Environmental Geology Chapter 2 -‐ Plate Tectonics and Earth's Internal
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
0 Master's Thesis the Department of Geosciences And
Master’s thesis The Department of Geosciences and Geography Physical Geography South American subduction zone processes: Visualizing the spatial relation of earthquakes and volcanism at the subduction zone Nelli Metiäinen May 2019 Thesis instructors: David Whipp Janne Soininen HELSINGIN YLIOPISTO MATEMAATTIS-LUONNONTIETEELLINEN TIEDEKUNTA GEOTIETEIDEN JA MAANTIETEEN LAITOS MAANTIEDE PL 64 (Gustaf Hällströmin katu 2) 00014 Helsingin yliopisto 0 Tiedekunta/Osasto – Fakultet/Sektion – Faculty Laitos – Institution – Department Faculty of Science The Department of Geosciences and Geography Tekijä – Författare – Author Nelli Metiäinen Työn nimi – Arbetets titel – Title South American subduction zone processes: Visualizing the spatial relation of earthquakes and volcanism at the subduction zone Oppiaine – Läroämne – Subject Physical Geography Työn laji – Arbetets art – Level Aika – Datum – Month and year Sivumäärä – Sidoantal – Number of pages Master’s thesis May 2019 82 + appencides Tiivistelmä – Referat – Abstract The South American subduction zone is the best example of an ocean-continent convergent plate margin. It is divided into segments that display different styles of subduction, varying from normal subduction to flat-slab subduction. This difference also effects the distribution of active volcanism. Visualizations are a fast way of transferring large amounts of information to an audience, often in an interest-provoking and easily understandable form. Sharing information as visualizations on the internet and on social media plays a significant role in the transfer of information in modern society. That is why in this study the focus is on producing visualizations of the South American subduction zone and the seismic events and volcanic activities occurring there. By examining the South American subduction zone it may be possible to get new insights about subduction zone processes. -
GE OS 1234-101 Historical Geology Lecture Syllabus Instructor
G E OS 1234-101 Historical Geology Lecture Syllabus Instructor: Dr. Jesse Carlucci ([email protected]), (940) 397-4448 Class: MWF, 10am -10:50am, BO 100 Office hours: Bolin Hall 131, MWF, 11am ± 2pm, Tuesday, noon - 2pm. You can arrange to meet with me at any time, by appointment. Textbook: Earth System History by Steven M. Stanley, 3rd edition. I will occasionally post articles and other readings on blackboard. I will also upload Power Point presentations to blackboard before each class, if possible. Course Objectives: Historical Geology provides the student with a comprehensive survey of the history of life, and major events in the physical development of Earth. Most importantly, this class addresses how processes like plate tectonics and climate interact with life, forming an integrated system. The first half of the class focuses on concepts, and the second on a chronologic overview of major biological and physical events in different geologic periods. L E C T UR E SC H E DU L E Aug 27-31: Overview of course; what is science? The Earth as a planet Stanley (pg. 244-247) Sep 5-7: Earth materials, rocks and minerals Stanley (pg. 13-17; 25-34) Sep 10-14: Rocks & minerals continued; plate tectonics. Stanley (pg. 3-12; 35-46; 128-141; 175-186) Sep 17-21: Geological time and dating of the rock record; chemical systems, the climate system through time. Quiz 1 (Sep 19; 5%). Stanley (pg. 187-194; 196-207; 215-223; 232-238) Sep 24-28: Sedimentary environments and life; paleoecology. Stanley (pg. 76-80; 84-96; 99-123) Oct 1-5: Biological evolution and the fossil record. -
Part 3: Normal Faults and Extensional Tectonics
12.113 Structural Geology Part 3: Normal faults and extensional tectonics Fall 2005 Contents 1 Reading assignment 1 2 Growth strata 1 3 Models of extensional faults 2 3.1 Listric faults . 2 3.2 Planar, rotating fault arrays . 2 3.3 Stratigraphic signature of normal faults and extension . 2 3.4 Core complexes . 6 4 Slides 7 1 Reading assignment Read Chapter 5. 2 Growth strata Although not particular to normal faults, relative uplift and subsidence on either side of a surface breaking fault leads to predictable patterns of erosion and sedi mentation. Sediments will fill the available space created by slip on a fault. Not only do the characteristic patterns of stratal thickening or thinning tell you about the 1 Figure 1: Model for a simple, planar fault style of faulting, but by dating the sediments, you can tell the age of the fault (since sediments were deposited during faulting) as well as the slip rates on the fault. 3 Models of extensional faults The simplest model of a normal fault is a planar fault that does not change its dip with depth. Such a fault does not accommodate much extension. (Figure 1) 3.1 Listric faults A listric fault is a fault which shallows with depth. Compared to a simple planar model, such a fault accommodates a considerably greater amount of extension for the same amount of slip. Characteristics of listric faults are that, in order to maintain geometric compatibility, beds in the hanging wall have to rotate and dip towards the fault. Commonly, listric faults involve a number of en echelon faults that sole into a lowangle master detachment. -
GEOLOGY What Can I Do with This Major?
GEOLOGY What can I do with this major? AREAS EMPLOYERS STRATEGIES Some employment areas follow. Many geolo- gists specialize at the graduate level. ENERGY (Oil, Coal, Gas, Other Energy Sources) Stratigraphy Petroleum industry including oil and gas explora- Geologists working in the area of energy use vari- Sedimentology tion, production, storage and waste disposal ous methods to determine where energy sources are Structural Geology facilities accumulated. They may pursue work tasks including Geophysics Coal industry including mining exploration, grade exploration, well site operations and mudlogging. Geochemistry assessment and waste disposal Seek knowledge in engineering to aid communication, Economic Geology Federal government agencies: as geologists often work closely with engineers. Geomorphology National Labs Coursework in geophysics is also advantageous Paleontology Department of Energy for this field. Fossil Energy Bureau of Land Management Gain experience with computer modeling and Global Hydrogeology Geologic Survey Positioning System (GPS). Both are used to State government locate deposits. Consulting firms Many geologists in this area of expertise work with oil Well services and drilling companies and gas and may work in the geographic areas Oil field machinery and supply companies where deposits are found including offshore sites and in overseas oil-producing countries. This industry is subject to fluctuations, so be prepared to work on a contract basis. Develop excellent writing skills to publish reports and to solicit grants from government, industry and private foundations. Obtain leadership experience through campus organi- zations and work experiences for project man- agement positions. (Geology, Page 2) AREAS EMPLOYERS STRATEGIES ENVIRONMENTAL GEOLOGY Sedimentology Federal government agencies: Geologists in this category may focus on studying, Hydrogeology National Labs protecting and reclaiming the environment. -
Tectonics of the Musandam Peninsula and Northern Oman Mountains: from Ophiolite Obduction to Continental Collision
GeoArabia, 2014, v. 19, no. 2, p. 135-174 Gulf PetroLink, Bahrain Tectonics of the Musandam Peninsula and northern Oman Mountains: From ophiolite obduction to continental collision Michael P. Searle, Alan G. Cherry, Mohammed Y. Ali and David J.W. Cooper ABSTRACT The tectonics of the Musandam Peninsula in northern Oman shows a transition between the Late Cretaceous ophiolite emplacement related tectonics recorded along the Oman Mountains and Dibba Zone to the SE and the Late Cenozoic continent-continent collision tectonics along the Zagros Mountains in Iran to the northwest. Three stages in the continental collision process have been recognized. Stage one involves the emplacement of the Semail Ophiolite from NE to SW onto the Mid-Permian–Mesozoic passive continental margin of Arabia. The Semail Ophiolite shows a lower ocean ridge axis suite of gabbros, tonalites, trondhjemites and lavas (Geotimes V1 unit) dated by U-Pb zircon between 96.4–95.4 Ma overlain by a post-ridge suite including island-arc related volcanics including boninites formed between 95.4–94.7 Ma (Lasail, V2 unit). The ophiolite obduction process began at 96 Ma with subduction of Triassic–Jurassic oceanic crust to depths of > 40 km to form the amphibolite/granulite facies metamorphic sole along an ENE- dipping subduction zone. U-Pb ages of partial melts in the sole amphibolites (95.6– 94.5 Ma) overlap precisely in age with the ophiolite crustal sequence, implying that subduction was occurring at the same time as the ophiolite was forming. The ophiolite, together with the underlying Haybi and Hawasina thrust sheets, were thrust southwest on top of the Permian–Mesozoic shelf carbonate sequence during the Late Cenomanian–Campanian. -
Plate Tectonics
Plate Tectonics Plate Tectonics is a unifying theory that states that the Earth is composed of lithospheric crustal plates that move slowly, change size, and interact with one another. This theory was amalgamated from a variety of studies that began in the early 20th century and culminated in the 1960s. Early Players: Richard Oldham (1858-1936): discovered P Wave Shadow Zones Inge Lehmann (1888-1993): discovered the S Wave Shadow Zone, including the fact that the outer core is liquid Eduard Suess (1831-1914): published internal structure of the Earth, utilizing some of Oldham’s data Andrija Mohorovicic (1857-1936): discovered the seismic discontinuity between the crust and the mantle Beno Gutenberg (1889-1960): found the CMB to be at 2900 km The Great Synthesizer: Alfred Wagener (1880-1930) Book: The Origin of Continents and Oceans (1915) Found six major pieces of evidence the continents move, hence his theory is known as Continental Drift. (Figures 19.2-1911) 1) The shape of the continents: they fit together 2) Paleontological Evidence: found matching fossils on several continents a) Glossopteris: found in rocks of the same age on South America, South Africa, Australia, India and Antarctica b) Lystrosaurus: found in rocks of the same age on Africa, India, also some in Asia and Antarctica c) Mesosaurus: found in rocks of the same age on South America, South Africa d) Cynognathus: found in rocks of the same age on South America, South Africa 3) Glacial Evidence: the glaciers appear to originate from the modern-day oceans (which is impossible) 4) Structure and Rock Type: geologic features end on one continent and reappear on the other (South America and Africa) 5) Paleoclimate Zones: like today, the old Earth had climate zones. -
Biosphere 2 (B2) PI: Katerina Dontsova, Phd Co-PI: Kevin Bonine, Phd Sponsors: National Science Foundation Research Experiences for Undergraduates (NSF REU) Program
Biosphere 2 (B2) PI: Katerina Dontsova, PhD Co-PI: Kevin Bonine, PhD Sponsors: National Science Foundation Research Experiences for Undergraduates (NSF REU) Program BIOSPHERE 2 (B2) Kierstin Acuña The effect of nanochitosan on piñon pine (Pinus edulis) seedling mortality in heatwave conditions University of Maryland, Environmental Science and Policy Mentor: Dr. Dave Breshears, Jason Field and Darin Law – School of Natural Resources and the Environment Abstract Semiarid grasslands worldwide are facing woody plant encroachment, a process that dramatically alters carbon and nutrient cycling. This change in plant types can influence the function of soil microbial communities with unknown consequences for soil carbon cycling and storage. We used soils collected from a five-year passive warming experiment in Southern, AZ to test the effects of warming and substrate availability on microbial carbon use. We hypothesized that substrate addition would increase the diversity of microbial substrate use, and that substrate additions and warming would increase carbon acquisition, creating a positive feedback on carbon mineralization. Community Level Physiological Profiling (CLPP) of microbial activity was conducted using Biolog EcoPlateTMassays from soils collected in July 2018, one week after the start of monsoon rains. Two soil types common to Southern AZ, were amended with one of four treatments (surface juniper wood chips, juniper wood chips incorporated into the soil, surface biochar, or a no-amendment control) and were randomly assigned to a warmed or ambient temperature treatment. We found that surface wood chips resulted in the highest richness and diversity of carbon substrate use with control soils yielding the lowest. Substrate use was positively correlated with the total organic carbon but not with warming. -
THE JOURNAL of GEOLOGY March 1990
VOLUME 98 NUMBER 2 THE JOURNAL OF GEOLOGY March 1990 QUANTITATIVE FILLING MODEL FOR CONTINENTAL EXTENSIONAL BASINS WITH APPLICATIONS TO EARLY MESOZOIC RIFTS OF EASTERN NORTH AMERICA' ROY W. SCHLISCHE AND PAUL E. OLSEN Department of Geological Sciences and Lamont-Doherty Geological Observatory of Columbia University, Palisades, New York 10964 ABSTRACT In many half-graben, strata progressively onlap the hanging wall block of the basins, indicating that both the basins and their depositional surface areas were growing in size through time. Based on these con- straints, we have constructed a quantitative model for the stratigraphic evolution of extensional basins with the simplifying assumptions of constant volume input of sediments and water per unit time, as well as a uniform subsidence rate and a fixed outlet level. The model predicts (1) a transition from fluvial to lacustrine deposition, (2) systematically decreasing accumulation rates in lacustrine strata, and (3) a rapid increase in lake depth after the onset of lacustrine deposition, followed by a systematic decrease. When parameterized for the early Mesozoic basins of eastern North America, the model's predictions match trends observed in late Triassic-age rocks. Significant deviations from the model's predictions occur in Early Jurassic-age strata, in which markedly higher accumulation rates and greater lake depths point to an increased extension rate that led to increased asymmetry in these half-graben. The model makes it possible to extract from the sedimentary record those events in the history of an extensional basin that are due solely to the filling of a basin growing in size through time and those that are due to changes in tectonics, climate, or sediment and water budgets. -
Weathering, Erosion, and Susceptibility to Weathering Henri Robert George Kenneth Hack
Weathering, erosion, and susceptibility to weathering Henri Robert George Kenneth Hack To cite this version: Henri Robert George Kenneth Hack. Weathering, erosion, and susceptibility to weathering. Kanji, Milton; He, Manchao; Ribeira e Sousa, Luis. Soft Rock Mechanics and Engineering, Springer Inter- national Publishing, pp.291-333, 2020, 9783030294779. 10.1007/978-3-030-29477-9. hal-03096505 HAL Id: hal-03096505 https://hal.archives-ouvertes.fr/hal-03096505 Submitted on 5 Jan 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Published in: Hack, H.R.G.K., 2020. Weathering, erosion and susceptibility to weathering. 1 In: Kanji, M., He, M., Ribeira E Sousa, L. (Eds), Soft Rock Mechanics and Engineering, 1 ed, Ch. 11. Springer Nature Switzerland AG, Cham, Switzerland. ISBN: 9783030294779. DOI: 10.1007/978303029477-9_11. pp. 291-333. Weathering, erosion, and susceptibility to weathering H. Robert G.K. Hack Engineering Geology, ESA, Faculty of Geo-Information Science and Earth Observation (ITC), University of Twente Enschede, The Netherlands e-mail: [email protected] phone: +31624505442 Abstract: Soft grounds are often the result of weathering. Weathering is the chemical and physical change in time of ground under influence of atmosphere, hydrosphere, cryosphere, biosphere, and nuclear radiation (temperature, rain, circulating groundwater, vegetation, etc.). -
Geologic Timeline
SCIENCE IN THE PARK: GEOLOGY GEOLOGIC TIME SCALE ANALOGY PURPOSE: To show students the order of events and time periods in geologic time and the order of events and ages of the physiographic provinces in Virginia. BACKGROUND: Exact dates for events change as scientists explore geologic time. Dates vary from resource to resource and may not be the same as the dates that appear in your text book. Analogies for geologic time: a 24 hour clock or a yearly calendar. Have students or groups of students come up with their own original analogy. Before you assign this activity, you may want to try it, depending on the age of the student, level of the class, or time constraints, you may want to leave out the events that have a date of less than 1 million years. ! Review conversions in the metric system before you begin this activity ! References L.S. Fichter, 1991 (1997) http://csmres.jmu.edu/geollab/vageol/vahist/images/Vahistry.PDF http://pubs.usgs.gov/gip/geotime/age.html Wicander, Reed. Historical Geology. Fourth Edition. Toronto, Ontario: Brooks/Cole, 2004. Print. VIRGINIA STANDARDS OF LEARNING ES.10 The student will investigate and understand that many aspects of the history and evolution of the Earth can be inferred by studying rocks and fossils. Key concepts include: relative and absolute dating; rocks and fossils from many different geologic periods and epochs are found in Virginia. Developed by C.P. Anderson Page 1 SCIENCE IN THE PARK: GEOLOGY Building a Geologic Time Scale Time: Materials Meter stick, 5 cm adding machine tape, pencil, colored pencils Procedure 1. -
Dynamic Subsidence of Eastern Australia During the Cretaceous
Gondwana Research 19 (2011) 372–383 Contents lists available at ScienceDirect Gondwana Research journal homepage: www.elsevier.com/locate/gr Dynamic subsidence of Eastern Australia during the Cretaceous Kara J. Matthews a,⁎, Alina J. Hale a, Michael Gurnis b, R. Dietmar Müller a, Lydia DiCaprio a,c a EarthByte Group, School of Geosciences, The University of Sydney, NSW 2006, Australia b Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA c Now at: ExxonMobil Exploration Company, Houston, TX, USA article info abstract Article history: During the Early Cretaceous Australia's eastward passage over sinking subducted slabs induced widespread Received 16 February 2010 dynamic subsidence and formation of a large epeiric sea in the eastern interior. Despite evidence for Received in revised form 25 June 2010 convergence between Australia and the paleo-Pacific, the subduction zone location has been poorly Accepted 28 June 2010 constrained. Using coupled plate tectonic–mantle convection models, we test two end-member scenarios, Available online 13 July 2010 one with subduction directly east of Australia's reconstructed continental margin, and a second with subduction translated ~1000 km east, implying the existence of a back-arc basin. Our models incorporate a Keywords: Geodynamic modelling rheological model for the mantle and lithosphere, plate motions since 140 Ma and evolving plate boundaries. Subduction While mantle rheology affects the magnitude of surface vertical motions, timing of uplift and subsidence Australia depends on plate boundary geometries and kinematics. Computations with a proximal subduction zone Cretaceous result in accelerated basin subsidence occurring 20 Myr too early compared with tectonic subsidence Tectonic subsidence calculated from well data. -
Geomorphology and Environmental Geology the Luckiamute Watershed, Central Coast Ranggge, Oregon
Geomorphology and Environmental Geology the Luckiamute Watershed, Central Coast Ranggge, Oregon Greenbelt Land Trust Luckiamute Watershed Council Western Oregon University Field Guide May 10, 2014 123 37.5 123 30 123 22.5 123 15 Dallas West Salem 5 4 44 52.5 Monmouth te ckiamu Little Lu e g n 3 a R Falls 1 City Independence y e 2 l l Pee r a r Helmick e V e Dee iv iv R Sta te e R ut m Park 44 45 ia 99W ck Lu s g n i K 223 k e t e r s C a p o a o C S 44 37.5 Corvallis 34 Albany Blodgett Wren e t Luckiamute Watershed t e Boundary m N la Western Oregon Univ. il 20 W Field Trip Stop Philomath 5 0 5 km Prepared By: Steve Taylor, Ph.D., Professor of Geology Earth and Physical Science Department Chair, Division of Natural Sciences and Mathematics Western Oregon University Monmouth, Oregon 97361 Email: [email protected] Table of Contents TOPIC PAGE Introduction 1-6 Physiographic Setting 7-12 Tectonic Setting 13-16 Bedrock Geology 17-23 Geomorphology Regional Overview 24-28 Geomorphic Research Results 29-35 Vegetation and Invasive Plant Distribution Introduction 36-41 Methodology 42 Invasive Research Results 43-52 Field Trip Stop Summaries and Maps Helmick State Park 55-60 NOTE: Selected pages omitted / recycled from a previous field trip. Field Trip Introduction •People •Introductions •Organizations •Western Oregon University (Earth Science) •Luckiamute Watershed Council •Greenbelt Land Trust •Background •Luckiamute Watershed – Focus of 2001 WOU Environmental Science Institute Course •Undergraduate Science Majors •Pre-service Science Education Majors