Overview of the Endocrine System and Agents Sherrill J

Total Page:16

File Type:pdf, Size:1020Kb

Overview of the Endocrine System and Agents Sherrill J CHAPTER 7 Overview of the Endocrine System and Agents Sherrill J. Brown, DVM, PharmD, BCPS | Kendra Keeley Procacci, PharmD, BCPS, AE–C | Katherine S. Hale, PharmD, BCPS LEARNING OBJECTIVES KEY TERMS AND DEFINITIONS After completing this chapter, you should be able to Acromegaly — overproduction of growth hormone. 1. Describe the negative feedback system used to regulate levels of many of the body’s Feedback system — method of hormones regulation of hormone levels where the 2. Defi ne the following: target hormone affects the production of the stimulating hormone, either PART ● Acromegaly negatively (inhibits production) or ● Hyperparathyroidism positively (stimulates production). 3 ● Hyperthyroidism Hyperparathyroidism — ● Hypoparathyroidism overactive parathyroid glands, ● Hypopituitarism classifi ed as primary, secondary, or tertiary depending on cause of ● Hypothyroidism parathyroid hyperactivity and the 3. State the brand and generic names of the most widely prescribed medications for presence of hyper- or hypocalcemia. pituitary disorders, thyroid disorders, and parathyroid disorders Hypoparathyroidism — a 4. Be familiar with their routes of administration and dosage forms, and the most disorder related to inadequate secretion of parathyroid hormone by common adverse effects of medications used to treat pituitary disorders, thyroid the parathyroid glands resulting in disorders, and parathyroid disorders abnormally low levels of calcium in 5. Describe the therapeutic effects of medications used to treat pituitary disorders, the blood. thyroid disorders, and parathyroid disorders Hypopituitarism — defi ciency of pituitary hormones. Hypothyroidism — a condition which the body does not produce he endocrine system consists of glands located throughout the body, which enough thyroid hormone. T release hormones into the blood. Hormones are chemicals released from Osteomalacia — bone disease one cell in the body that affect other cells in other parts of the body. Endocrine characterized by softening of the 1,2 bones due to inadequate deposits of hormones are released or secreted directly into the bloodstream. calcium and vitamin D. The release of many hormones is regulated by a feedback system . Positive Primary hyperparathyroidism (PHPT) — a disorder resulting from feedback in the form of low levels of the target hormone results in an increase one or more overactive parathyroid in the release of the stimulating pathway. Negative feedback in the form of high glands, resulting in high levels of levels of the target hormone decreases the release of the stimulating pathway. calcium in the blood. For example, the hypothalamus produces thyrotropin-releasing hormone (TRH), Pseudohypoparathyroidism (PHP) — a collection of disorders which stimulates the production and secretion of thyroid-stimulating hormone resulting from genetic mutations (TSH) by the pituitary gland. TSH then signals the thyroid gland to produce where patients exhibit clinical thyroid hormones. The presence of thyroid hormones in the blood provides symptoms of hypoparathyroidism, but are resistant to the actions negative feedback, which inhibits the production and secretion of more TRH by of parathyroid hormone versus the hypothalamus. This negative feedback insures that thyroid hormones do not inadequate secretion. exceed normal levels and cause toxic effects (Figure 7-1). 551360_Ch07_p127-152.indd1360_Ch07_p127-152.indd 112929 99/28/12/28/12 33:22:22 PPMM CHAPTER 7 | Overview of the Endocrine System and Agents 130 Renal osteodystrophy— bone disease characterized by defective bone development and softening of the bones due to chronic kidney disease. Secondary hyperparathyroidism (SHPT) — a disorder resulting from chronic, long-term states of hypocalcemia and resistance to the actions of parathyroid hormone; the parathyroid glands become overactive and the glands become enlarged. Serum — the clear fl uid obtained from blood when it has been separated into its solid and liquid components after clotting has occurred. Tertiary hyperparathyroidism (THPT) — severe secondary hyperparathyroidism despite efforts to correct the condition; patients are in a chronic state of hypercalcemia due to constant overproduction of Figure 7-1. Example of feedback system for hormone regulation. parathyroid hormone. Trophic hormones — hormones released by the pituitary gland that Pituitary Gland regulate other endocrine glands. CASE STUDY Traumatic hypopituitarism Amy Bird is a 47-year-old female who fractured her skull in an automobile accident 10 months ago. She was unconscious for 4 days but appeared to recover completely from her injuries. Since the accident, Ms. Bird has lost weight, becomes dizzy when she stands up, and says that she is tired “all the time.” Her doctor told her that the blood supply to her pituitary gland was damaged in the accident and that she would need to take several different medications to treat this problem. Overview of Pituitary Gland The pituitary gland is located in the brain and consists of two lobes: the anterior lobe and the posterior lobe (Figure 7-2). Most hormones released from the pituitary gland regulate other endocrine glands and are called trophic hormones . The trophic hormones secreted by the anterior pituitary gland are listed below: ● Luteinizing hormone (LH) and follicle-stimulating hormone (FSH) control the production of sex hormones by the ovaries and testicles. ● Corticotropin, also called adrenocorticotropic hormone or ACTH, acts on the adrenal gland (the adrenal gland is covered in more detail in Chapter 8). ● Thyroid-stimulating hormone (TSH) stimulates the production of thyroid hormones. Nontrophic hormones produced by the anterior pituitary gland are growth hormone (GH) and prolactin. GH induces growth in children, and prolactin stimulates milk 551360_Ch07_p127-152.indd1360_Ch07_p127-152.indd 113030 77/18/12/18/12 66:43:43 AAMM.
Recommended publications
  • Associations Between Serum Leptin Level and Bone Turnover in Kidney Transplant Recipients
    Associations between Serum Leptin Level and Bone Turnover in Kidney Transplant Recipients ʈ ʈ ʈ Csaba P. Kovesdy,*† Miklos Z. Molnar,‡§ Maria E. Czira, Anna Rudas, Akos Ujszaszi, Laszlo Rosivall,‡ Miklos Szathmari,¶ Adrian Covic,** Andras Keszei,†† Gabriella Beko,‡‡ ʈ Peter Lakatos,¶ Janos Kosa,¶ and Istvan Mucsi §§ *Division of Nephrology, Salem Veterans Affairs Medical Center, Salem, Virginia; †Division of Nephrology, University of Virginia, Charlottesville, Virginia; ‡Institute of Pathophysiology, Semmelweis University, Budapest, Hungary; §Harold Simmons Center for Chronic Disease Research & Epidemiology, Los Angeles Biomedical Research Institute at ʈ Harbor-University of California–Los Angeles Medical Center, Torrance, California; Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary; ¶First Department of Internal Medicine, Semmelweis University, Budapest, Hungary; **University of Medicine Gr T Popa, Iasi, Romania; ††Department of Epidemiology, Maastricht University, Maastricht, Netherlands; ‡‡Central Laboratory, Semmelweis University, Budapest, Hungary; and §§Division of Nephrology, Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada Background and objectives: Obesity is associated with increased parathyroid hormone (PTH) in the general population and in patients with chronic kidney disease (CKD). A direct effect of adipose tissue on bone turnover through leptin production has been suggested, but such an association has not been explored in kidney transplant recipients. Design, setting, participants, & measurements: This study examined associations of serum leptin with PTH and with biomarkers of bone turnover (serum beta crosslaps [CTX, a marker of bone resorption] and osteocalcin [OC, a marker of bone formation]) in 978 kidney transplant recipients. Associations were examined in multivariable regression models. Path analyses were used to determine if the association of leptin with bone turnover is independent of PTH.
    [Show full text]
  • Endocrine System WS19
    Endocrine System Human Physiology Unit 3 Endocrine System • Various glands located throughout the body • Some organs may also have endocrine functions • Endocrine glands/organs synthesize and release hormones • Hormones travel in plasma to target cells Functions of the Endocrine System • Differentiation of nervous and reproductive system during fetal development • Regulation of growth and development • Regulation of the reproductive system • Maintains homeostasis • Responds to changes from resting state Mechanisms of Hormone Regulation • Hormones have different rates and rhythms of secretion • Hormones are regulated by feedback systems to maintain homeostasis • Receptors for hormones are only on specific effector cells • Excretion of hormones vary for steroid hormones and peptide hormones Regulation of Hormone Secretion • Release of hormones occurs in response to • A change from resting conditions • Maintaining a regulated level of hormones or substances • Hormone release is regulated by • Chemical factors (glucose, calcium) • Endocrine factors (tropic hormones, HPA) HPA = Hypothalamic-Pituitary Axis • Neural controls (sympathetic activation) Hormone Feedback Systems Negative feedback maintains hormone concentrations within physiological ranges • Negative feedback • Feedback to one level Loss of • Long-loop Negative Feedback feedback • Feedback to two levels control often leads to • Hypothalamus-Pituitary-Gland Axis pathology Negative Feedback Short-Loop Negative Feedback Long-Loop Negative Feedback Hormone Transport Peptide/Protein Hormones
    [Show full text]
  • 1-Anatomy of the Pituitary Gland
    Color Code Important Anatomy of Pituitary Gland Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, students should be able to: ✓ Describe the position of the pituitary gland. ✓ List the structures related to the pituitary gland. ✓ Differentiate between the lobes of the gland. ✓ Describe the blood supply of pituitary gland & the hypophyseal portal system. الغدة النخامية Pituitary Gland (also called Hypophysis Cerebri) o It is referred to as the master of endocrine glands. o It is a small oval structure 1 cm in diameter. o It doubles its size during pregnancy. lactation ,(الحمل) pregnancy ,(الحيض) A women experiences changes in her hormone levels during menstruation But only the pituitary gland will only increase in size during pregnancy .(سن اليأس) and menopause ,(الرضاعة) X-RAY SKULL: LATERAL VIEW SAGITTAL SECTION OF HEAD & NECK Extra Pituitary Gland Position o It lies in the middle cranial fossa. o It is well protected in sella turcica* (hypophyseal fossa) of body of sphenoid o It lies between optic chiasma (anteriorly) & mamillary bodies** (posteriorly). Clinical point: *سرج الحصان Anterior to the pituitary gland is the optic chiasm, so if there was a tumor in the pituitary gland or it was ** Part of hypothalamus enlarged this could press on the chiasm and disrupt the patients vision (loss of temporal field). Extra Pictures The purple part is the sphenoid bone Hypophyseal fossa Pituitary Gland The relations are important Important Relations • SUPERIOR: Diaphragma sellae: A fold of dura mater covers the pituitary gland & has an opening for passage of infundibulum (pituitary stalk) connecting the gland to hypothalamus.
    [Show full text]
  • Glossary of Pediatric Endocrine Terms
    Glossary of Pediatric Endocrine Terms Adrenal Glands: Triangle-shaped glands located on top of each kidney that are responsible for the regulation of stress response by producing hormones such as cortisol and adrenaline. Adrenal Crisis: A life-threatening condition that results when there is not enough cortisol (stress hormone) in the body. This may present with nausea, vomiting, abdominal pain, severely low blood pressure, and loss of consciousness. Adrenocorticotropin (ACTH): A hormone produced by the anterior pituitary gland that triggers the adrenal gland to produce cortisol, the stress hormone. Anterior Pituitary: The front of the pituitary gland that secretes growth hormone, gonadotropins, thyroid stimulating hormone, prolactin, adrenocorticotropin hormone. Antidiuretic Hormone: A hormone secreted by the posterior pituitary that controls how much water is excreted by the kidneys (water balance). Bone Age Study: An X-ray of the left hand and wrist to assess a child’s skeletal age. It is often used to evaluate disorders of puberty and growth. Congenital Adrenal Hyperplasia: A group of disorders which impair the adrenal steroid synthesis pathway. This causes the body makes too many androgens. Sometimes the body does not make enough cortisol and aldosterone. Constitutional Delay of Growth and Puberty: A normal variant of growth in which children grow at a slower rate and begin puberty later than their peers. They may appear short until they have catch up growth. They usually end up at a normal adult height. A diagnosis of constitutional delay of growth and puberty is often referred to as being a “late bloomer.” Cortisol: The “stress hormone”, which is produced by the adrenal glands.
    [Show full text]
  • The ENDOCRINE SYSTEM Luteinizinghormones Hormone/Follicle-Stimulating Are Chemical Hormone Messengers
    the ENDOCRINE SYSTEM LuteinizingHormones hormone/follicle-stimulating are chemical hormone messengers. (LH/FSH) They bind to specific target cells Crucial for sex cell production Growth hormone–releasingwith receptors, hormone regulate (GHRH) metabolism and the sleep cycle, and contribute Thyrotropin-releasing hormone (TRH) Regulatesto thyroid-stimulating growth and hormone development. release The endocrine glands and organs secrete Corticotropin-releasing hormone (CRH) Regulatesthese to release hormones of adrenocorticotropin all over that is vitalthe to body. the production of cortisol (stress response hormone). The hypothalamus is a collection of specialized cells that serve as the central relay system between the nervous and endocrine systems. hypothalamus Growth hormone-releasing hormone (GHRH) Thyrotropin-releasing hormone (TRH) Regulates the release of thyroid-stimulating hormones Luteinizing hormone/follicle-stimulating hormone (LH/FSH) Crucial for sex cell production Corticotropin-releasing hormone (CRH) Regulates the release of adrenocorticotropin that’s vital to the production of cortisol 2 The hypothalamus translates the signals from the brain into hormones. From there, the hormones then travel to the pituitary gland. Located at the base of the brain inferior to the hypothalamus, the pituitary gland secretes endorphins, controls several other endocrine glands, and regulates the ovulation and menstrual cycles. pituitary gland 3 The anterior lobe regulates the activity of the thyroid, adrenals, and reproductive glands by producing hormones that regulate bone and tissue growth in addition to playing a role in the absorption of nutrients and minerals. anterior lobe Prolactin Vital to activating milk production in new mothers Thyrotropin Stimulates the thyroid to produce thyroid hormones vital to metabolic regulation Corticotropin Vital in stimulating the adrenal gland and the “fight-or-flight” response 4 The posterior lobe stores hormones produced by the hypothalamus.
    [Show full text]
  • Hypothalamus and Pituitary Gland Development in the Common Snapping Turtle, Chelydra Serpentina, and Disruption with Atrazine Exposure
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 Hypothalamus And Pituitary Gland Development In The ommonC Snapping Turtle, Chelydra Serpentina, And Disruption With Atrazine Exposure Kathryn Lee Gruchalla Russart Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Russart, Kathryn Lee Gruchalla, "Hypothalamus And Pituitary Gland Development In The ommonC Snapping Turtle, Chelydra Serpentina, And Disruption With Atrazine Exposure" (2016). Theses and Dissertations. 2069. https://commons.und.edu/theses/2069 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. HYPOTHALAMUS AND PITUITARY GLAND DEVELOPMENT IN THE COMMON SNAPPING TURTLE, CHELYDRA SERPENTINA, AND DISRUPTION WITH ATRAZINE EXPOSURE by Kathryn Lee Gruchalla Russart Bachelor of Science, Minnesota State University, Mankato, 2006 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota August 2016 Copyright 2016 Kathryn Russart ii iii PERMISSION Title Hypothalamus and Pituitary Gland Development in the Common Snapping Turtle, Chelydra serpentina, and Disruption with Atrazine Exposure Department Biology Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection.
    [Show full text]
  • Endocrine Paraneoplastic Syndromes: a Review
    Endocrinology & Metabolism International Journal Review Article Open Access Endocrine paraneoplastic syndromes: a review Abstract Volume 1 Issue 1 - 2015 Paraneoplastic endocrine syndromes result from ectopic production of hormones by Hala Ahmadieh,1 Asma Arabi2 different tumors. Hypercalcemia of malignancy is the most common, mostly caused by 1Division of Endocrinology, American University of Beirut, ectopic parathyroid hormone related peptide (PTHrP) production which increases bone Lebanon resorption. Other causes include the rare ectopic parathyroid hormone (PTH) production, 2Department of Internal Medicine, American University of ectopic production of 1, 25-(OH)2 vitamin D by the tumor and its adjacent macrophages and Beirut-Medical Center, Lebanon bone metastasis which by itself in addition to the local production of PTHrP at the level of the bone lead to bone resorption and thus hypercalcemia. Treatment includes extracellular Correspondence: Asma Arabi, Department of Internal fluid volume repletion, bisphosphonates or denosumab and calcitonin. Ectopic Cushing’s Medicine, Division of Endocrinology, American University of syndrome caused by ectopic ACTH production results in hypokalemia, proximal muscle Beirut-Medical Center, Po Box 11-0236, Riad El-Solh, Beirut, weakness, easy bruisability, hypertension, diabetes and psychiatric abnormalities including Lebanon, Email depression and mood disorders. Different diagnostic measures help to differentiate Cushing’s disease from ectopic Cushing’s syndrome. Treatment includes surgical resection Received: October 26, 2014 | Published: January 02, 2015 of tumor and medical therapy to suppress excess cortisol production. Ectopic secretion of ADH has been associated with different tumor types. The best treatment options include removal of the underlying tumor, chemotherapy, or radiotherapy in addition to free water restriction, demeclocycline and vaptans.
    [Show full text]
  • Physiological Adaptations in Pregnancy-Resources Table
    Responsibility/ Adaptations in Pregnancy Additional Information Hormones ➢ Maintaining homeostasis Perinatal Nursing – 2021 ➢ Regulation of growth Simpson, Creehan, O’Brien-Abel, Roth ➢ Development and Cellular communication & Rohan Chapter three – Physiological Changes of Pregnancy Blackburn, Susan Tucker Page 48 Placenta ➢ Responsible for transfer of nutrients to the fetus ❖ Placental Hormones are critical and waste products away from the fetus for many of the metabolic and ➢ Functions as the fetal lungs, gi, liver, kidney and endocrine changes during endocrine organ pregnancy ➢ Major Hormones ❖ Fetal bone growth and placental ❖ hCG - Human chorionic gonadotropin calcium transport is mediated ❖ hPL – Human Placental Lactogen by Parathyroid hormone related ❖ Estrogen protein or PTHrP ❖ Progesterone ❖ Corticotrophin-releasing ❖ Serves as an endocrine gland hormone or CRH and PGs have a ❖ Major Hormones major role in initiation of ❖ hCG - Human chorionic gonadotropin myometrial contractility and ❖ hPL – Human Placental Lactogen labor onset ❖ Estrogen Page 49 ❖ Progesterone ➢ HCG ➢ Primarily secreted by the placenta Page 49 1 | P a g e ➢ Major function is to maintain progesterone and estrogen production by the corpus luteum until the placental function is adequate (approximately 10 weeks post-conception) ➢ Thought to have a role in fetal testosterone and corticosteroid production and angiogenesis ➢ Found in maternal serum by within 7-8 days after implantation ➢ Positive pregnancy test – 3 weeks after conception and 5 weeks after LMP ➢ Elevated
    [Show full text]
  • Pituitary Disease Handbook for Patients Disclaimer This Is General Information Developed by the Ottawa Hospital
    The Ottawa Hospital Divisions of Endocrinology and Metabolism and Neurosurgery Pituitary Disease Handbook for Patients Disclaimer This is general information developed by The Ottawa Hospital. It is not intended to replace the advice of a qualified health-care provider. Please consult your health-care provider who will be able to determine the appropriateness of the information for your specific situation. Prepared by Monika Pantalone, NP Advanced Practice Nurse for Neurosurgery With guidance from Dr. Charles Agbi, Dr. Erin Keely, Dr. Janine Malcolm and The Ottawa Hospital pituitary patient advisors P1166 (10/2014) Printed at The Ottawa Hospital Outline This handbook is designed to help people who have pituitary tumours better understand their disease. It contains information to help people with pituitary tumours discuss their care with health care providers. This booklet provides: 1) An overview of what pituitary tumours are and how they are grouped 2) An explanation of how pituitary tumours are investigated 3) A description of available treatments for pituitary tumours What is the Pituitary Gland? The pituitary gland is a pea size organ located just behind the bridge of the nose at the base of the brain, in a bony pouch called the “sella turcica.” It sits just below the nerves to the eyes (the optic chiasm). The pituitary gland is divided into two main portions: the larger anterior pituitary (at the front) and the smaller posterior pituitary (at the back). Each of these portions has different functions, producing different types of hormones. Optic Pituitary Hypothalamus tumor chiasm Pituitary stalk Anterior Sphenoid pituitary gland sinus Posterior pituitary gland Sella Picture provided by turcica pituitary.ucla.edu 1 The pituitary gland is known as the “master gland” because it helps to control the secretion of various hormones from a number of other glands including the thyroid gland, adrenal glands, testes and ovaries.
    [Show full text]
  • Pituitary Tumor-Transforming Gene in Endocrine and Other Neoplasms: a Review and Update
    Endocrine-Related Cancer (2008) 15 721–743 REVIEW Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update Fateme Salehi1, Kalman Kovacs1, Bernd W Scheithauer 3, Ricardo V Lloyd 3 and Michael Cusimano2 Departments of 1Laboratory Medicine and 2Neurosurgery, St Michael’s Hospital, 30 Bond Street, Toronto, Ontario, Canada M5B 1W8 3Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, SW, Rochester, Minnesota 55905, USA (Correspondence should be addressed to F Salehi; Email: [email protected]) Abstract Pituitary tumor-transforming gene (PTTG) was only recently discovered. Its overexpression occurs in a wide variety of endocrine and non-endocrine tumors, including ones of pituitary, thyroid, ovary, breast, prostate, lung, esophagus, colon, and the central nervous system. It affects tumor invasiveness and recurrence in several systems, functions as a securin during cell cycle progression, and inhibits premature sister chromatid separation. PTTG is involved in multiple cellular pathways, including proliferation, DNA repair, transformation, angiogenesis induction, invasion, and the induction of genetic instability. In thyroid carcinomas, PTTG expression is a marker of invasiveness. PTTG is overexpressed in most pituitary adenomas, where it appears to correlate with recurrence and angiogenesis. Increasing evidence also points to the role of PTTG in endocrine organ development. For example, PTTG knockout mice show defective pancreatic b-cell proliferation. Herein, we review the current knowledge regarding PTTG-mediated pathways based on evidence from in vivo and in vitro studies as well as knockout mice models. We also summarize the issue of PTTG expression and its correlation with clinicopathologic parameters in patients with neoplasms, particularly of endocrine organs.
    [Show full text]
  • Chapter 5: Responding to the World
    OXFORD BIG IDEAS SCIENCE 9: AUSTRALIAN CURRICULUM 5 RESPONDING TO THE WORLD 134 STRUCTURE AND FUNCTION 135 Each unit in this chapter opens with 5.3 What is a nervous response? an engaging image, supported by text <<BIG IDEAS>> Structure and function 1 Student responses will vary; however, the and questions. These can stimulate human body’s re exes and responses would Human presence causes major changes to the Earth, but how discussion, helping teachers to have helped them survive, regardless of the does our environment infl uence us? How does your body interact determine what students know and to Responding with the world around it? This chapter will open your eyes to the situation. give them an idea of the chapter theme. fi ne balance that must be maintained by your body to survive. 2 Student responses will vary. Examples of re exes 5 It is about how your body senses changes and threats and how it This encourages a self-directed inquiry include kicking out when a doctor taps your to the world responds to ensure you remain healthy. approach to learning. knee with a small hammer, pulling your hand away when you touch a hot kettle, and blinking What is a ➔ Fig 5.3 Our refl exes give us the ability to act when something suddenly comes very close to 5.3 and respond quickly. Curriculum guidance 5.2 hormonal What is a nervous response? your face. response? 3 If re exes didn’t occur, the body may be injured Previous Year 9 One ability of most superheroes is their amazingly 1 Think of a story you have heard or face some other type of danger.
    [Show full text]
  • The Evaluation of Pituitary Damage Associated with Cardiac Arrest: an Experimental Rodent Model Yu Okuma1, Tomoaki Aoki1, Santiago J
    www.nature.com/scientificreports OPEN The evaluation of pituitary damage associated with cardiac arrest: An experimental rodent model Yu Okuma1, Tomoaki Aoki1, Santiago J. Miyara1,2, Kei Hayashida1, Mitsuaki Nishikimi1, Ryosuke Takegawa1, Tai Yin1, Junhwan Kim1, Lance B. Becker1,3 & Koichiro Shinozaki1,3* The pituitary gland plays an important endocrinal role, however its damage after cardiac arrest (CA) has not been well elucidated. The aim of this study was to determine a pituitary gland damage induced by CA. Rats were subjected to 10-min asphyxia and cardiopulmonary resuscitation (CPR). Immunohistochemistry and ELISA assays were used to evaluate the pituitary damage and endocrine function. Samples were collected at pre-CA, and 30 and 120 min after cardio pulmonary resuscitation. Triphenyltetrazolium chloride (TTC) staining demonstrated the expansion of the pituitary damage over time. There was phenotypic validity between the pars distalis and nervosa. Both CT-proAVP (pars nervosa hormone) and GH/IGF-1 (pars distalis hormone) decreased over time, and a diferent expression pattern corresponding to the damaged areas was noted (CT-proAVP, 30.2 ± 6.2, 31.5 ± 5.9, and 16.3 ± 7.6 pg/mg protein, p < 0.01; GH/IGF-1, 2.63 ± 0.61, 0.62 ± 0.36, and 2.01 ± 0.41 ng/mg protein, p < 0.01 respectively). Similarly, the expression pattern between these hormones in the end-organ systems showed phenotypic validity. Plasma CT-proAVP (r = 0.771, p = 0.025) and IGF-1 (r = −0.775, p = 0.024) demonstrated a strong correlation with TTC staining area. Our data suggested that CA induces pathological and functional damage to the pituitary gland.
    [Show full text]