Experimental Standard Condition of Enzyme Characterizations

Total Page:16

File Type:pdf, Size:1020Kb

Experimental Standard Condition of Enzyme Characterizations Proceedings of the 1st International Beilstein Workshop on EXPERIMENTAL STANDARD CONDITIONS OF ENZYME CHARACTERIZATIONS October, 5th - 8th 2003 Rüdesheim/Rhein, Germany Edited by Martin G. Hicks and Carsten Kettner ESCEC, Oct. 5th - 8th 2003, Rüdesheim, Germany BEILSTEIN-INSTITUT ZUR FÖRDERUNG DER CHEMISCHEN WISSENSCHAFTEN Trakehner Str. 7 – 9 60487 Frankfurt Germany Telephone: +49 (0)69 7167 3211 E-Mail: [email protected] Fax: +49 (0)69 7167 3219 Web-Page: www.beilstein-institut.de IMPRESSUM Experimental Standard Conditions of Enzyme Characterizations, Martin G. Hicks and Carsten Kettner (Eds.), Proceedings of the Beilstein-Institut Workshop, October 5th - 8th 2003, Rüdesheim, Germany. Copyright © 2004 Beilstein-Institut zur Förderung der Chemischen Wissenschaften. Copyright of this compilation by the Beilstein-Institut zur Förderung der Chemischen Wissenschaften. The copyright of specific articles exists with the author(s). Permission to make digital or hard copies of portions of this work for personal or teaching pur- poses is granted provided that the copies are not made or distributed for profit or commercial advantage and that copies bear the full citation and copyright notice. To copy otherwise requires prior permission of the publisher. The Beilstein-Institut and its Editors assume no responsibility for the statements and opinion made by the authors. Registered names and trademarks etc., used in this publication, even in the absence of specific indication thereof, are not to be considered unprotected by law. Bibliographic information published by Die Deutsche Bibliothek Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data is available in the internet at http://dnb.ddb.de ISBN Layout by: Beilstein-Institut Printed by: Logos Verlag Berlin Comeniushof, Gubener Str. 47 Cover Illustration: Joelle Heyer 10243 Berlin Beilstein GmbH Tel: +49 (0) 30 42 85 10 90 Fax: +49 (0) 30 42 85 10 92 Internet: http://www.logos-verlag.de I ESCEC, Oct. 5th - 8th 2003, Rüdesheim, Germany PREFACE The Beilstein Institute organises and sponsors scientific meetings, workshops and seminars, with the aim to catalyse advances in chemical and biological science by facilitating the interdisciplinary exchange and communication of ideas amongst the attendees. Functional characterization of enzymes and the subsequent computational analysis and modelling of the cellular metabolism and the interaction of cells within tissues and organs led to the foundation of a new branch within the life sciences called systems biology. At the present time, data from metabolic simulations show broad value ranges with high uncertainty because the accessible experimental data have been obviously generated under non-standardized experimental conditions. Successful biological analysis requires, however, comparable and reliable data from both enzyme and physiological interactions collected under standardized experimental conditions. The standardization or recommendation of experimental conditions firstly needs broad discussions within the scientific community, which hopefully will lead to enough common acceptance so that each researcher will carry out his/her experiments in accord with these recommendations. Participants, as well as speakers were confronted with the following complex questions from experimental and theoretical enzymology: - are any standards used in the field of functional characterization of enzymes? - are there any standard procedures or instructions for experimental conditions? - is it possible to define laboratory procedures for common use? - do current repositories for enzyme characterization data meet the demands of users? - which data types for metabolic simulations are necessary? -are there any demands for the transfer of standardized experimental data to journals or databases? Over the three days of the workshop, the participants not only heard excellent talks, took part in lively discussions, but in the time between the official sessions of the scientific program, exchanged ideas and thoughts and generally made a valuable and personal contribution to find a way out of the dilemma mentioned above. Whilst this meeting did not find answers to all questions, it succeeded in initiating a dialog between scientists from the different areas of enzymology. One notable outcome is the foundation of the STRENDA commission (see also http://www.strenda.org) under the auspices of the Beilstein-Institut. http://www.beilstein-institut.de/escec2003/proceedings/Preface.pdf II Preface We would like to thank particularly the authors who provided us with written versions of the papers that they presented. Special thanks also to all those involved with the preparation and organization of the workshop, to the chairmen who directed us successfully through the sessions, and to the speakers and participants for their contribution in making this workshop a success. Frankfurt/Main, October 2004 Martin G. Hicks Carsten Kettner III ESCEC, Oct. 5th - 8th 2003, Rüdesheim, Germany CONTENTS Page Kettner, C. and Hicks, M.G. Chaos in the World of Enzymes - How Valid is Functional Characterization without Methodological Experimental Data?.............................................................................. 1 Boyce, S., Tipton, K. and McDonald, A.G. Extending Enzyme Classification with Metabolic and Kinetic Data: Some Difficulties to be Resolved................................................................................... 17 Bock, H.G., Körkel, S., Kostina, E. and Schlöder, J.P. Methods of Design of Optimal Experiments with Application to Parameter Estimation in Enzyme Catalytic Processes .................................................................... 45 Fernie, A.R. and Sweetlove, L.J. Borad-Range Metabolite Analysis: Integration into Genomic Programs ...................... 71 Schlüter, H., Jankowski, J., Thieman, A., Rykl, J., Kurzawski, S. and Runge D. Determination of Enzyme Activities by Mass Spectrometry - Benefits and Limitations ................................................................................................ 87 Holzhütter, H.-G. Studying Enzyme Kinetics by Means of Progress-Curve Analysis ............................... 99 Schuster, S. and Zevedei-Oancea, I. Multifunctional Enzymes and Pathway Modelling........................................................ 115 Snoep, J.L. Olivier, B.G. and Westerhoff, H.V. JES Online Cellular Systems Modelling and the Silicon Cell ....................................... 129 Degtyarenko, K. Controlled Vocabularies and Ontologies in Enzymology .............................................. 143 Andreassi, J.L. and Leyh, T. Profiles of Molecular Function - Genomic Enzymology............................................... 175 http://www.beilstein-institut.de/escec2003/proceedings/Contents.pdf IV ESCEC, Oct. 5th - 8th 2003, Rüdesheim, Germany Schomburg, I., Chang, A., Ebeling, C., Huhn, G., Hofmann, O. and Schomburg, D. Experimental Enzyme Data as Presented in BRENDA - a Database for Metabolic Research, Enzyme Technology and Systems Biology ................................................... 185 Cammack, R. Systematic Names for Systems Biology ........................................................................ 203 Biographies ................................................................................................................... 215 Index .............................................................................................................................. 225 1 ESCEC, Oct. 5th - 8th 2003, Rüdesheim, Germany CHAOS IN THE WORLD OF ENZMYES - HOW VALID IS FUNCTIONAL CHARACTERIZATION WITHOUT METHODOLOGICAL EXPERIMENTAL DATA? CARSTEN KETTNER AND MARTIN G. HICKS Beilstein-Institut, D-60487 Frankfurt/Main, Germany E-Mail: [email protected] Received: 15th April 2004 / Published: 1st Ocotber 2004 ABSTRACT Functional characterization of enzymes plays an essential role in one of the major aims of proteomics research: the modelling of sections of the cellular metabolism with a view to being able to model the whole cellular metabolism and the interaction of cells within tissues and organs. With these purposes in mind, the scientific community established a new branch within the life sciences, called systems biology. However, meaningful modelling by necessity requires comparable and reliable data from standardized enzyme characterizations. From a short, but detailed, investigation of the BRENDA database, it is shown here that the quality of experimental data of enzymes is insufficient for the needs of theoretical biology. The first step to remedy the situation is to ensure that measurements carried out on enzymes are done so under standard conditions and that all the important information is recorded. With the aim of arriving at an acceptable set of recommendations for experimental conditions, the Beilstein Institut has initiated broad discussions within the scientific community and is further willing to organize and present them as long as appropriate and there is sufficient support. http://www.beilstein-institut.de/ESCEC2003/proceedings/Kettner/Kettner.pdf 2 Kettner, C. & Hicks, M.G. QUO VADIS, SYSTEMS BIOLOGY? Continuous advances and improvements have enabled proteome analyses to proceed with increased depth and efficiency. However, whilst the large international genome sequencing projects elicited considerable public attention with the creation of huge sequence databases, it has become increasingly apparent that functional
Recommended publications
  • Endogenous Reverse Transcriptase and Rnase H-Mediated Antiviral Mechanism in Embryonic Stem Cells
    www.nature.com/cr www.cell-research.com ARTICLE Endogenous reverse transcriptase and RNase H-mediated antiviral mechanism in embryonic stem cells Junyu Wu1, Chunyan Wu1, Fan Xing1, Liu Cao1, Weijie Zeng1, Liping Guo1, Ping Li1, Yongheng Zhong1, Hualian Jiang1, Manhui Luo1, Guang Shi2, Lang Bu1, Yanxi Ji1, Panpan Hou1, Hong Peng1, Junjiu Huang2, Chunmei Li1 and Deyin Guo 1 Nucleic acid-based systems play important roles in antiviral defense, including CRISPR/Cas that adopts RNA-guided DNA cleavage to prevent DNA phage infection and RNA interference (RNAi) that employs RNA-guided RNA cleavage to defend against RNA virus infection. Here, we report a novel type of nucleic acid-based antiviral system that exists in mouse embryonic stem cells (mESCs), which suppresses RNA virus infection by DNA-mediated RNA cleavage. We found that the viral RNA of encephalomyocarditis virus can be reverse transcribed into complementary DNA (vcDNA) by the reverse transcriptase (RTase) encoded by endogenous retrovirus-like elements in mESCs. The vcDNA is negative-sense single-stranded and forms DNA/RNA hybrid with viral RNA. The viral RNA in the heteroduplex is subsequently destroyed by cellular RNase H1, leading to robust suppression of viral growth. Furthermore, either inhibition of the RTase activity or depletion of endogenous RNase H1 results in the promotion of virus proliferation. Altogether, our results provide intriguing insights into the antiviral mechanism of mESCs and the antiviral function of endogenized retroviruses and cellular RNase H. Such a natural nucleic acid-based antiviral mechanism in mESCs is referred to as ERASE (endogenous RTase/RNase H-mediated antiviral system), which is an addition to the previously known nucleic acid-based antiviral mechanisms including CRISPR/Cas in bacteria and RNAi in plants and invertebrates.
    [Show full text]
  • Non-Homologous Isofunctional Enzymes: a Systematic Analysis Of
    Omelchenko et al. Biology Direct 2010, 5:31 http://www.biology-direct.com/content/5/1/31 RESEARCH Open Access Non-homologousResearch isofunctional enzymes: A systematic analysis of alternative solutions in enzyme evolution Marina V Omelchenko, Michael Y Galperin*, Yuri I Wolf and Eugene V Koonin Abstract Background: Evolutionarily unrelated proteins that catalyze the same biochemical reactions are often referred to as analogous - as opposed to homologous - enzymes. The existence of numerous alternative, non-homologous enzyme isoforms presents an interesting evolutionary problem; it also complicates genome-based reconstruction of the metabolic pathways in a variety of organisms. In 1998, a systematic search for analogous enzymes resulted in the identification of 105 Enzyme Commission (EC) numbers that included two or more proteins without detectable sequence similarity to each other, including 34 EC nodes where proteins were known (or predicted) to have distinct structural folds, indicating independent evolutionary origins. In the past 12 years, many putative non-homologous isofunctional enzymes were identified in newly sequenced genomes. In addition, efforts in structural genomics resulted in a vastly improved structural coverage of proteomes, providing for definitive assessment of (non)homologous relationships between proteins. Results: We report the results of a comprehensive search for non-homologous isofunctional enzymes (NISE) that yielded 185 EC nodes with two or more experimentally characterized - or predicted - structurally unrelated proteins. Of these NISE sets, only 74 were from the original 1998 list. Structural assignments of the NISE show over-representation of proteins with the TIM barrel fold and the nucleotide-binding Rossmann fold. From the functional perspective, the set of NISE is enriched in hydrolases, particularly carbohydrate hydrolases, and in enzymes involved in defense against oxidative stress.
    [Show full text]
  • POTENTIAL MICROBIAL DETOXIFIERS of Mehg in BARCELONA CITY CONTINENTAL SHELF
    POTENTIAL MICROBIAL DETOXIFIERS OF MeHg IN BARCELONA CITY CONTINENTAL SHELF TREBALL REALITZAT PER Marina Pérez García PER OBTENIR EL TÍTOL DE Màster en Microbiologia Avançada 2017-2018 Treball de Final de Màster realitzat sota la supervisió la Dra Silvia González-Acinas i la Dra Andrea García Bravo a l’Institut de Ciències del Mar (ICM-CSIC) Barcelona, 03 de Setembre de 2018 POTENTIAL MICROBIAL DETOXIFIERS OF MeHg IN BARCELONA CITY CONTINENTAL SHELF TREBALL REALITZAT PER Marina Pérez García PER OBTENIR EL TÍTOL DE Màster en Microbiologia Avançada 2017-2018 Treball de Final de Màster realitzat sota la supervisió la Dra Silvia González-Acinas i la Dra Andrea García Bravo a l’Institut de Ciències del Mar (ICM-CSIC) Barcelona, 03 de Setembre de 2018 Silvia González-Acinas Marina Pérez García Andrea García Bravo Abstract Mercury specially in the form of Methylmercury (MeHg) is a big concern because affects human and wildlife health and accumulates and biomagnified in the aquatics systems through the food chain. Some Bacteria and Archaea have evolved resistance mechanisms to mercury compounds, this resistance is encoded in the mer operon. So, the microorganisms that have merA and merB genes can completely transform the neurotoxic form of MeHg in the volatile form of mercury. Despite the persistence of mercury there is no information about the mercury detoxification processes in Barcelona continental shelf. Therefore, the aim of this study is to detect the presence of merA and merB in past (1987 and 2008) and present (from two months April and May 2018) sediment samples from the Barcelona continental shelf.
    [Show full text]
  • Restriction Endonucleases
    Molecular Biology Problem Solver: A Laboratory Guide. Edited by Alan S. Gerstein Copyright © 2001 by Wiley-Liss, Inc. ISBNs: 0-471-37972-7 (Paper); 0-471-22390-5 (Electronic) 9 Restriction Endonucleases Derek Robinson, Paul R. Walsh, and Joseph A. Bonventre Background Information . 226 Which Restriction Enzymes Are Commercially Available? . 226 Why Are Some Enzymes More Expensive Than Others? . 227 What Can You Do to Reduce the Cost of Working with Restriction Enzymes? . 228 If You Could Select among Several Restriction Enzymes for Your Application, What Criteria Should You Consider to Make the Most Appropriate Choice? . 229 What Are the General Properties of Restriction Endonucleases? . 232 What Insight Is Provided by a Restriction Enzyme’s Quality Control Data? . 233 How Stable Are Restriction Enzymes? . 236 How Stable Are Diluted Restriction Enzymes? . 236 Simple Digests . 236 How Should You Set up a Simple Restriction Digest? . 236 Is It Wise to Modify the Suggested Reaction Conditions? . 237 Complex Restriction Digestions . 239 How Can a Substrate Affect the Restriction Digest? . 239 Should You Alter the Reaction Volume and DNA Concentration? . 241 Double Digests: Simultaneous or Sequential? . 242 225 Genomic Digests . 244 When Preparing Genomic DNA for Southern Blotting, How Can You Determine If Complete Digestion Has Been Obtained? . 244 What Are Your Options If You Must Create Additional Rare or Unique Restriction Sites? . 247 Troubleshooting . 255 What Can Cause a Simple Restriction Digest to Fail? . 255 The Volume of Enzyme in the Vial Appears Very Low. Did Leakage Occur during Shipment? . 259 The Enzyme Shipment Sat on the Shipping Dock for Two Days.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • Redundancy in Ribonucleotide Excision Repair: Competition, Compensation, and Cooperation
    DNA Repair 29 (2015) 74–82 Contents lists available at ScienceDirect DNA Repair j ournal homepage: www.elsevier.com/locate/dnarepair Redundancy in ribonucleotide excision repair: Competition, compensation, and cooperation ∗ Alexandra Vaisman, Roger Woodgate Laboratory of Genomic Integrity, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-3371, USA a r t i c l e i n f o a b s t r a c t Article history: The survival of all living organisms is determined by their ability to reproduce, which in turn depends Received 1 November 2014 on accurate duplication of chromosomal DNA. In order to ensure the integrity of genome duplication, Received in revised form 7 February 2015 DNA polymerases are equipped with stringent mechanisms by which they select and insert correctly Accepted 9 February 2015 paired nucleotides with a deoxyribose sugar ring. However, this process is never 100% accurate. To fix Available online 16 February 2015 occasional mistakes, cells have evolved highly sophisticated and often redundant mechanisms. A good example is mismatch repair (MMR), which corrects the majority of mispaired bases and which has been Keywords: extensively studied for many years. On the contrary, pathways leading to the replacement of nucleotides Ribonucleotide excision repair with an incorrect sugar that is embedded in chromosomal DNA have only recently attracted significant Nucleotide excision repair attention. This review describes progress made during the last few years in understanding such path- Mismatch repair Ribonuclease H ways in both prokaryotes and eukaryotes. Genetic studies in Escherichia coli and Saccharomyces cerevisiae Flap endonuclease demonstrated that MMR has the capacity to replace errant ribonucleotides, but only when the base is DNA polymerase I mispaired.
    [Show full text]
  • Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopa
    The Journal of Neuroscience, June 15, 2002, 22(12):5188–5197 Phosphodiesterase 1B Knock-Out Mice Exhibit Exaggerated Locomotor Hyperactivity and DARPP-32 Phosphorylation in Response to Dopamine Agonists and Display Impaired Spatial Learning Tracy M. Reed,1,3 David R. Repaske,2* Gretchen L. Snyder,4 Paul Greengard,4 and Charles V. Vorhees1* Divisions of 1Developmental Biology and 2Endocrinology, Children’s Hospital Research Foundation, Cincinnati, Ohio 45229, 3Department of Biology, College of Mount St. Joseph, Cincinnati, Ohio 45233, and 4Laboratory of Molecular and Cellular Neuroscience, Rockefeller University, New York, New York 10021 Using homologous recombination, we generated mice lack- maze spatial-learning deficits. These results indicate that en- ing phosphodiesterase-mediated (PDE1B) cyclic nucleotide- hancement of cyclic nucleotide signaling by inactivation of hydrolyzing activity. PDE1B Ϫ/Ϫ mice showed exaggerated PDE1B-mediated cyclic nucleotide hydrolysis plays a signifi- hyperactivity after acute D-methamphetamine administra- cant role in dopaminergic function through the DARPP-32 and tion. Striatal slices from PDE1B Ϫ/Ϫ mice exhibited increased related transduction pathways. levels of phospho-Thr 34 DARPP-32 and phospho-Ser 845 Key words: phosphodiesterases; DARPP-32; dopamine- GluR1 after dopamine D1 receptor agonist or forskolin stimu- stimulated locomotor activity; spatial learning and memory; lation. PDE1B Ϫ/Ϫ and PDE1B ϩ/Ϫ mice demonstrated Morris Morris water maze; methamphetamine; SKF81297; forskolin Calcium/calmodulin-dependent phosphodiesterases (CaM- (CaMKII) and calcineurin and have the potential to activate PDEs) are members of one of 11 families of PDEs (Soderling et CaM-PDEs. Dopamine D1 or D2 receptor activation leads to al., 1999;Yuasa et al., 2001) and comprise the only family that acts adenylyl cyclase activation or inhibition, respectively (Traficante ϩ as a potential point of interaction between the Ca 2 and cyclic et al., 1976; Monsma et al., 1990; Cunningham and Kelley, 1993; nucleotide signaling pathways.
    [Show full text]
  • Supporting Information
    Supporting Information Figure S1. The functionality of the tagged Arp6 and Swr1 was confirmed by monitoring cell growth and sensitivity to hydeoxyurea (HU). Five-fold serial dilutions of each strain were plated on YPD with or without 50 mM HU and incubated at 30°C or 37°C for 3 days. Figure S2. Localization of Arp6 and Swr1 on chromosome 3. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 3L, Tel 3R, CEN3, and the RP gene are shown under the panels. Figure S3. Localization of Arp6 and Swr1 on chromosome 4. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) in the whole chromosome region are compared. The position of Tel 4L, Tel 4R, CEN4, SWR1, and RP genes are shown under the panels. Figure S4. Localization of Arp6 and Swr1 on the region including the SWR1 gene of chromosome 4. The binding of Arp6- FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position and orientation of the SWR1 gene is shown. Figure S5. Localization of Arp6 and Swr1 on chromosome 5. The binding of Arp6-FLAG (top), Swr1-FLAG (middle), and Arp6-FLAG in swr1 cells (bottom) are compared. The position of Tel 5L, Tel 5R, CEN5, and the RP genes are shown under the panels. Figure S6. Preferential localization of Arp6 and Swr1 in the 5′ end of genes. Vertical bars represent the binding ratio of proteins in each locus.
    [Show full text]
  • Potent Inhibition of Human Telomerase by U-73122
    Journal of Biomedical Science (2006) 13:667–674 667 DOI 10.1007/s11373-006-9100-z Potent inhibition of human telomerase by U-73122 Yi-Jui Chen, Wei-Yun Sheng, Pei-Rong Huang & Tzu-Chien V. Wang* Department of Molecular and Cellular Biology, Chang Gung University, Kwei-San, Tao-Yuan, 333, Taiwan Received 28 April 2006; accepted 14 June 2006 Ó 2006 National Science Council, Taipei Key words: alkylating agents, cancer therapyzU-73122, N-ethylmaleimide, telomerase inhibitor Summary Telomerase activity is repressed in normal human somatic cells, but is activated in most cancers, suggesting that telomerase may be an important target for cancer therapy. In this study, we report that U-73122, an amphiphilic alkylating agent that is commonly used as an inhibitor for phospholipase C, is also a potent and selective inhibitor of human telomerase. The inhibition of telomerase by U-73122 was attributed primarily to the pyrrole-2,5-dione group, since its structural analog U-73343 did not inhibit telomerase. In confirmation, we observed that telomerase was inhibited by N-ethylmaleimide, but not N-ethylsuccinimide. The IC50 value of U-73122 for the in vitro inhibition of telomerase activity is 0.2 lM, which is comparable to or slightly more sensitive than that for phospholipase C. The inhibitory action of U-73122 on telomerase appears to be rather selective since the presence of externally added proteins did not protect the inhibition and the IC50 values for the other enzymes tested in this study were at least an order of magnitude higher than that for telomerase. Furthermore, we demonstrate that U-73122 can inhibit telomerase in hemato- poietic cancer cells.
    [Show full text]
  • CDH12 Cadherin 12, Type 2 N-Cadherin 2 RPL5 Ribosomal
    5 6 6 5 . 4 2 1 1 1 2 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 A A A A A A A A A A A A A A A A A A A A C C C C C C C C C C C C C C C C C C C C R R R R R R R R R R R R R R R R R R R R B , B B B B B B B B B B B B B B B B B B B , 9 , , , , 4 , , 3 0 , , , , , , , , 6 2 , , 5 , 0 8 6 4 , 7 5 7 0 2 8 9 1 3 3 3 1 1 7 5 0 4 1 4 0 7 1 0 2 0 6 7 8 0 2 5 7 8 0 3 8 5 4 9 0 1 0 8 8 3 5 6 7 4 7 9 5 2 1 1 8 2 2 1 7 9 6 2 1 7 1 1 0 4 5 3 5 8 9 1 0 0 4 2 5 0 8 1 4 1 6 9 0 0 6 3 6 9 1 0 9 0 3 8 1 3 5 6 3 6 0 4 2 6 1 0 1 2 1 9 9 7 9 5 7 1 5 8 9 8 8 2 1 9 9 1 1 1 9 6 9 8 9 7 8 4 5 8 8 6 4 8 1 1 2 8 6 2 7 9 8 3 5 4 3 2 1 7 9 5 3 1 3 2 1 2 9 5 1 1 1 1 1 1 5 9 5 3 2 6 3 4 1 3 1 1 4 1 4 1 7 1 3 4 3 2 7 6 4 2 7 2 1 2 1 5 1 6 3 5 6 1 3 6 4 7 1 6 5 1 1 4 1 6 1 7 6 4 7 e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l l p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m m
    [Show full text]
  • A Review on the Potential Role of Vitamin D and Mineral Metabolism on Chronic Fatigue Illnesses Anna Dorothea Höck*
    Höck et al. J Clin Nephrol Ren Care 2016, 2:008 Volume 2 | Issue 1 Journal of Clinical Nephrology and Renal Care Review Article: Open Access A Review on the Potential Role of Vitamin D and Mineral Metabolism on Chronic Fatigue Illnesses Anna Dorothea Höck* Internal Medicine, 50935 Cologne, Germany *Corresponding author: Anna Dorothea Hoeck, MD, Internal Medicine, Mariawaldstraße 7, 50935 Köln, Germany, E-Mail: [email protected] by any kind of cell stress as long as sufficient 25-hydroxyvitamin D3 Abstract (25OHD3) is available [8-11]. The aim of this report is to review the effects of vitamin D-deficiency on chronic mineral deregulation and its clinical consequences. 1,25(OH)2D3 induces in addition the gene expression of Recent research data are presented including the effects of vitamin following important mineral regulators such as calcium-sensing- D3-induced calcium sensing receptor (CaSR), fibroblast growth receptor (CaSR), Fibroblast Growth Factor-23 (FGF23) and its factor 23 (FGF23), the cofactor of FGF1-receptor α-klotho (αKl) co-receptor α-Klotho (αKL, also FGF23/αKL in this paper), yet and the interplay with each other and with vitamin D3-repressed represses the gene expression of parathormone (PTH) [2,6,12-16]. parathormone (PTH). The importance of persistent calcium- and phosphate deregulation following long-standing vitamin These mineral regulators, like 1,25(OH)2D3 itself, act not only via D3-deficiency for cellular functions and resistance to vitamin gene expression, but also modulate cell functions directly by rapid D3 treatment is discussed. It is proposed that chronic fatiguing non-genomic actions.
    [Show full text]
  • Disruption of the Aldolase a Tetramer Into Catalytically Active Monomers PETER T
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 5374-5379, May 1996 Biochemistry Disruption of the aldolase A tetramer into catalytically active monomers PETER T. BEERNINK* AND DEAN R. TOLANt Biology Department, Boston University, Boston, MA 02215 Communicated by Irwin A. Rose, Fox Chase Cancer Center, Philadelphia, PA, January 22, 1996 (received for review August 30, 1995) ABSTRACT The fructose-1,6-bisphosphate aldolase (EC interface loop of TIM resulted in a stable monomer with a 4.1.2.13) homotetramer has been destabilized by site-directed 103-fold reduction in kcat (11, 12). These studies have suggested mutagenesis at the two different subunit interfaces. A double that the quaternary structure is essential for proper catalytic mutant aldolase, Q125D/E224A, sediments as two distinct activity. species, characteristic of a slow equilibrium, with velocities Fructose-1,6-bisphosphate aldolase (Fru-1,6-P2; EC 4.1.2.13) is expected for the monomer and tetramer. The aldolase mono- an isologous homotetramer (Fig. 1A), each subunit ofwhich is an mer is shown to be catalytically active following isolation from eight-membered acq-barrel containing an active site near its sucrose density gradients. The isolated aldolase monomer had center (13). The two major subunit interfaces (A and B) are 72% of the specific activity of the wild-type enzyme and a distant (>20 A) from the Schiff base-forming Lys-229 (Fig. iB), slightly lower Michaelis constant, clearly indicating that the and aldolase does not exhibit cooperativity or allostery. Isolated quaternary structure is not required for catalysis. Cross- hybrids of isozymes indicated that subunits are catalytically linking of the isolated monomer confirmed that it does not independent; for example, A3B1 was indistinguishable from an rapidly reequilibrate with the tetramer following isolation.
    [Show full text]