one year of orbital operation. During the mission, the spacecraft distance to the Sun will vary between approximately 1 and 0.3 Astronomical Units (AU), imposing severe requirements on the spacecraft thermal and power systems design. The spacecraft is maintained behind a sunshade. The two single-axis, gimbaled solar array panels are designed to withstand the expected high temperatures. A peak power tracking system has been selected to allow operation over the widely varying solar array I-V curves. In order to reduce cost and risk while increasing the likelihood of mission success, the approach taken in the power system design, including the solar arrays, was to use conventional design, materials, and fabrication techniques. 1. MISSION DESCRIPTION a. Launch Configuration Sunshade MESSENGER (MErcury Surface, Space ENvironment, GEochemistry, and Ranging), shown in Fig. 1, is a Battery NASA Discovery Program spacecraft designed and built by the Johns Hopkins University Applied Physics Laboratory (APL). It will orbit the planet Mercury for one Earth year of orbital operation. Most of what is known about Mercury comes from the Mariner 10 spacecraft. Using three flybys, Mariner 10 was able to map about 45% of the planet surface during a one-year period between 1974 and 1975.
    [Show full text]
  • + New Horizons
    Media Contacts NASA Headquarters Policy/Program Management Dwayne Brown New Horizons Nuclear Safety (202) 358-1726 [email protected] The Johns Hopkins University Mission Management Applied Physics Laboratory Spacecraft Operations Michael Buckley (240) 228-7536 or (443) 778-7536 [email protected] Southwest Research Institute Principal Investigator Institution Maria Martinez (210) 522-3305 [email protected] NASA Kennedy Space Center Launch Operations George Diller (321) 867-2468 [email protected] Lockheed Martin Space Systems Launch Vehicle Julie Andrews (321) 853-1567 [email protected] International Launch Services Launch Vehicle Fran Slimmer (571) 633-7462 [email protected] NEW HORIZONS Table of Contents Media Services Information ................................................................................................ 2 Quick Facts .............................................................................................................................. 3 Pluto at a Glance ...................................................................................................................... 5 Why Pluto and the Kuiper Belt? The Science of New Horizons ............................... 7 NASA’s New Frontiers Program ........................................................................................14 The Spacecraft ........................................................................................................................15 Science Payload ...............................................................................................................16
    [Show full text]
  • Space Communications and Navigation (Scan) Testbed
    National Aeronautics and Space Administration Space Communication and Navigation Testbed: Communications Technology for Exploration Richard Reinhart NASA Glenn Research Center July 2013 ISS Research and Development Conference Sponsored by Space Communication and Navigation Program Titan Lunar Neptune Relay Satellite Saturn Uranus Pluto LADEE Charon Jupiter Near Earth Optical Relay Pathfinder Mars NISNNISN MCC MOCs SCaN2023202520182015 Add: Services Provide: ••IntegratedEnhancedDeepIntegratedStandard Space service-basedServicesOptical Network Optical Initial Management Initial and architectureCapability Interfaces Capability (INM) ••SpaceDeepSpaceIntegratedDelay Space internetworking InternetworkingTolerant Service Optical Networking Execution Relay (DTN throughout Pathfinder and (ISE) IP) Solar Venus Deep Space ••InternationalLunarSystemSpaceDeep SpaceRelay Internetworking interoperability Satellite Antenna Initial Array Capability Antenna Optical Relay ••AssuredSignificantOpticalLunar Optical Ground safety Increases and Pathfinder Terminal security in Bandwidth (LADEE) of missions Array Pathfinder ••SignificantRetirementNearTDRS Earth K, L increases Optical of Aging Initial RFin bandwidth Systems Capability Sun Mercury • TDRSIncreased M,N microwave link data rates • Lunar Relay Payload (potential) 2 Microwave Links Optical Links NISN Next Generation Communication and Navigation Technology – Optical Communications – Antenna Arraying Technology – Receive and Transmit – Software Defined Radio – Advanced Antenna Technology – Spacecraft RF
    [Show full text]
  • 588168 Amendment No. 56 NASA Glenn Research Center, License
    NRC FORM 374 PAGE 1 OF 7 PAGES U.S. NUCLEAR REGULATORY COMMISSION Amendment No. 56 MATERIALS LICENSE Pursuant to the Atomic Energy Act of 1954, as amended, the Energy Reorganization Act of 1974 (Public Law 93-438), and Title 10, Code of Federal Regulations, Chapter I, Parts 30, 31, 32, 33, 34, 35, 36, 37, 39, 40, 70 and 71, and in reliance on statements and representations heretofore made by the licensee, a license is hereby issued authorizing the licensee to receive, acquire, possess, and transfer byproduct, source, and special nuclear material designated below; to use such material for the purpose(s) and at the place(s) designated below; to deliver or transfer such material to persons authorized to receive it in accordance with the regulations of the applicable Part(s). This license shall be deemed to contain the conditions specified in Section 183 of the Atomic Energy Act of 1954, as amended, and is subject to all applicable rules, regulations, and orders of the Nuclear Regulatory Commission now or hereafter in effect and to any conditions specified below. Licensee In accordance with letter dated 4. Expiration Date: March 31, 2025 March 28, 201 1. National Aeronautics & Space Administration R John H. Glenn Research Center 5. Docket No.: 030-05626 2. 21000 Brookpark Road Reference No.: Mailstop 6-4 Cleveland, OH 44135 6. Byproduct, source, 9. Authorized use and/or special nuclear material A. Any byproduct material A. Activation ~ucts A. For research and development as between atomic numbers described in 10 CFR 30.4. Possession 3 and 83 incident to the radiological characterization surveys of a shut-down cyclotron.
    [Show full text]
  • 10 Things to Know About NASA's Glenn Research Center
    National Aeronautics and Space Administration 10 Things to Know About NASA’s Glenn Research Center 1. NASA Glenn’s economic impact in Ohio exceeds $1.4 billion per year. According to an economic impact study by Cleveland State University’s Center for Economic Development, Glenn generates over $700 million annually in economic activity and creates over 7,000 jobs. NASA Glenn also generates nearly $500 million in labor income and approximately $120 million in tax revenue per year. 2. Glenn scientists and engineers are prolific inventors. The research center holds more than 725 patents and has won over 120 R&D 100 Awards, also known as the Oscars of innovation. That’s more than any other NASA center. Glenn strives to increase private sector revenue and contribute to private sector job growth by licensing its inventions. 3. Every U.S. aircraft has NASA Glenn technology on board. NASA is with you when you fly. Today’s commercial airliners are safer, quieter and more fuel efficient because of NASA Glenn technology. Glenn advancements such as ice detection and air traffic control systems have made flying safer. Glenn jet engine combustors have resulted in more efficient aircraft engines, and Glenn developed nozzle chevrons are used to make the Boeing 787 Dreamliner and new 737 MAX quieter. 4. Glenn is transforming aviation by developing revolutionary technologies for aircraft and the national airspace system. Glenn is working to dramatically improve efficiency, reduce costs and noise, and maintain safety in crowded skies. The center leads the agency’s effort to develop hybrid electric propulsion systems for commercial passenger aircraft.
    [Show full text]
  • The Deep Space Network - a Technology Case Study and What Improvements to the Deep Space Network Are Needed to Support Crewed Missions to Mars?
    The Deep Space Network - A Technology Case Study and What Improvements to the Deep Space Network are Needed to Support Crewed Missions to Mars? A Master’s Thesis Presented to Department of Telecommunications State University of New York Polytechnic Institute Utica, New York In Partial Fulfillment of the Requirements for the Master of Science Degree By Prasad Falke May 2017 Abstract The purpose of this thesis research is to find out what experts and interested people think about Deep Space Network (DSN) technology for the crewed Mars mission in the future. The research document also addresses possible limitations which need to be fix before any critical missions. The paper discusses issues such as: data rate, hardware upgrade and new install requirement and a budget required for that, propagation delay, need of dedicated antenna support for the mission and security constraints. The Technology Case Study (TCS) and focused discussion help to know the possible solutions and what everyone things about the DSN technology. The public platforms like Quora, Reddit, StackExchange, and Facebook Mars Society group assisted in gathering technical answers from the experts and individuals interested in this research. iv Acknowledgements As the thesis research was challenging and based on the output of the experts and interested people in this field, I would like to express my gratitude and appreciation to all the participants. A special thanks go to Dr. Larry Hash for his guidance, encouragement, and support during the whole time. Additionally, I also want to thank my mother, Mrs. Mangala Falke for inspiring me always. Last but not the least, I appreciate the support from Maricopa County Emergency Communications Group (MCECG) and Arizona Near Space Research (ANSR) Organization for helping me to find the experts in space and communications field.
    [Show full text]
  • Complete List of Contents
    Complete List of Contents Volume 1 Cape Canaveral and the Kennedy Space Center ......213 Publisher’s Note ......................................................... vii Chandra X-Ray Observatory ....................................223 Introduction ................................................................. ix Clementine Mission to the Moon .............................229 Preface to the Third Edition ..................................... xiii Commercial Crewed vehicles ..................................235 Contributors ............................................................. xvii Compton Gamma Ray Observatory .........................240 List of Abbreviations ................................................. xxi Cooperation in Space: U.S. and Russian .................247 Complete List of Contents .................................... xxxiii Dawn Mission ..........................................................254 Deep Impact .............................................................259 Air Traffic Control Satellites ........................................1 Deep Space Network ................................................264 Amateur Radio Satellites .............................................6 Delta Launch Vehicles .............................................271 Ames Research Center ...............................................12 Dynamics Explorers .................................................279 Ansari X Prize ............................................................19 Early-Warning Satellites ..........................................284
    [Show full text]
  • Glenn Research Center (GRC)
    Glenn Research Center (GRC) Agency Introduction: The FY 2012 budget request for NASA is $18.7 billion, the FY 2010 enacted level. The NASA Authorization Act of 2010 has provided a clear direction for NASA, and the skilled workforce at NASA Centers is critical to the success of the Act’s important objectives. Highlights of GRC’s FY 2012 activities: The FY 2012 budget proposes $ 809 million in spending at GRC. • $216 million in Space Technology for strategically-guided projects aligned with the Center core competencies of space power, in-space propulsion, nanotechnology and manufacturing, the Glenn Innovation Fund, disbursement of select SBIR/STTR awards and program funds for the Space Technology Research Grants Level 2 program office which GRC manages. • $144 million for Aeronautics Research to support contributions to NextGen, aviation safety, and environmentally responsible aviation. • $100 million towards Exploration to support propulsion research for the Space Launch System, environmental qualification on the Multi-Purpose Crew Vehicle, and some EVA and advanced life support systems work in Exploration Research and Development. • $47 million in Space Operations biological and physical research for the International Space Station, completion and launch of the Communications, Navigation, and Networking reconfigurable Test Bed (CoNNeCT) project in early 2012. • $32 million in Science research and technology, including radioisotope power systems and solar electric propulsion. • $12 million to further NASA’s Science, Technology, Engineering, and Mathematics (STEM) education efforts. • $259 million for Institutional requirements includes: $230 million for Cross-Agency Support; $29 million for Construction and Environmental Compliance Restoration for minor revitalization and construction projects to repair and modernize center infrastructure to reduce risk of mission disruption due to facility failures.
    [Show full text]
  • Radio Astronomy Users Guide
    The Deep Space Network Radio Astronomy User Guide April 3, 2021 Document Owner: Joseph Lazio (Jet Propulsion Laboratory, California Institute of Technology) ⃝c 2021. California Institute of Technology. Government sponsorship acknowledged. Contents Changes to this Document . v Acknowledgments . vi 1 Introduction 1 2 Proposal Submission and DSN Scheduling 3 3 70 m Subnetwork 4 3.1 Antennas . 4 3.2 Efficiency and Gain . 4 3.3 Resolution . 5 4 34 m Subnetwork 7 4.1 Antennas . 7 4.2 Efficiency and Gain . 8 4.3 Resolution . 9 4.4 Polarization . 10 5 Receiving Systems 12 5.1 Radio Astronomical K Band (17 GHz{27 GHz) . 12 5.2 Radio Astronomical Q Band (38 GHz{50 GHz) . 13 5.3 L Band (1628 MHz{1708 MHz) . 13 5.4 S Band (2200 MHz{2300 MHz) . 13 5.5 X Band (8200 MHz{8600 MHz) . 14 5.6 Spacecraft Tracking K Band (25.5 GHz{27 GHz) . 14 5.7 Ka Band (31.8 GHz{32.3 GHz) . 14 5.8 Phase Calibration Tones for VLBI . 14 6 Signal Transport 20 7 Backends 23 7.1 Fast Fourier Transform Spectrometer (FFTS)-Madrid . 23 7.2 DSN Radio Astronomy Spectrometer-Canberra . 23 7.2.1 Level 0 Data . 24 7.2.2 Level 1 Data . 24 7.3 DSN Pulsar Processor-Canberra . 24 7.4 Open Loop Recorder . 25 7.5 VLBI Radio Astronomy (VRA) Assembly . 26 i A Proposal Preparation and Observation Planning 27 ii List of Figures 1.1 The DSN radio antennas and locations. 1 3.1 DSS-43, the 70 m antenna at the Canberra Complex .
    [Show full text]
  • The Nasa Glenn Research Center: an Economic Impact Study Fiscal Year 2019
    Prepared for: The NASA Glenn NASA GLENN RESEARCH CENTER Research Center: Prepared by: An Economic Iryna V. Lendel, Ph.D. Jinhee Yun Impact Study Courtney Whitman Fiscal Year 2019 CENTER FOR June 2020 ECONOMIC DEVELOPMENT 2121 Euclid Avenue ǀ Cleveland, Ohio 44115 http://urban.csuohio.edu/economicdevelopment THE NASA GLENN RESEARCH CENTER: AN ECONOMIC IMPACT STUDY FISCAL YEAR 2019 Prepared for: NASA GLENN RESEARCH CENTER Prepared by: IRYNA V. LENDEL, PH.D. JINHEE YUN COURTNEY WHITMAN June 2020 Acknowledgments The authors would like to thank Christopher Blake, Susan Kevdzija, Mary Lobo, Timothy McCartney, and Kathleen Schubert, employees of the NASA Glenn Research Center, and James Kubera from Wichita Tribal Enterprises LLC, for their contributions to this project. They assisted in coordinating the data gathering for the study and provided feedback on the report’s content. This project is a result of the collaboration between NASA Glenn, Wichita Tribal Enterprises LLC, and Cleveland State University’s Center for Economic Development. Table of Contents Executive Summary ....................................................................................................................................... i A. Introduction .............................................................................................................................................. 1 B. NASA Glenn Research Center: Background .............................................................................................. 2 B.1. NASA Glenn Test Facilities ................................................................................................................
    [Show full text]
  • + Mars Reconnaissance Orbiter Launch Press
    NATIONAL AERONAUTICS AND SPACE ADMINISTRATION Mars Reconnaissance Orbiter Launch Press Kit August 2005 Media Contacts Dolores Beasley Policy/Program Management 202/358-1753 Headquarters [email protected] Washington, D.C. Guy Webster Mars Reconnaissance Orbiter Mission 818/354-5011 Jet Propulsion Laboratory, [email protected] Pasadena, Calif. George Diller Launch 321/867-2468 Kennedy Space Center, Fla. [email protected] Joan Underwood Spacecraft & Launch Vehicle 303/971-7398 Lockheed Martin Space Systems [email protected] Denver, Colo. Contents General Release ..................................………………………..........................................…..... 3 Media Services Information ………………………………………..........................................…..... 5 Quick Facts ………………………………………………………................................….………… 6 Mars at a Glance ………………………………………………………..................................………. 7 Where We've Been and Where We're Going ……………………................…………................... 8 Science Investigations ............................................................................................................... 12 Technology Objectives .............................................................................................................. 21 Mission Overview ……………...………………………………………...............................………. 22 Spacecraft ................................................................................................................................. 33 Mars: The Water Trail …………………………………………………………………...............……
    [Show full text]
  • NASA Symbols and Flags in the US Manned Space Program
    SEPTEMBER-DECEMBER 2007 #230 THE FLAG BULLETIN THE INTERNATIONAL JOURNAL OF VEXILLOLOGY www.flagresearchcenter.com 225 [email protected] THE FLAG BULLETIN THE INTERNATIONAL JOURNAL OF VEXILLOLOGY September-December 2007 No. 230 Volume XLVI, Nos. 5-6 FLAGS IN SPACE: NASA SYMBOLS AND FLAGS IN THE U.S. MANNED SPACE PROGRAM Anne M. Platoff 143-221 COVER PICTURES 222 INDEX 223-224 The Flag Bulletin is officially recognized by the International Federation of Vexillological Associations for the publication of scholarly articles relating to vexillology Art layout for this issue by Terri Malgieri Funding for addition of color pages and binding of this combined issue was provided by the University of California, Santa Barbara Library and by the University of California Research Grants for Librarians Program. The Flag Bulletin at the time of publication was behind schedule and therefore the references in the article to dates after December 2007 reflect events that occurred after that date but before the publication of this issue in 2010. © Copyright 2007 by the Flag Research Center; all rights reserved. Postmaster: Send address changes to THE FLAG BULLETIN, 3 Edgehill Rd., Winchester, Mass. 01890 U.S.A. THE FLAG BULLETIN (ISSN 0015-3370) is published bimonthly; the annual subscription rate is $68.00. Periodicals postage paid at Winchester. www.flagresearchcenter.com www.flagresearchcenter.com 141 [email protected] ANNE M. PLATOFF (Annie) is a librarian at the University of Cali- fornia, Santa Barbara Library. From 1989-1996 she was a contrac- tor employee at NASA’s Johnson Space Center. During this time she worked as an Information Specialist for the New Initiatives Of- fice and the Exploration Programs Office, and later as a Policy Ana- lyst for the Public Affairs Office.
    [Show full text]