The Unique Endocrine Milieu of the Fetus

Total Page:16

File Type:pdf, Size:1020Kb

The Unique Endocrine Milieu of the Fetus Perspectives The Unique Endocrine Milieu of The Fetus Delbert A. Fisher Department ofPediatrics, University of California, Los Angeles School ofMedicine, Harbor-UCLA Medical Center, Torrance, California 90509 Since the pioneering studies of Jost and colleagues four decades hormone precursor. DHAS is transported to the liver for 16- ago, there has been impressive progress in our understanding of hydroxylation and/or to the placenta, where it is hydrolyzed by the intrauterine endocrine milieu (1). Fetal endocrine physiology a steroid sulfatase and utilized as substrate for placental estrogen differs in many important ways from the endocrinology of post- biosynthesis. DHAS serves as substrate for placental estrone and natal life. It is characterized by a series of unique fetal endocrine estradiol production; 160H-DHAS is the major substrate for organs, by a number of hormones or metabolites uniquely placental estriol synthesis (1-6). Estriol is a hormone unique to prominent in the fetal compartment, by the adaptation of several pregnancy; it is not secreted by the ovary of nonpregnant women. fetal endocrine systems to special intrauterine functions, and by There is evidence that placental chorionic gonadotropin mechanisms to neutralize the biological actions of several potent (hCG) is an important stimulus to fetal adrenal function early hormones critical for normal postnatal development (Table I). in pregnancy; fetal pituitary adrenocorticotropin (ACTH) is es- The following discussion is intended to provide a brief perspective sential for maintenance of fetal zone function by midgestation of this unique environment. (4, 5, 7). Other pro-opiomelanocortin (POMC)-derived pep- tides-alpha-melanocyte-stimulating hormone (a-MSH), cor- Fetal endocrine adaptations ticotropin-like intermediate peptide (CLIP), and f,-endorphin- In several instances, fetal endocrine systems or hormones have seem to have only limited roles (4, 5). Preliminary evidence been transiently diverted to subserve singular gestational or de- suggests a possible role for epidermal growth factor (EGF) and velopmental roles. fibroblast growth factor (FGF) both at the adrenal gland and Fetal adrenal and estrogen production. The best-known pituitary levels (5, 8). and -characterized fetal endocrine gland is the fetal adrenal, The human placenta at term secretes 10-25 mg/d of estradiol adapted in utero to function in collaboration with the placenta and 40-50 mg/d of estriol (3-6); estrogen production in non- to produce estrogens. This system, the so-called fetoplacental pregnant women is less than 1 mg/d. Most of the estrogen is unit, has been reviewed in several recent publications (1-6). secreted into the maternal circulation, but fetal concentrations The fetal adrenal cortex is composed oftwo distinct anatomic and levels in amniotic fluid are quite high. To date, the signifi- zones, an inner "fetal" zone and an outer "definitive" zone. The cance of the enormous amounts of estrogen produced during fetal zone is deficient in A5,3l-01 dehydrogenase/A4,5,3-keto- pregnancy remains largely obscure both in the mother and fetus. steroid isomerase and has a high steroid sulfokinase activity (3- Estriol is a relatively weak estrogen in many biological systems, 5). Thus, the conversion ofpregnenolone to progesterone is lim- but is active and may have a role in maintenance of uteropla- ited and the major secretory product of the fetal adrenal is de- cental blood flow (5). It is of interest that estrogen production hydroepiandrosterone sulfate (DHAS),' an essentially inactive and circulating estrogen levels (especially estriol) may be mark- edly reduced in pregnancies in which the fetus (including pla- Dr. Fisher is Professor of Pediatrics and Medicine at the UCLA School centa) has x-linked steroid sulfatase deficiency, and the placenta of Medicine. is unable to convert DHAS to free DHA for estrogen biosynthesis; Address reprint requests to Dr. Fisher, Department of Pediatrics, the fetus in such instances seems otherwise normal (3). Harbor-UCLA Medical Center, 1000 West Carson Street, Torrance, CA Fetal adrenal and parturition. The fetal adrenal plays a sig- 90509. nificant role in the timing of parturition in some mammalian Receivedfor publication 3 February 1986. species (7, 9-12). The events of parturition have been best char- acterized in sheep, in which species a marked prenatal fetal cor- 1. Abbreviations used in this paper: AVT, pituitary arginine vasotocin; tisol surge, dependent on the fetal pituitary, initiates a cascade CAT, catecholamines; CLIP, corticotropin-like intermediate peptide; ofendocrine events (including decreased placental progesterone CRF, corticotropin-releasing factor, CT, calcitonin; 1,25D, 1,25-dihy- production, increased placental estrogen secretion, and droxyvitamin D; DHAS, dehydroepiandrosterone sulfate; EGF, epider- increased mal growth factor, FGF, fibroblast growth factor, FSH, follicle-stimulating production ofprostaglandins) which eventuate in parturition (4, hormone; GH, growth hormone; GnRH, gonadotropin-releasing hor- 5, 9-13). Fetal hypophysectomy prevents this sequence of events mone; GRF, growth hormone-releasing factor, hCC, human chorionic and delays parturition; however, the mechanism ofthe activation corticotropin; hCG, human chorionic gonadotropin; hCS, human cho- of the fetal adrenal remains unclear, ACTH does not increase rionic somatomammotropin; hCT, human chorionic thyrotropin; LH, in fetal blood prior to or during the rise in cortisol. The search luteinizing hormone; MIF, testicular mullerian inhibiting factor, NE, norepinephrine; NGF, nerve growth factor, OT, oxytocin; OVT, OT-AVT-like peptide; PGE and PGF, prostaglandins E and F; PNMT, phenylethanolamine N-methyl transferase; POMC, pro-opiomelanocor- J. Clin. Invest. tin; PRL, prolactin; rT3, reverse triiodothyronine; SRIF, somatotropin © The American Society for Clinical Investigation, Inc. release inhibiting factor, STH, second trophic hormone; T3, triiodoth- 0021-9738/86/09/0603/09 $ 1.00 yronine; T4, thyroxine; TRH, thyrotropin-releasing hormone; TSH, thy- Volume 78, September 1986, 603-611 roid-stimulating hormone; VP, vasopressin. Unique Endocrine Milieu ofthe Fetus 603 Table I. Features of the Fetal Endocrine Environment surfactant synthesis in lung tissue (14-17), (b) increase insulin, fl-adrenergic, and EGF receptors in fetal lung tissue (18-20), (c) Unique fetal endocrine adaptations increase adrenal medullary phenylethanolamine N-methyl Fetal adrenal transferase activity (to augment epinephrine biosynthesis from Estrogen production norepinephrine) (5, 16), (d) increase hepatic iodothyronine beta Parturition (outer) ring monodeiodinase (to augment thyroxine [T4] con- Fetal maturation version to triiodothyronine [T31) (21), (e) decrease sensitivity of Fetal testes the ductus arteriosus to prostaglandin (to facilitate ductal closure) Sex differentiation (22), (f) mature secretory function of the rat fetal pancreas (23), Neurohypophyseal system (g) induce maturation of numerous small bowel enzymes and Fetal water metabolism transport processes (24, 25), and (h) induce maturation of a Fetal stress variety of hepatic enzymes (5, 16). In some instances these events Parturition? involve stimulation by cortisol of synthesis of the specific protein Parathyroid-calcitonin system or enzymes; in other instances (e.g., the increased sensitivity of Placental calcium transport the ductus arteriosus to prostaglandin) the mechanism of the Bone mineral anabolism? cortisol effect remains obscure. Unique fetal endocrine systems Fetal testes and sexual differentiation. The fetal gonads have Paraaortic chromaffin system little or no metabolic role during fetal life. Instead the fetal testes, Fetal intermediate pituitary under the influence of the placenta, serve at a critical period of Placental progesterone system embryogenesis to induce male sexual differentiation (26, 27). Ectopic polypeptide hormones Human chorionic gonadotropin (hCG), a luteinizing hormone Extrahypothalamic neuropeptides (LH-like placental hormone, stimulates fetal testicular androgen Neutralization of hormone actions in the fetus production between 8 and 16-18 wk gestation. The testicular Production of inactive metabolites androgen, in turn, stimulates development of the embryonic Receptor/postreceptor immaturity wolffian duct system and the external genitalia to effect male differentiation. In addition, the fetal testes produce an inhibitor of mullerian for a second trophic hormone (STH) for the fetal zone con- duct differentiation, mullerian-inhibiting factor or MWF (28-30). tinues. Hormones considered include ACTH1I38, ACTH1I24, This substance, the existence of which was first proposed by ACTHI.13, ACTHI-38, ,B-endorphin, prolactin, estrogens, a- Jost, appears to be a glycoprotein with a monomer molecular MSH, CLIP, EGF, and FGF (4, 5, 13). However, the putative weight of 72,000 and multimer molecular weights ranging from STH remains elusive. 145,00 to 235,000 (27-30). The structure has not yet been char- In human and primate species a role for fetal cortisol as a acterized and information regarding its mechanism of action is trigger for parturition is less clear. Fetal cortisol levels do not limited. It has been shown that mullerian duct regression, in increase markedly, progesterone concentrations do not consis- vitro, requires a 24-36-h exposure to MIF, and that MIF acts tently fall, and changes in estrogen levels are variable (4, 5, 10). extracellularly by causing dephosphorylation of a membrane However,
Recommended publications
  • Laboratory Procedure Manual
    Laboratory Procedure Manual Analyte: Thyroid Stimulating Hormone Matrix: Serum Method: Microparticle Enzyme Immunoassay (MEIA) Method No.: Revised: as performed by: Coulston Foundation Alamogordo, New Mexico Contact: Ms. Love Julian 1-505-434-1725 Important Information for Users Coulston periodically refines these laboratory methods. It is the responsibility of the user to contact the person listed on the title page of each write-up before using the analytical method to find out whether any changes have been made and what revisions, if any, have been incorporated. Thyroid Stimulating Hormone NHANES 2001–2002 Public Release Data Set Information This document details the Lab Protocol for NHANES 2001-2002 data. Two laboratories performed this testing during 2001-2002. In order to maintain confidentiality of the participants the quality control summary statistics and graphs were combined to mask the individual analysis dates from the two laboratories. Methods for both labs are included in this release. The method for Lab18 analyte is included in this file. The method for Lab40 is described in a separate file. A tabular list of the released analytes follows: Lab Number Analyte SAS Label lab18 LBXTSH Thyroid Stimulating Hormone Page 2 of 11 Thyroid Stimulating Hormone NHANES 2001-2002 1. Summary of Test Principle and Clinical Relevance IMx Ultrasensitive hTSH II is a Microparticle Enzyme Immunoassay (MEIA) for the quantitative determination of human thyroid stimulating hormone (hTSH) in serum or plasma on the IMx analyzer. The IMx Ultrasensitive hTSH II assay is based on the MEIA technology. The IMx Ultrasensitive hTSH II reagents and sample are added to the reaction cell in the following sequence: The probe/electrode assembly delivers the sample and anti-hTSH coated microparticles to the incubation well of the reaction cell.
    [Show full text]
  • Associations Between Serum Leptin Level and Bone Turnover in Kidney Transplant Recipients
    Associations between Serum Leptin Level and Bone Turnover in Kidney Transplant Recipients ʈ ʈ ʈ Csaba P. Kovesdy,*† Miklos Z. Molnar,‡§ Maria E. Czira, Anna Rudas, Akos Ujszaszi, Laszlo Rosivall,‡ Miklos Szathmari,¶ Adrian Covic,** Andras Keszei,†† Gabriella Beko,‡‡ ʈ Peter Lakatos,¶ Janos Kosa,¶ and Istvan Mucsi §§ *Division of Nephrology, Salem Veterans Affairs Medical Center, Salem, Virginia; †Division of Nephrology, University of Virginia, Charlottesville, Virginia; ‡Institute of Pathophysiology, Semmelweis University, Budapest, Hungary; §Harold Simmons Center for Chronic Disease Research & Epidemiology, Los Angeles Biomedical Research Institute at ʈ Harbor-University of California–Los Angeles Medical Center, Torrance, California; Institute of Behavioral Sciences, Semmelweis University, Budapest, Hungary; ¶First Department of Internal Medicine, Semmelweis University, Budapest, Hungary; **University of Medicine Gr T Popa, Iasi, Romania; ††Department of Epidemiology, Maastricht University, Maastricht, Netherlands; ‡‡Central Laboratory, Semmelweis University, Budapest, Hungary; and §§Division of Nephrology, Department of Medicine, McGill University Health Center, Montreal, Quebec, Canada Background and objectives: Obesity is associated with increased parathyroid hormone (PTH) in the general population and in patients with chronic kidney disease (CKD). A direct effect of adipose tissue on bone turnover through leptin production has been suggested, but such an association has not been explored in kidney transplant recipients. Design, setting, participants, & measurements: This study examined associations of serum leptin with PTH and with biomarkers of bone turnover (serum beta crosslaps [CTX, a marker of bone resorption] and osteocalcin [OC, a marker of bone formation]) in 978 kidney transplant recipients. Associations were examined in multivariable regression models. Path analyses were used to determine if the association of leptin with bone turnover is independent of PTH.
    [Show full text]
  • Endocrine System WS19
    Endocrine System Human Physiology Unit 3 Endocrine System • Various glands located throughout the body • Some organs may also have endocrine functions • Endocrine glands/organs synthesize and release hormones • Hormones travel in plasma to target cells Functions of the Endocrine System • Differentiation of nervous and reproductive system during fetal development • Regulation of growth and development • Regulation of the reproductive system • Maintains homeostasis • Responds to changes from resting state Mechanisms of Hormone Regulation • Hormones have different rates and rhythms of secretion • Hormones are regulated by feedback systems to maintain homeostasis • Receptors for hormones are only on specific effector cells • Excretion of hormones vary for steroid hormones and peptide hormones Regulation of Hormone Secretion • Release of hormones occurs in response to • A change from resting conditions • Maintaining a regulated level of hormones or substances • Hormone release is regulated by • Chemical factors (glucose, calcium) • Endocrine factors (tropic hormones, HPA) HPA = Hypothalamic-Pituitary Axis • Neural controls (sympathetic activation) Hormone Feedback Systems Negative feedback maintains hormone concentrations within physiological ranges • Negative feedback • Feedback to one level Loss of • Long-loop Negative Feedback feedback • Feedback to two levels control often leads to • Hypothalamus-Pituitary-Gland Axis pathology Negative Feedback Short-Loop Negative Feedback Long-Loop Negative Feedback Hormone Transport Peptide/Protein Hormones
    [Show full text]
  • Using T3 for Treatment of Hypothyroidism - What the Evidence Say?
    Journal of Endocrinology and Thyroid Research ISSN: 2573-2188 Review Article J Endocrinol Thyroid Res Volume 2 Issue 2- June 2017 Copyright © All rights are reserved by Vismay Naik, DOI: 10.19080/JETR.2017.02.555584 Using T3 For Treatment of Hypothyroidism - What the Evidence Say? Vismay Naik* Ashirvad Heart and Diabetes Centre, India Submission: March 01, 2017; Published: June 27, 2017 *Corresponding author: Vismay Naik, MD, MRCP (London), Ashirvad Heart and Diabetes Centre, Botad, Gujarat, India, Email: Introduction Hypothyroidism is due to the primary disease of the thyroid Treatment Strategies of Hypothyroidism or secondary to hypothalamic- pituitary disease [1]. Primary The objectives of management of hypothyroidism are to hypothyroidism is the most common endocrine disorder reverse clinical progression, correct metabolic abnormalities, throughout the world. Traditionally we have been using [3] and reduction of goiter size in patients with autoimmune levothyroxine in the treatment of hypothyroidism. However, there Hashimoto’s thyroiditis [4]. This can be achieved by 3 different have been reports of persisting symptoms of hypothyroidism strategies: in 5-10% of levothyroxine treated hypothyroid patients a. Standard treatment with a daily dose levothyroxine (T4) in order to reach an age adjusted TSH target [5]. The with normal serum thyrotrophin (TSH) [2]. Physiologically dose has to be titrated periodically [3]. levothyronine is the active form, so treating the patient with the active form has been considered optimum treatment. This study b. Triiodothyronine (T3) monotherapy is the biological is aimed at reviewing the literature on using T3 in treatment of hypothyroidism either alone or in combination with T4. By the its short half-life [6] end of this study we hope to answer the question, if the use of T3 active form.
    [Show full text]
  • The ENDOCRINE SYSTEM Luteinizinghormones Hormone/Follicle-Stimulating Are Chemical Hormone Messengers
    the ENDOCRINE SYSTEM LuteinizingHormones hormone/follicle-stimulating are chemical hormone messengers. (LH/FSH) They bind to specific target cells Crucial for sex cell production Growth hormone–releasingwith receptors, hormone regulate (GHRH) metabolism and the sleep cycle, and contribute Thyrotropin-releasing hormone (TRH) Regulatesto thyroid-stimulating growth and hormone development. release The endocrine glands and organs secrete Corticotropin-releasing hormone (CRH) Regulatesthese to release hormones of adrenocorticotropin all over that is vitalthe to body. the production of cortisol (stress response hormone). The hypothalamus is a collection of specialized cells that serve as the central relay system between the nervous and endocrine systems. hypothalamus Growth hormone-releasing hormone (GHRH) Thyrotropin-releasing hormone (TRH) Regulates the release of thyroid-stimulating hormones Luteinizing hormone/follicle-stimulating hormone (LH/FSH) Crucial for sex cell production Corticotropin-releasing hormone (CRH) Regulates the release of adrenocorticotropin that’s vital to the production of cortisol 2 The hypothalamus translates the signals from the brain into hormones. From there, the hormones then travel to the pituitary gland. Located at the base of the brain inferior to the hypothalamus, the pituitary gland secretes endorphins, controls several other endocrine glands, and regulates the ovulation and menstrual cycles. pituitary gland 3 The anterior lobe regulates the activity of the thyroid, adrenals, and reproductive glands by producing hormones that regulate bone and tissue growth in addition to playing a role in the absorption of nutrients and minerals. anterior lobe Prolactin Vital to activating milk production in new mothers Thyrotropin Stimulates the thyroid to produce thyroid hormones vital to metabolic regulation Corticotropin Vital in stimulating the adrenal gland and the “fight-or-flight” response 4 The posterior lobe stores hormones produced by the hypothalamus.
    [Show full text]
  • Endocrine Paraneoplastic Syndromes: a Review
    Endocrinology & Metabolism International Journal Review Article Open Access Endocrine paraneoplastic syndromes: a review Abstract Volume 1 Issue 1 - 2015 Paraneoplastic endocrine syndromes result from ectopic production of hormones by Hala Ahmadieh,1 Asma Arabi2 different tumors. Hypercalcemia of malignancy is the most common, mostly caused by 1Division of Endocrinology, American University of Beirut, ectopic parathyroid hormone related peptide (PTHrP) production which increases bone Lebanon resorption. Other causes include the rare ectopic parathyroid hormone (PTH) production, 2Department of Internal Medicine, American University of ectopic production of 1, 25-(OH)2 vitamin D by the tumor and its adjacent macrophages and Beirut-Medical Center, Lebanon bone metastasis which by itself in addition to the local production of PTHrP at the level of the bone lead to bone resorption and thus hypercalcemia. Treatment includes extracellular Correspondence: Asma Arabi, Department of Internal fluid volume repletion, bisphosphonates or denosumab and calcitonin. Ectopic Cushing’s Medicine, Division of Endocrinology, American University of syndrome caused by ectopic ACTH production results in hypokalemia, proximal muscle Beirut-Medical Center, Po Box 11-0236, Riad El-Solh, Beirut, weakness, easy bruisability, hypertension, diabetes and psychiatric abnormalities including Lebanon, Email depression and mood disorders. Different diagnostic measures help to differentiate Cushing’s disease from ectopic Cushing’s syndrome. Treatment includes surgical resection Received: October 26, 2014 | Published: January 02, 2015 of tumor and medical therapy to suppress excess cortisol production. Ectopic secretion of ADH has been associated with different tumor types. The best treatment options include removal of the underlying tumor, chemotherapy, or radiotherapy in addition to free water restriction, demeclocycline and vaptans.
    [Show full text]
  • Physiological Adaptations in Pregnancy-Resources Table
    Responsibility/ Adaptations in Pregnancy Additional Information Hormones ➢ Maintaining homeostasis Perinatal Nursing – 2021 ➢ Regulation of growth Simpson, Creehan, O’Brien-Abel, Roth ➢ Development and Cellular communication & Rohan Chapter three – Physiological Changes of Pregnancy Blackburn, Susan Tucker Page 48 Placenta ➢ Responsible for transfer of nutrients to the fetus ❖ Placental Hormones are critical and waste products away from the fetus for many of the metabolic and ➢ Functions as the fetal lungs, gi, liver, kidney and endocrine changes during endocrine organ pregnancy ➢ Major Hormones ❖ Fetal bone growth and placental ❖ hCG - Human chorionic gonadotropin calcium transport is mediated ❖ hPL – Human Placental Lactogen by Parathyroid hormone related ❖ Estrogen protein or PTHrP ❖ Progesterone ❖ Corticotrophin-releasing ❖ Serves as an endocrine gland hormone or CRH and PGs have a ❖ Major Hormones major role in initiation of ❖ hCG - Human chorionic gonadotropin myometrial contractility and ❖ hPL – Human Placental Lactogen labor onset ❖ Estrogen Page 49 ❖ Progesterone ➢ HCG ➢ Primarily secreted by the placenta Page 49 1 | P a g e ➢ Major function is to maintain progesterone and estrogen production by the corpus luteum until the placental function is adequate (approximately 10 weeks post-conception) ➢ Thought to have a role in fetal testosterone and corticosteroid production and angiogenesis ➢ Found in maternal serum by within 7-8 days after implantation ➢ Positive pregnancy test – 3 weeks after conception and 5 weeks after LMP ➢ Elevated
    [Show full text]
  • A Randomized, Masked Study of Triiodothyronine Plus Thyroxine Administration in Preterm Infants Less Than 28 Weeks of Gestational Age: Hormonal and Clinical Effects
    0031-3998/04/5502-0248 PEDIATRIC RESEARCH Vol. 55, No. 2, 2004 Copyright © 2004 International Pediatric Research Foundation, Inc. Printed in U.S.A. A Randomized, Masked Study of Triiodothyronine Plus Thyroxine Administration in Preterm Infants Less Than 28 Weeks of Gestational Age: Hormonal and Clinical Effects PAOLO G. VALERIO, ALEID G. VAN WASSENAER, JAN J.M. DE VIJLDER, AND JOKE H. KOK Department of Neonatology [P.G.V., A.G.v.W., J.H.K.] and Laboratory of Pediatric Endocrinology [J.J.M.d.V.], Academic Medical Center, Emma Children’s Hospital, 1105 AZ Amsterdam, The Netherlands ABSTRACT A randomized, placebo-controlled, masked study was con- effect on cortisol levels. We did not find any effects of T3 or of ducted of the responses of thyroid parameters, cortisol, and the T4 administration on the cardiovascular system. A single injec- ␮ cardiovascular system to a single dose of triiodothyronine (T3) tion of T3 (0.5 g/kg) given 22–26 h after birth only leads to a 24 h after birth, followed by a daily dose of thyroxine (T4) during 2-d increase of T3 levels and does not have effects on the Ͻ 6 wk to infants 28 wk gestational age. Thirty-one infants were cardiovascular system. This study does not support the use of T3 assigned to three groups: 1) group A: T3 24 h after birth plus according to our regimen in preterm infants. (Pediatr Res 55: daily T4 during 6 wk; 2) group B: placebo T3 and T4 during 6 wk; 248–253, 2004) and 3) group C: placebo T3 and placebo T4.T4, free T4,T3, free T3, reverse T3, thyroid-stimulating hormone, and cortisol were measured in cord blood and on days 1, 3, 7, 14, 21, 42, and 56.
    [Show full text]
  • Endocrine Abnormalities of the Horse Scott M. Austin, DVM, MS, DACVIM
    Endocrine abnormalities of the horse Scott M. Austin, DVM, MS, DACVIM Clinical Associate Professor of Equine Medicine Department of Veterinary Clinical Medicine University of Illinois Summary: Endocrine abnormalities occur frequently in the horse. The clinical presentation of common conditions may have significant overlap resulting in diagnostic confusion. It is important to arrive at an accurate diagnosis, as the successful therapy for endocrine abnormalities is contingent upon the correct diagnosis. Hypothyroidism: Much of the confusion around hypothyroidism is a result of the erroneous association of this condition with obesity, laminitis and infertility. Research that is more recent indicates that hypothyroidism is actually quite rare. In the limited case reports of documented hypothyroidism in horses, the primary clinical signs are lethargy, exercise intolerance, and poor quality haircoat. In horses that had thyroids removed, neither weight gain nor laminitis were seen. Diagnosis: The hypothalamus regulates the production of thyroid hormones through the actions of thyrotropin-releasing hormone (TRH), which stimulates the anterior pituitary gland to release thyroid- stimulating hormone (TSH). TSH then regulates the synthesis and release of thyroid hormones by the thyroid gland. In response to TSH stimulus, triiodothyronine (T3) and thyroxin (T4) are released from the thyroid gland into the bloodstream bound to either thyroglobulins or other proteins such as albumin. T4 has minimal activity and is essentially a prohormone. T3 is the primary active form of the hormone, and only unbound T3 can enter a cell and activate the vital functions attributable to this hormone. The common measurement of total T3 and T4 often provides erroneous values and does not provide a clear picture of thyroid function.
    [Show full text]
  • DHEA Sulfate, and Aging: Contribution of the Dheage Study to a Sociobiomedical Issue
    Dehydroepiandrosterone (DHEA), DHEA sulfate, and aging: Contribution of the DHEAge Study to a sociobiomedical issue Etienne-Emile Baulieua,b, Guy Thomasc, Sylvie Legraind, Najiba Lahloue, Marc Rogere, Brigitte Debuiref, Veronique Faucounaug, Laurence Girardh, Marie-Pierre Hervyi, Florence Latourj, Marie-Ce´ line Leaudk, Amina Mokranel, He´ le` ne Pitti-Ferrandim, Christophe Trivallef, Olivier de Lacharrie` ren, Stephanie Nouveaun, Brigitte Rakoto-Arisono, Jean-Claude Souberbiellep, Jocelyne Raisonq, Yves Le Boucr, Agathe Raynaudr, Xavier Girerdq, and Franc¸oise Foretteg,j aInstitut National de la Sante´et de la Recherche Me´dicale Unit 488 and Colle`ge de France, 94276 Le Kremlin-Biceˆtre, France; cInstitut National de la Sante´et de la Recherche Me´dicale Unit 444, Hoˆpital Saint-Antoine, 75012 Paris, France; dHoˆpital Bichat, 75877 Paris, France; eHoˆpital Saint-Vincent de Paul, 75014 Paris, France; fHoˆpital Paul Brousse, 94804 Villejuif, France; gFondation Nationale de Ge´rontologie, 75016 Paris, France; hHoˆpital Charles Foix, 94205 Ivry, France; iHoˆpital de Biceˆtre, 94275 Biceˆtre, France; jHoˆpital Broca, 75013 Paris, France; kCentre Jack-Senet, 75015 Paris, France; lHoˆpital Sainte-Perine, 75016 Paris, France; mObservatoire de l’Age, 75017 Paris, France; nL’Ore´al, 92583 Clichy, France; oInstitut de Sexologie, 75116 Paris, France; pHoˆpital Necker, 75015 Paris, France; qHoˆpital Broussais, 75014 Paris, France; and rHoˆpital Trousseau, 75012 Paris, France Contributed by Etienne-Emile Baulieu, December 23, 1999 The secretion and the blood levels of the adrenal steroid dehydro- number of consumers. Extravagant publicity based on fantasy epiandrosterone (DHEA) and its sulfate ester (DHEAS) decrease pro- (‘‘fountain of youth,’’ ‘‘miracle pill’’) or pseudoscientific asser- foundly with age, and the question is posed whether administration tion (‘‘mother hormone,’’ ‘‘antidote for aging’’) has led to of the steroid to compensate for the decline counteracts defects unfounded radical assertions, from superactivity (‘‘keep young,’’ associated with aging.
    [Show full text]
  • In Vitro Effect of Triiodothyronine on the Cyclic Amp, Progesterone and Testosterone Level in Porcine Theca, Granulosa and Luteal Cells
    ENDOCRINE REGULATIONS, Vol. 32, 93 – 98, 1998 93 IN VITRO EFFECT OF TRIIODOTHYRONINE ON THE CYCLIC AMP, PROGESTERONE AND TESTOSTERONE LEVEL IN PORCINE THECA, GRANULOSA AND LUTEAL CELLS E.L. GREGORASZCZUK, J. GALAS Laboratory of Animal Endocrinology and Tissue Culture, Department of Animal Physiology, Institute of Zoology, Jagiellonian University, Krakow, Poland Objective. To investigate the influence of thyroid hormone on steroid production and cAMP accumulation in porcine theca (Tc) and granulosa cells (Gc) isolated from preovulatory follicles as well as in luteal cells isolated during the mid-developing luteal phase. Methods. Granulosa and theca cells separated from pig ovarian follicles and pieces of corpora lutea were cultured in the incubation medium M199 with 5 % calf serum. After the addition of triiodothyronine (T3) and 3-isobutyl-1-methyl xanthine (IBMX) to the culture medium cAMP, progesterone and testosterone were estimated with the aid of specific RIA. Results. T 3 added to the culture media stimulated the steroid secretion and cAMP accumulation in all cell types investigated. In theca cells, T3 alone increased androgen production by 2 fold and the addition of IBMX further augmented the steroidogenesis by 2.2 fold. In granulosa cell culture, IBMX had no effect either on the basal or T3 stimulated progesterone secretion and cAMP accumu- lation. In luteal cell culture, IBMX added alone increased progesterone secretion and cAMP accu- mulation in the same manner as T3. Further augmentation of progesterone secretion (1.3-fold) and cAMP accumulation (1.1-fold) was observed after the addition of IBMX together with T3. Conclusion. The influence of thyroid hormone on cyclic nucleotide release by ovarian cells may suggest the involvement of cAMP-dependent mechanism in the realization of T3 action in ovarian cells.
    [Show full text]
  • The Regulation of Parathyroid Hormone Secretion and Synthesis
    BRIEF REVIEW www.jasn.org The Regulation of Parathyroid Hormone Secretion and Synthesis Rajiv Kumar* and James R. Thompson† *Division of Nephrology and Hypertension, Department of Internal Medicine, Biochemistry and Molecular Biology, and †Department of Physiology, Biophysics and Bioengineering, Mayo Clinic College of Medicine, Mayo Clinic, Rochester, Minnesota ABSTRACT Secondary hyperparathyroidism classically appears during the course of chronic renal basis of these observations regarding failure and sometimes after renal transplantation. Understanding the mechanisms by pathogenesis, therapy for 2°HPT in the which parathyroid hormone (PTH) synthesis and secretion are normally regulated is context of CKD and ESRD includes the important in devising methods to regulate overactivity and hyperplasia of the para- control of serum phosphate concentra- ϩ thyroid gland after the onset of renal insufficiency. Rapid regulation of PTH secretion tions, the administration of Ca2 and in response to variations in serum calcium is mediated by G-protein coupled, calcium- vitamin D analogs, and the administra- sensing receptors on parathyroid cells, whereas alterations in the stability of mRNA- tion of calcimimetics.33,34,16,35,36 encoding PTH by mRNA-binding proteins occur in response to prolonged changes in Nevertheless, 2°HPT remains a signifi- serum calcium. Independent of changes in intestinal calcium absorption and serum cant clinical problem and additional meth- calcium, 1␣,25-dihydroxyvitamin D also represses the transcription of PTH by associ- ods for the treatment of this condition would ating with the vitamin D receptor, which heterodimerizes with retinoic acid X receptors be helpful, especially in refractory situations, to bind vitamin D-response elements within the PTH gene.
    [Show full text]