Plate Tectonics: Metamorphic Myth

Total Page:16

File Type:pdf, Size:1020Kb

Plate Tectonics: Metamorphic Myth news & views PLATE TECTONICS Metamorphic myth Clear evidence for subduction-induced metamorphism, and thus the operation of plate tectonics on the ancient Earth has been lacking. Theoretical calculations indicate that we may have been looking for something that cannot exist. Jun Korenaga arth’s surface is divided into a dozen well as mountain belts, or orogens, formed magnesium compared with the present- or so rigid tectonic plates. Movement when two continents collided, presumably day oceanic crust. Using thermodynamic Eand subduction of these plates into after subduction had consumed the seafloor calculations, Palin and White show that the mantle governs nearly all geological that once existed between them. Many of the metamorphism of crust with high processes, such as earthquakes, mountain these by-products of plate tectonics can be magnesium content is much less likely building and even atmospheric composition. traced back to around 3 billion years ago6. to yield glaucophane-bearing mineral However, it is unclear when plate tectonics There is also a suggestion for an even earlier assemblages. It is no wonder that we could began. Today, subduction forms blueschist- onset of plate tectonics, around 4 billion not find blueschist in those ancient orogens facies metamorphic rocks — often regarded years ago, based on the mineral chemistry of formed when the Earth was much hotter as the hallmark of plate tectonics. These ancient zircons7. than at present — we may have been rocks are found only up to about 800 million One nagging observation that seems looking for rocks that simply could not have years ago1, and their absence prior to this to defy an early onset of plate tectonics is been generated. time has been taken as evidence against the absence of ancient blueschist-facies To preserve blueschist at the surface, the plate tectonics on an earlier Earth2,3. Writing metamorphic rocks. These rocks owe their rocks must be rapidly exhumed to Earth’s in Nature Geoscience, Palin and White4 name to the predominance of the blue- surface without undergoing any further use thermodynamic calculations to show coloured mineral glaucophane in their metamorphism8. Given this rather intricate that ancient plate tectonics could not form makeup. Blueschists form when basaltic scenario required for the surface exposure blueschist-facies rocks to begin with. rocks, which comprise the oceanic crust, of once subducted materials, the absence There is abundant evidence for plate are subject to high pressures and low of blueschists does not completely rule out tectonics during the Phanerozoic, up to temperatures at depths of about 15 km the possibility that blueschist rocks did 540 million years ago, but prior to this time, in subduction zones8 (Fig. 1). These form on the younger Earth, but were simply the evidence is less clear5. The very nature metamorphic rocks can be exhumed back to not exhumed. However, Palin and White’s of plate tectonics means that it is difficult Earth’s surface when tectonic plates collide calculations suggest that the metamorphic to find evidence for its onset. Plates are to form orogens. The absence of blueschists products of ancient oceanic crust, though lost into the mantle at subduction zones, in orogens older than 800 million years they are not blueschist, can still be identified with the loss balanced by plate growth at does not necessarily require the absence of by their mineral chemistry, so future field mid-ocean ridges. Thus, plate tectonics plate tectonics, but begs the question of why studies will provide the ultimate test for continually rejuvenates Earth’s surface on something that resurfaced so easily in the their hypothesis. a time scale of about a hundred million recent geologic past failed to resurface in Palin and White also note that the years, erasing evidence for its past operation. earlier times. metamorphism of magnesium-rich crust We must therefore rely on the subtle by- Palin and White4 have hit this blueschist could have brought more water into the products of plate tectonics that may be conundrum from a blind side. Earth’s mantle than that of present-day crust, preserved on the buoyant continents. mantle has been cooling over time at a rate and this prediction is also against the Such by-products include fragments of of about 100 °C per billion years9. A hotter conventional wisdom. The subduction ancient oceanic crust that have been uplifted mantle in the past would have produced of surface water reduces the volume of and exposed on the continents today, as a thicker oceanic crust more enriched in oceans and reduces the viscosity of the a b c Oceanic crust Accretionary wedge Blueschist exhumation Ocean Continental crust Lithospheric mantle Blueschist Slab break-o Figure 1 | Schematic illustration of blueschist formation and exhumation. a, Blueschist-facies metamorphism occurs when modern oceanic crust is subducted to depths of about 15 km. b,c, Some blueschists can detach themselves and migrate upward during slab rollback, and when the subducting slab breaks off b( ), they can be transported further towards Earth’s surface and exposed via erosion during continental collision (c). Palin and White4 use thermodynamic calculations to show that blueschist metamorphism would not have occurred in the magnesium-rich oceanic crust that would have characterized the younger, warmer Earth. NATURE GEOSCIENCE | VOL 9 | JANUARY 2016 | www.nature.com/naturegeoscience 9 © 2015 Macmillan Publishers Limited. All rights reserved news & views convecting mantle. The new thermodynamic phenomenon of interest takes place. This References calculations therefore have far-reaching secular evolution involves not only internal 1. Maruyama, S. & Liou, J. G. Int. Geol. Rev. 38, 485–594 (1996). 2. Stern, R. J. Geology 33, 557–560 (2005). implications for the coevolution of the temperature, but also a number of other 3. Hamilton, W. B. Lithos 123, 1–20 (2011). surface environment and the dynamics of variables such as chemical composition and 4. Palin, R. M. & White, R. W. Nature Geosci. 9, 60–64 (2016). Earth’s interior5. material strength. When extrapolating our 5. Korenaga, J. Annu. Rev. Earth Planet. Sci. 41, 117–151 (2013). 4 6. Condie, K. C. & Kröner, A. in When Did Plate Tectonics Begin on Palin and White’s study highlights the understanding of contemporary processes Planet Earth? (eds Condie, K. C. & Pease, V.) 281–294 (Geological importance of understanding the secular to deep time, approaches based on basic Society of America, 2008). evolution of the Earth, as well as the physics and chemistry may take precedence 7. Hopkins, M., Harrison, T. M. & Manning, C. E. ❐ Earth Planet. Sci. Lett. 298, 367–376 (2010). advantage of employing first-principles over empirical ones. 8. Agard, P., Yamato, P, Jolivet, L. & Burov, E. Earth Sci. Rev. approaches. The internal state of the planet 92, 53–79 (2009). has been gradually changing, as necessitated Jun Korenaga is in the Department of Geology 9. Herzberg, C., Condie, K. & Korenaga, J. Earth Planet. Sci. Lett. by the radioactive decay of heat-producing and Geophysics, Yale University, PO Box 208109, 292, 79–88 (2010). elements, so we need to have a clear picture Connecticut 06520-8109, USA. of the global setting in which a particular e-mail: [email protected] Published online: 14 December 2015 PLANETARY SCIENCE Mars on dry ice Martian gullies have been seen as evidence for past surface water runoff. However, numerical modelling now suggests that accumulation and sublimation of carbon dioxide ice, rather than overland flow of liquid water, may be driving modern gully formation. Colin Dundas he search for water has been one higher than today, as expected within the CO2 is the main component of the of the key threads linking decades past few million years3,4. Whatever the water Martian atmosphere, and condenses Tof Mars science and exploration. source, wet models imply the repeated wherever the surface temperature drops to Water is a dynamic geologic agent, and occurrence of thousands of cubic metres its frost point. If the frost anneals to become its presence affects subjects ranging from of liquid water at each gully1, which would an impermeable slab of ice, such a layer geomorphology to geochemistry to biology. have profound implications for both climate would be translucent; sunlight can penetrate At present, Mars is a cold and dry world, and possible biology on Mars. to the base and induce sublimation10. This with most of its water locked away as ice Monitoring of the Martian surface by causes pressure to rise beneath the ice slab, in polar caps or below the surface at lower orbiters over the past two decades has and eventually causes the slab to lift and latitudes. However, the discovery of gully shifted the debate by revealing present- break apart, rapidly expelling both gas and landforms less than a million years in age day changes in the morphology of gullies5. entrained regolith material10. Transient dark in images from the Mars Global Surveyor Successive images show significant changes spots that are widespread at high latitudes orbiter1 was initially regarded as strong to gullies, including channel erosion and every Martian spring10 — including in some evidence for overland flow of liquid water on the deposition of lobate flows6. The ongoing gully channels9 and in gully-like features Mars in the geologically recent past. Writing activity of Martian gullies is perplexing on sand dunes11 — have been attributed to in Nature Geoscience, Pilorget and Forget2 because the present-day climate on Mars this process. challenge a wet origin for the Martian gullies is too cold at these times and locations to Pilorget and Forget2 propose that gully and demonstrate with numerical simulations support substantial liquid surface water. activity can be attributed to sublimation that the gullies may instead be formed in the However, there is another volatile species beneath CO2 ice and that this process is present climate due to the sublimation of that may be the culprit in gully formation.
Recommended publications
  • Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes”
    minerals Editorial Editorial for Special Issue “Ore Genesis and Metamorphism: Geochemistry, Mineralogy, and Isotopes” Pavel A. Serov Geological Institute of the Kola Science Centre, Russian Academy of Sciences, 184209 Apatity, Russia; [email protected] Magmatism, ore genesis and metamorphism are commonly associated processes that define fundamental features of the Earth’s crustal evolution from the earliest Precambrian to Phanerozoic. Basically, the need and importance of studying the role of metamorphic processes in formation and transformation of deposits is of great value when discussing the origin of deposits confined to varied geological settings. In synthesis, the signatures imprinted by metamorphic episodes during the evolution largely indicate complicated and multistage patterns of ore-forming processes, as well as the polygenic nature of the mineralization generated by magmatic, postmagmatic, and metamorphic processes. Rapid industrialization and expanding demand for various types of mineral raw ma- terials require increasing rates of mining operations. The current Special Issue is dedicated to the latest achievements in geochemistry, mineralogy, and geochronology of ore and metamorphic complexes, their interrelation, and the potential for further prospecting. The issue contains six practical and theoretical studies that provide for a better understanding of the age and nature of metamorphic and metasomatic transformations, as well as their contribution to mineralization in various geological complexes. The first article, by Jiang et al. [1], reports results of the first mineralogical–geochemical Citation: Serov, P.A. Editorial for studies of gem-quality nephrite from the major Yinggelike deposit (Xinjiang, NW China). Special Issue “Ore Genesis and The authors used a set of advanced analytical techniques, that is, electron probe microanaly- Metamorphism: Geochemistry, sis, X-ray fluorescence (XRF) spectrometry, inductively coupled plasma mass spectrometry Mineralogy, and Isotopes”.
    [Show full text]
  • Geomorphic Classification of Rivers
    9.36 Geomorphic Classification of Rivers JM Buffington, U.S. Forest Service, Boise, ID, USA DR Montgomery, University of Washington, Seattle, WA, USA Published by Elsevier Inc. 9.36.1 Introduction 730 9.36.2 Purpose of Classification 730 9.36.3 Types of Channel Classification 731 9.36.3.1 Stream Order 731 9.36.3.2 Process Domains 732 9.36.3.3 Channel Pattern 732 9.36.3.4 Channel–Floodplain Interactions 735 9.36.3.5 Bed Material and Mobility 737 9.36.3.6 Channel Units 739 9.36.3.7 Hierarchical Classifications 739 9.36.3.8 Statistical Classifications 745 9.36.4 Use and Compatibility of Channel Classifications 745 9.36.5 The Rise and Fall of Classifications: Why Are Some Channel Classifications More Used Than Others? 747 9.36.6 Future Needs and Directions 753 9.36.6.1 Standardization and Sample Size 753 9.36.6.2 Remote Sensing 754 9.36.7 Conclusion 755 Acknowledgements 756 References 756 Appendix 762 9.36.1 Introduction 9.36.2 Purpose of Classification Over the last several decades, environmental legislation and a A basic tenet in geomorphology is that ‘form implies process.’As growing awareness of historical human disturbance to rivers such, numerous geomorphic classifications have been de- worldwide (Schumm, 1977; Collins et al., 2003; Surian and veloped for landscapes (Davis, 1899), hillslopes (Varnes, 1958), Rinaldi, 2003; Nilsson et al., 2005; Chin, 2006; Walter and and rivers (Section 9.36.3). The form–process paradigm is a Merritts, 2008) have fostered unprecedented collaboration potentially powerful tool for conducting quantitative geo- among scientists, land managers, and stakeholders to better morphic investigations.
    [Show full text]
  • Metamorphic Rocks (Lab )
    Figure 3.12 Igneous Rocks (Lab ) The RockSedimentary Cycle Rocks (Lab ) Metamorphic Rocks (Lab ) Areas of regional metamorphism Compressive Compressive Stress Stress Products of Regional Metamorphism Products of Contact Metamorphism Foliated texture forms Non-foliated texture forms during compression during static pressure Texture Minerals Other Diagnostic Metamorphic Protolith Features Rock Name Non-foliated calcite, dolomite cleavage faces of Marble Limestone calcite usually visible quartz quartz grains are Quartzite Quartz Sandstone intergrown Foliated clay looks like shale but Slate Shale breaks into layers muscovite, biotite very fine-grained, but Phyllite Shale has a sheen like satin muscovite, biotite, minerals are large Schist Shale may have garnet enough to see easily, muscovite and biotite grains are parallel to each other feldspar, biotite, has layers of different Gneiss Any protolith muscovite, quartz, minerals garnet amphibole layered black Amphibolite Basalt or Andesite amphibole grains Texture Minerals Other Diagnostic Metamorphic Protolith Features Rock Name Non-foliated calcite, dolomite cleavage faces of Marble Limestone calcite usually visible quartz quartz grains are Quartzite Quartz Sandstone intergrown Foliated clay looks like shale but Slate Shale breaks into layers muscovite, biotite very fine-grained, but Phyllite Shale has a sheen like satin muscovite, biotite, minerals are large Schist Shale may have garnet enough to see easily, muscovite and biotite grains are parallel to each other feldspar, biotite, has layers of different Gneiss Any protolith muscovite, quartz, minerals garnet amphibole layered black Amphibolite Basalt or Andesite amphibole grains Identification of Metamorphic Rocks 12 samples 7 are metamorphic 5 are igneous or sedimentary Protoliths and Geologic History For 2 of the metamorphic rocks: Match the metamorphic rock to its protolith (both from Part One) Write a short geologic history of the sample 1.
    [Show full text]
  • 3.5.3 the Use of Erosion Pins in Geomorphology
    © Author(s) 2016. CC Attribution 4.0 License. ISSN 2047 - 0371 3.5.3 The use of erosion pins in geomorphology John Boardman1,2 and David Favis-Mortlock1 1Environmental Change Institute, Oxford University Centre for the Environment, Oxford, UK ([email protected]) 2Department of Environmental and Geographical Science, University of Cape Town, South Africa ABSTRACT: Erosion pins have been widely used in geomorphology since the 1950s to estimate rates of change (erosion and – less commonly – accumulation) in land surfaces. They may be used for short- and long-term surveys and are quick and easy to install and measure. Erosion pins are particularly suited to bare, undisturbed environments such as badlands and sand dunes. Our recommendations for their use follow those of Haigh (1977) and Lawler (1993) but we also discuss the need for researchers to be aware of issues which arise from of measurement error, particularly for short-term studies and analytical methods which rely on few pin measurements. There is also a not inconsiderable challenge involved in extrapolating results derived from erosion pin measurements to larger areas. KEYWORDS: badlands, erosion pins, erosion rates, measurement errors erosion pins is not necessary: useful data can Introduction be collected with occasional visits. The basic idea behind the use of erosion pins However, this simplicity is deceptive. to quantify land-surface change is very Considerations of pin siting, measurement straightforward. A rod is firmly fixed into the error, and interpretation of results rapidly ground (or other substrate), and a note made introduce additional complexity. Thus, any of the length of rod which remains exposed.
    [Show full text]
  • A Continuous Plate-Tectonic Model Using Geophysical Data to Estimate
    GEOPHYSICAL JOURNAL INTERNATIONAL, 133, 379–389, 1998 1 A continuous plate-tectonic model using geophysical data to estimate plate margin widths, with a seismicity based example Caroline Dumoulin1, David Bercovici2, Pal˚ Wessel Department of Geology & Geophysics, School of Ocean and Earth Science and Technology, University of Hawaii, Honolulu, 96822, USA Summary A continuous kinematic model of present day plate motions is developed which 1) provides more realistic models of plate shapes than employed in the original work of Bercovici & Wessel [1994]; and 2) provides a means whereby geophysical data on intraplate deformation is used to estimate plate margin widths for all plates. A given plate’s shape function (which is unity within the plate, zero outside the plate) can be represented by analytic functions so long as the distance from a point inside the plate to the plate’s boundary can be expressed as a single valued function of azimuth (i.e., a single-valued polar function). To allow sufficient realism to the plate boundaries, without the excessive smoothing used by Bercovici and Wessel, the plates are divided along pseudoboundaries; the boundaries of plate sections are then simple enough to be modelled as single-valued polar functions. Moreover, the pseudoboundaries have little or no effect on the final results. The plate shape function for each plate also includes a plate margin function which can be constrained by geophysical data on intraplate deformation. We demonstrate how this margin function can be determined by using, as an example data set, the global seismicity distribution for shallow (depths less than 29km) earthquakes of magnitude greater than 4.
    [Show full text]
  • Facies and Mafic
    Metamorphic Facies and Metamorphosed Mafic Rocks l V.M. Goldschmidt (1911, 1912a), contact Metamorphic Facies and metamorphosed pelitic, calcareous, and Metamorphosed Mafic Rocks psammitic hornfelses in the Oslo region l Relatively simple mineral assemblages Reading: Winter Chapter 25. (< 6 major minerals) in the inner zones of the aureoles around granitoid intrusives l Equilibrium mineral assemblage related to Xbulk Metamorphic Facies Metamorphic Facies l Pentii Eskola (1914, 1915) Orijärvi, S. l Certain mineral pairs (e.g. anorthite + hypersthene) Finland were consistently present in rocks of appropriate l Rocks with K-feldspar + cordierite at Oslo composition, whereas the compositionally contained the compositionally equivalent pair equivalent pair (diopside + andalusite) was not biotite + muscovite at Orijärvi l If two alternative assemblages are X-equivalent, l Eskola: difference must reflect differing we must be able to relate them by a reaction physical conditions l In this case the reaction is simple: l Finnish rocks (more hydrous and lower MgSiO3 + CaAl2Si2O8 = CaMgSi2O6 + Al2SiO5 volume assemblage) equilibrated at lower En An Di Als temperatures and higher pressures than the Norwegian ones Metamorphic Facies Metamorphic Facies Oslo: Ksp + Cord l Eskola (1915) developed the concept of Orijärvi: Bi + Mu metamorphic facies: Reaction: “In any rock or metamorphic formation which has 2 KMg3AlSi 3O10(OH)2 + 6 KAl2AlSi 3O10(OH)2 + 15 SiO2 arrived at a chemical equilibrium through Bt Ms Qtz metamorphism at constant temperature and =
    [Show full text]
  • MSA PRESIDENTIAL ADDRESS Metamorphism and the Evolution of Subduction on Earth
    American Mineralogist, Volume 104, pages 1065–1082, 2019 MSA PRESIDENTIAL ADDRESS Metamorphism and the evolution of subduction on Earth MICHAEL BROWN1,* AND TIM JOHNSON2,3 1Laboratory for Crustal Petrology, Department of Geology, University of Maryland, College Park, Maryland 20742, U.S.A. Orcid 0000-0003-2187-616X 2School of Earth and Planetary Sciences, The Institute for Geoscience Research (TIGeR), Curtin University, GPO Box U1987, Perth, West Australia 6845, Australia. Orcid 0000-0001-8704-4396 3Center for Global Tectonics, State Key Laboratory for Geological Processes and Mineral Resources, China University of Geosciences, Wuhan, Hubei Province, 430074, China ABSTRACT Subduction is a component of plate tectonics, which is widely accepted as having operated in a manner similar to the present-day back through the Phanerozoic Eon. However, whether Earth always had plate tectonics or, if not, when and how a globally linked network of narrow plate boundaries emerged are mat- ters of ongoing debate. Earth’s mantle may have been as much as 200–300 °C warmer in the Mesoarchean compared to the present day, which potentially required an alternative tectonic regime during part or all of the Archean Eon. Here we use a data set of the pressure (P), temperature (T), and age of metamorphic rocks from 564 localities that vary in age from the Paleoarchean to the Cenozoic to evaluate the petrogenesis and secular change of metamorphic rocks associated with subduction and collisional orogenesis at convergent plate boundaries. Based on the thermobaric ratio (T/P), metamorphic rocks are classified into three natural groups: high T/P type (T/P > 775 °C/GPa, mean T/P ~1105 °C/GPa), intermediate T/P type (T/P between 775 and 375 °C/GPa, mean T/P ~575 °C/GPa), and low T/P type (T/P < 375 °C/GPa, mean T/P ~255 °C/GPa).
    [Show full text]
  • Part 629 – Glossary of Landform and Geologic Terms
    Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition.
    [Show full text]
  • The Metamorphosis of Metamorphic Petrology
    Downloaded from specialpapers.gsapubs.org on May 16, 2016 The Geological Society of America Special Paper 523 The metamorphosis of metamorphic petrology Frank S. Spear Department of Earth and Environmental Sciences, JRSC 1W19, Rensselaer Polytechnic Institute, 110 8th Street, Troy, New York 12180-3590, USA David R.M. Pattison Department of Geoscience, University of Calgary, 2500 University Drive NW, Calgary, Alberta T2N 1N4, Canada John T. Cheney Department of Geology, Amherst College, Amherst, Massachusetts 01002, USA ABSTRACT The past half-century has seen an explosion in the breadth and depth of studies of metamorphic terranes and of the processes that shaped them. These developments have come from a number of different disciplines and have culminated in an unprece- dented understanding of the phase equilibria of natural systems, the mechanisms and rates of metamorphic processes, the relationship between lithospheric tecton- ics and metamorphism, and the evolution of Earth’s crust and lithospheric mantle. Experimental petrologists have experienced a golden age of systematic investigations of metamorphic mineral stabilities and reactions. This work has provided the basis for the quantifi cation of the pressure-temperature (P-T) conditions associated with various metamorphic facies and eventually led to the development of internally con- sistent databases of thermodynamic data on nearly all important crustal minerals. In parallel, the development of the thermodynamic theory of multicomponent, multi- phase complex systems underpinned development of the major methods of quantita- tive phase equilibrium analysis and P-T estimation used today: geothermobarometry, petrogenetic grids, and, most recently, isochemical phase diagrams. New analytical capabilities, in particular, the development of the electron micro- probe, played an enabling role by providing the means of analyzing small volumes of materials in different textural settings in intact rock samples.
    [Show full text]
  • Glacial Geomorphology☆ John Menzies, Brock University, St
    Glacial Geomorphology☆ John Menzies, Brock University, St. Catharines, ON, Canada © 2018 Elsevier Inc. All rights reserved. This is an update of H. French and J. Harbor, 8.1 The Development and History of Glacial and Periglacial Geomorphology, In Treatise on Geomorphology, edited by John F. Shroder, Academic Press, San Diego, 2013. Introduction 1 Glacial Landscapes 3 Advances and Paradigm Shifts 3 Glacial Erosion—Processes 7 Glacial Transport—Processes 10 Glacial Deposition—Processes 10 “Linkages” Within Glacial Geomorphology 10 Future Prospects 11 References 11 Further Reading 16 Introduction The scientific study of glacial processes and landforms formed in front of, beneath and along the margins of valley glaciers, ice sheets and other ice masses on the Earth’s surface, both on land and in ocean basins, constitutes glacial geomorphology. The processes include understanding how ice masses move, erode, transport and deposit sediment. The landforms, developed and shaped by glaciation, supply topographic, morphologic and sedimentologic knowledge regarding these glacial processes. Likewise, glacial geomorphology studies all aspects of the mapped and interpreted effects of glaciation both modern and past on the Earth’s landscapes. The influence of glaciations is only too visible in those landscapes of the world only recently glaciated in the recent past and during the Quaternary. The impact on people living and working in those once glaciated environments is enormous in terms, for example, of groundwater resources, building materials and agriculture. The cities of Glasgow and Boston, their distinctive street patterns and numerable small hills (drumlins) attest to the effect of Quaternary glaciations on urban development and planning. It is problematic to precisely determine when the concept of glaciation first developed.
    [Show full text]
  • Petrology of the Metamorphic Rocks
    Petrology of the metamorphic rocks Second Edition Roger Mason London UNWIN HYMAN Boston Sydney Wellington © R. Mason, 1990 This book is copyright under the Berne Convention. No reproduction without permission. All rights reserved. Published by the Academic Division of Unwin Hyman Ltd 15/17 Broadwick Street, London WIV IFP, UK Unwin Hyman Inc. 955 Massachusetts Avenue, Cambridge, MA 02139, USA Allen & Unwin (Australia) Ltd 8 Napier Street, North Sydney, NSW 2060, Australia Allen & Unwin (New Zealand) Ltd in association with the Port Nicholson Press Ltd Compusales Building, 75 Ghuznee Street, Wellington I, New Zealand First published in 1990 British Library Cataioguing in Publication Data Mason, Roger 1941- Petrology of the metamorphic rocks. - 2nd ed. I. Metamorphic rocks. Petrology I. Title 552.4 ISBN 978-0-04-552028-2 ISBN 978-94-010-9603-4 (eBook) DOI 10.1007/978-94-010-9603-4 Library of Congress Cataioging-in-Publication Data Mason, Roger, 1941- Petrology of the metamorphic rocks/Roger Mason. - 2nd ed. p. cm. Includes bibliographical references. 1. Rocks, Metamorphic. I. Title. QE475.A2M394 1990 552·.~c20 90-35106 CIP Typeset in 10 on 12 point Times by Computape (Pickering) Ltd, North Yorkshire Preface There has been a great advance in the understanding of processes of meta­ morphism and of metamorphic rocks since the last edition of this book appeared. Methods for determining temperatures and pressures have become almost routine, and there is a wide appreciation that there is not a single temperature and pressure of metamorphism, but that rocks may preserve, in their minerals, chemistry and textures, traces of their history of burial, heating, deformation and permeation by fluids.
    [Show full text]
  • Sterngeryatctnphys18.Pdf
    Tectonophysics 746 (2018) 173–198 Contents lists available at ScienceDirect Tectonophysics journal homepage: www.elsevier.com/locate/tecto Subduction initiation in nature and models: A review T ⁎ Robert J. Sterna, , Taras Geryab a Geosciences Dept., U Texas at Dallas, Richardson, TX 75080, USA b Institute of Geophysics, Dept. of Earth Sciences, ETH, Sonneggstrasse 5, 8092 Zurich, Switzerland ARTICLE INFO ABSTRACT Keywords: How new subduction zones form is an emerging field of scientific research with important implications for our Plate tectonics understanding of lithospheric strength, the driving force of plate tectonics, and Earth's tectonic history. We are Subduction making good progress towards understanding how new subduction zones form by combining field studies to Lithosphere identify candidates and reconstruct their timing and magmatic evolution and undertaking numerical modeling (informed by rheological constraints) to test hypotheses. Here, we review the state of the art by combining and comparing results coming from natural observations and numerical models of SI. Two modes of subduction initiation (SI) can be identified in both nature and models, spontaneous and induced. Induced SI occurs when pre-existing plate convergence causes a new subduction zone to form whereas spontaneous SI occurs without pre-existing plate motion when large lateral density contrasts occur across profound lithospheric weaknesses of various origin. We have good natural examples of 3 modes of subduction initiation, one type by induced nu- cleation of a subduction zone (polarity reversal) and two types of spontaneous nucleation of a subduction zone (transform collapse and plumehead margin collapse). In contrast, two proposed types of subduction initiation are not well supported by natural observations: (induced) transference and (spontaneous) passive margin collapse.
    [Show full text]