The Respiratory System Pharyngeal Tonsil the Respiratory System Is Associated with Breathing

Total Page:16

File Type:pdf, Size:1020Kb

The Respiratory System Pharyngeal Tonsil the Respiratory System Is Associated with Breathing EMT-I_Ch05_114-239 9/25/04 1:34 PM Page 201 Chapter 5 The Human Body 201 The Respiratory System Pharyngeal tonsil The respiratory system is associated with breathing, Palatoglossal gas exchange, and the entrance of air into the body. The arch organs and structures in the respiratory system are Uvula divided into the upper and lower airways. The upper airway includes the mouth, nasal cavity, and oral cav- Palatine tonsil ity, and the lower airway includes the larynx, trachea, Palatopharyngeal bronchi, bronchioles, and alveoli. arch Lingual tonsil The Upper Airway Figure 5-111 The tonsils. A human can breathe air into the body through either the nose, also called the nasal cavity or nasopharynx, or through the mouth, also called the oral cavity or quite large in the infant and decreases in size with oropharynx. The nasopharynx and oropharynx connect age. Often, there is no discernible thymic tissue in posteriorly to form a cavity called the pharynx older adults. The thymus produces lymphocytes, which Figure 5-112 ᮢ . move to other lymph tissues to help fight infection. The nasopharynx extends from the internal nares to The thymus plays a major role in immunity, especially the uvula (a small fleshy mass that hangs from the soft in early life. palate). The oropharynx extends from the uvula to the A Artery Vein Alveolus Nasal cavity Bronchiole Mouth (oral cavity) Pharynx Larynx Capillary network Trachea Left bronchus Right bronchus B Alveoli Terminal bronchiole Capillaries Figure 5-112 The respiratory system. A. The upper and lower airway divisions of the respiratory system. The insert shows a higher magnification of the alveoli, where oxygen and carbon dioxide exchange occurs. B. A scanning electron micrograph of the alveoli, showing the rich capillary network surrounding them. © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2120 EMT-I_Ch05_114-239 9/25/04 1:34 PM Page 202 202 Section 1 Preparing to be an EMT-I epiglottis, the thin plate of cartilage that closes over the glottic opening during swallowing. Inferiorly, the phar- A ynx leads to the separate openings of the respiratory Epiglottis system (larynx) and the digestive system (esophagus). The external openings of the nasopharynx are the external nares or nostrils. The interior nares comprise the posterior opening from the nasopharynx into the Vestibular fold pharynx. The nasal septum separates the nasopharynx Thyroid cartilage (false vocal cord) into two parts. The floor of the nasal cavity is the hard True vocal cord palate. The lateral walls of the nasopharynx contain three bony ridges, the conchae. Together, the conchae form a set of bony convolutions, called the turbinates, Tracheal which help to maintain laminar (smooth) airflow. Below cartilages each turbinate is a passageway called a meatus. Each meatus contains the drainage opening from the sinus and the nasolacrimal ducts (the ducts that drain tears from the lacrimal sac). B The Lower Airway The beginning of the lower airway, the larynx, consists of several sections of cartilage held together by liga- ments Figure 5-113 ᮣ . The larynx includes two pairs of ligaments that form the vocal cords. The superior portion of the vocal cords forms the vestibular folds, or false vocal cords; the inferior portion forms the true vocal cords. Vibration of the true vocal cords results in production of sounds and speech. The true vocal cords plus the opening between them is called the glottis. Vocal cords The trachea is immediately inferior to the larynx and is approximately 4Љ long in most adults. The tra- Figure 5-113 The larynx. A. Longitudinal section of the larynx showing the location of the vocal cords. Note the presence of chea is a tube made up of cartilage and other connec- the false vocal cord. B. View into the larynx showing the true tive tissue and conveys air to and from the lungs. The vocal cords from above. cartilage forms the anterior and lateral sides of the tra- chea, providing both protection and an open passage- way for air. The esophagus is immediately posterior to of the bronchiole. Each respiratory bronchiole divides the cartilage-free posterior wall of the trachea. At the to form alveolar ducts. Each alveolar duct ends in clus- level of the fifth thoracic vertebra, the trachea branches ters known as alveoli, tiny sacs of lung tissue in which into the right and left mainstem bronchi at the carina, gas exchange takes place. The lung contains approxi- a projection of the lowest portion of the tracheal carti- mately 300 million alveoli; each alveolus is about 0.33 lage Figure 5-114 ᮣ . mm in diameter. Capillaries cover the alveoli. The alve- Beyond the carina, air enters the lungs through the olocapillary membrane lies between the alveolus and mainstem bronchi. The point of entry for the bronchi, the capillary and is very thin, consisting of only one vessels, and nerves into each lung is called the hilum. cell layer. Respiratory exchange between the lung and The mainstem bronchi divide into the secondary blood vessels occurs in the alveoli at the alveolocapil- bronchi, each one going to a separate lobe of the lung lary membrane. (see Figure 5-114). The lungs are the primary organs of breathing. The Secondary bronchi branch into tertiary bronchi, right lung contains three lobes (the upper, middle, and which continue to branch several times. After several lower lobes); the left lung contains only two (the upper generations of successive branching, bronchioles, very and lower lobes). In the left lung, a portion known as small subdivisions of the bronchi, are formed. Respi- the lingula forms the equivalent of the middle lobe in ratory bronchioles develop from the final branching the right lung. The lungs are surrounded by a mem- © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2120 EMT-I_Ch05_114-239 9/25/04 1:35 PM Page 203 Chapter 5 The Human Body 203 Trachea (windpipe) Alveoli Primary bronchi Secondary bronchi Figure 5-114 The mainstem bronchi. The upper insert shows the bifurcation of the trachea at the carina into the right and left mainstem bronchi. brane of connective tissue known as pleura. Another pleural membrane lines the inner borders of the rib cage, or pleural cavity. The pleural membrane that covers the lungs is referred to as the visceral pleura, and the pleural membrane that lines the pleural cavity is the parietal pleura. A potential space known as the pleural space exists between the visceral and parietal pleura. Nor- mally, the two membranes are close together and a space does not exist. Both layers of pleura work together to help maintain normal expansion and contraction of the lung. Under certain disease conditions or following trauma, fluid and/or air may accumulate in the pleural space, resulting in hemothorax (a collection of blood in the pleural space) or hemopneumothorax (a collec- tion of blood and air in the pleural space), potentially causing respiratory problems Figure 5-115 ᮣ . The lungs receive blood in two ways. Deoxygenated blood flows from the right ventricle via the pulmonary Figure 5-115 The pleural membranes. Normally, there is no arteries. This blood flows through pulmonary capil- space between the pleural membranes. When air, blood, or both laries, is reoxygenated at the alveoli, and then returns enter the potential space, a potentially life-threatening condition can develop. to the heart via the pulmonary veins. © Jones & Bartlett Learning, LLC. NOT FOR SALE OR DISTRIBUTION. 2120 EMT-I_Ch05_114-239 9/25/04 1:35 PM Page 204 204 Section 1 Preparing to be an EMT-I Acute asthma is a recurring condition of reversible acute airflow obstruction in the lower airway. About 8.9 million people in the United States have asthma, and thousands with asthma die each year. It is the most common chronic disease of childhood. Four distinct events occur in an asthma attack. Smooth muscle spasm occurs when the muscle layers around the airways constrict (bronchospasm), resulting in narrowing of the airway diameter. Increased secre- tion of mucus causes mucus plugging, further decreasing the airway diameter, and finally, inflammatory cell prolif- eration occurs. White blood cells accumulate in the airway and secrete substances that worsen the muscle spasm and increase mucus production. The most common cause of an asthma attack is an upper respiratory infection, such as bronchitis or a cold. Other causes include changes in environmental conditions; emotions, especially stress; allergic reactions to pollens, foods (chocolate, shellfish, milk, nuts) or drugs (penicillin, local anesthetics); and occupational exposures. The severity of asthma attacks varies among patients. In very severe cases (status asthmaticus), the patient may die as a result of respiratory failure. In other cases, treatment may produce rapid improvement and resolution of the asthmatic crisis. The patient’s level of compliance and degree of ambulatory control may be a strong mitigating fac- tor in the development of complications. Patients with potentially fatal asthma have a greater likelihood of a shorter duration of premonitory symptoms, worse lung function, and medication noncompliance. Understanding the underlying pathophysiology has radically impacted chronic drug therapy of asthma. Inhaled corticosteroids are now considered a mainstay of preventive therapy primarily for their anti-inflammatory effect. Oral and IV steroids have been used for the same purpose in acute attacks for many years. In addition, drugs are con- stantly being developed that block other inflammatory compounds involved in an acute attack. One newly available drug, zileuton, inhibits 5-lipoxygenase, an enzyme that catalyzes formation of leukotrienes, known inflammatory medi- ators in asthma. Another drug, zafirlukast, directly inhibits the actions of leukotrienes. Both drugs are approved by the FDA in the chronic treatment of asthma. The most promising combination of drugs for chronic therapy is an inhaled long-acting beta2 agonist combined with an inhaled steroid.
Recommended publications
  • 1-Anatomy of the Pituitary Gland
    Color Code Important Anatomy of Pituitary Gland Doctors Notes Notes/Extra explanation Please view our Editing File before studying this lecture to check for any changes. Objectives At the end of the lecture, students should be able to: ✓ Describe the position of the pituitary gland. ✓ List the structures related to the pituitary gland. ✓ Differentiate between the lobes of the gland. ✓ Describe the blood supply of pituitary gland & the hypophyseal portal system. الغدة النخامية Pituitary Gland (also called Hypophysis Cerebri) o It is referred to as the master of endocrine glands. o It is a small oval structure 1 cm in diameter. o It doubles its size during pregnancy. lactation ,(الحمل) pregnancy ,(الحيض) A women experiences changes in her hormone levels during menstruation But only the pituitary gland will only increase in size during pregnancy .(سن اليأس) and menopause ,(الرضاعة) X-RAY SKULL: LATERAL VIEW SAGITTAL SECTION OF HEAD & NECK Extra Pituitary Gland Position o It lies in the middle cranial fossa. o It is well protected in sella turcica* (hypophyseal fossa) of body of sphenoid o It lies between optic chiasma (anteriorly) & mamillary bodies** (posteriorly). Clinical point: *سرج الحصان Anterior to the pituitary gland is the optic chiasm, so if there was a tumor in the pituitary gland or it was ** Part of hypothalamus enlarged this could press on the chiasm and disrupt the patients vision (loss of temporal field). Extra Pictures The purple part is the sphenoid bone Hypophyseal fossa Pituitary Gland The relations are important Important Relations • SUPERIOR: Diaphragma sellae: A fold of dura mater covers the pituitary gland & has an opening for passage of infundibulum (pituitary stalk) connecting the gland to hypothalamus.
    [Show full text]
  • Glossary of Pediatric Endocrine Terms
    Glossary of Pediatric Endocrine Terms Adrenal Glands: Triangle-shaped glands located on top of each kidney that are responsible for the regulation of stress response by producing hormones such as cortisol and adrenaline. Adrenal Crisis: A life-threatening condition that results when there is not enough cortisol (stress hormone) in the body. This may present with nausea, vomiting, abdominal pain, severely low blood pressure, and loss of consciousness. Adrenocorticotropin (ACTH): A hormone produced by the anterior pituitary gland that triggers the adrenal gland to produce cortisol, the stress hormone. Anterior Pituitary: The front of the pituitary gland that secretes growth hormone, gonadotropins, thyroid stimulating hormone, prolactin, adrenocorticotropin hormone. Antidiuretic Hormone: A hormone secreted by the posterior pituitary that controls how much water is excreted by the kidneys (water balance). Bone Age Study: An X-ray of the left hand and wrist to assess a child’s skeletal age. It is often used to evaluate disorders of puberty and growth. Congenital Adrenal Hyperplasia: A group of disorders which impair the adrenal steroid synthesis pathway. This causes the body makes too many androgens. Sometimes the body does not make enough cortisol and aldosterone. Constitutional Delay of Growth and Puberty: A normal variant of growth in which children grow at a slower rate and begin puberty later than their peers. They may appear short until they have catch up growth. They usually end up at a normal adult height. A diagnosis of constitutional delay of growth and puberty is often referred to as being a “late bloomer.” Cortisol: The “stress hormone”, which is produced by the adrenal glands.
    [Show full text]
  • Science-5-Nov-16-20 Circulatory-System.Pdf
    Grade 5 Science Week of November 16 – November 20 Circulatory System Most of the cells inside of your body do not move. If a cell is hungry or needs to get rid of waste, it can’t simply move itself to the part of your body where it needs to go. Instead, your body must bring the food to your cells and take the waste away from them. By using billions of tiny tubes the circulatory system transports substances around our bodies. It delivers essential nutrients to every cell, and it transports waste products to waste-disposal sites—the lungs, the skin, and the kidneys. The circulatory system is an organ system that includes the heart, the blood vessels, and the blood itself. It has three functions: 1. to transport materials (i.e., nutrients and oxygen) and cells from one place to another 2. to defend the body against invasion by harmful organisms by taking white blood cells to an area of injury or infection 3. to maintain a constant body temperature Introduction Your body has a network of blood vessels—hollow tubes—that move blood and nutrients. A pumping organ—the heart—pushes blood through this network of vessels. Watch this video to start looking at this incredible system: https://youtu.be/tF9-jLZNM10 Complete the following. 1) Fill in the blanks: 1. Most of the cells inside of your body ________________ . If a cell is _____________ or needs to get rid of ______________, it can’t simply move itself to the part of your body where it needs to go.
    [Show full text]
  • Hypothalamus and Pituitary Gland Development in the Common Snapping Turtle, Chelydra Serpentina, and Disruption with Atrazine Exposure
    University of North Dakota UND Scholarly Commons Theses and Dissertations Theses, Dissertations, and Senior Projects January 2016 Hypothalamus And Pituitary Gland Development In The ommonC Snapping Turtle, Chelydra Serpentina, And Disruption With Atrazine Exposure Kathryn Lee Gruchalla Russart Follow this and additional works at: https://commons.und.edu/theses Recommended Citation Russart, Kathryn Lee Gruchalla, "Hypothalamus And Pituitary Gland Development In The ommonC Snapping Turtle, Chelydra Serpentina, And Disruption With Atrazine Exposure" (2016). Theses and Dissertations. 2069. https://commons.und.edu/theses/2069 This Dissertation is brought to you for free and open access by the Theses, Dissertations, and Senior Projects at UND Scholarly Commons. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of UND Scholarly Commons. For more information, please contact [email protected]. HYPOTHALAMUS AND PITUITARY GLAND DEVELOPMENT IN THE COMMON SNAPPING TURTLE, CHELYDRA SERPENTINA, AND DISRUPTION WITH ATRAZINE EXPOSURE by Kathryn Lee Gruchalla Russart Bachelor of Science, Minnesota State University, Mankato, 2006 A Dissertation Submitted to the Graduate Faculty of the University of North Dakota in partial fulfillment of the requirements for the degree of Doctor of Philosophy Grand Forks, North Dakota August 2016 Copyright 2016 Kathryn Russart ii iii PERMISSION Title Hypothalamus and Pituitary Gland Development in the Common Snapping Turtle, Chelydra serpentina, and Disruption with Atrazine Exposure Department Biology Degree Doctor of Philosophy In presenting this dissertation in partial fulfillment of the requirements for a graduate degree from the University of North Dakota, I agree that the library of this University shall make it freely available for inspection.
    [Show full text]
  • Human Anatomy and Physiology
    LECTURE NOTES For Nursing Students Human Anatomy and Physiology Nega Assefa Alemaya University Yosief Tsige Jimma University In collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education 2003 Funded under USAID Cooperative Agreement No. 663-A-00-00-0358-00. Produced in collaboration with the Ethiopia Public Health Training Initiative, The Carter Center, the Ethiopia Ministry of Health, and the Ethiopia Ministry of Education. Important Guidelines for Printing and Photocopying Limited permission is granted free of charge to print or photocopy all pages of this publication for educational, not-for-profit use by health care workers, students or faculty. All copies must retain all author credits and copyright notices included in the original document. Under no circumstances is it permissible to sell or distribute on a commercial basis, or to claim authorship of, copies of material reproduced from this publication. ©2003 by Nega Assefa and Yosief Tsige All rights reserved. Except as expressly provided above, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without written permission of the author or authors. This material is intended for educational use only by practicing health care workers or students and faculty in a health care field. Human Anatomy and Physiology Preface There is a shortage in Ethiopia of teaching / learning material in the area of anatomy and physicalogy for nurses. The Carter Center EPHTI appreciating the problem and promoted the development of this lecture note that could help both the teachers and students.
    [Show full text]
  • Pituitary Disease Handbook for Patients Disclaimer This Is General Information Developed by the Ottawa Hospital
    The Ottawa Hospital Divisions of Endocrinology and Metabolism and Neurosurgery Pituitary Disease Handbook for Patients Disclaimer This is general information developed by The Ottawa Hospital. It is not intended to replace the advice of a qualified health-care provider. Please consult your health-care provider who will be able to determine the appropriateness of the information for your specific situation. Prepared by Monika Pantalone, NP Advanced Practice Nurse for Neurosurgery With guidance from Dr. Charles Agbi, Dr. Erin Keely, Dr. Janine Malcolm and The Ottawa Hospital pituitary patient advisors P1166 (10/2014) Printed at The Ottawa Hospital Outline This handbook is designed to help people who have pituitary tumours better understand their disease. It contains information to help people with pituitary tumours discuss their care with health care providers. This booklet provides: 1) An overview of what pituitary tumours are and how they are grouped 2) An explanation of how pituitary tumours are investigated 3) A description of available treatments for pituitary tumours What is the Pituitary Gland? The pituitary gland is a pea size organ located just behind the bridge of the nose at the base of the brain, in a bony pouch called the “sella turcica.” It sits just below the nerves to the eyes (the optic chiasm). The pituitary gland is divided into two main portions: the larger anterior pituitary (at the front) and the smaller posterior pituitary (at the back). Each of these portions has different functions, producing different types of hormones. Optic Pituitary Hypothalamus tumor chiasm Pituitary stalk Anterior Sphenoid pituitary gland sinus Posterior pituitary gland Sella Picture provided by turcica pituitary.ucla.edu 1 The pituitary gland is known as the “master gland” because it helps to control the secretion of various hormones from a number of other glands including the thyroid gland, adrenal glands, testes and ovaries.
    [Show full text]
  • Bodies and Systems
    Bodies and Systems What is your body made of? You might say cells. Another student might say tissues or organs. Perhaps some would say organ systems. All would be correct, because cells, tissues, organs, and organ systems make up the different levels of organization of the human body. Multicellular organisms such as yourself, other animals, and plants have various levels of organization within them. The levels of organization create a hierarchy from simple to complex: cells → tissues → organs → organ systems → organisms How are those different levels related to one another? What specific functions do they perform? How do they interact? Level 1: Cells In all living things, the cell is the smallest unit of life. Some organisms are unicellular; they are made of a single cell functioning on its own. Bacteria and yeasts are two types of single-celled organisms. Most animals are multicellular, meaning they are composed of more than one cell. In fact, the human body is made up of about 100 trillion cells! Cells have a variety of shapes and structures, because each kind of cell has a different function. For example, the shape of muscle cells tends to be long to allow for contraction, and nerve cells tend to have many branches to help carry signals. One function of red blood cells is to transport oxygen from the lungs to other cells throughout the body. Red blood cells have a flexible shape to squeeze through narrow blood vessels. White blood cells fight off infection, whereas platelets, another specialized blood cell, help the blood form a clot.
    [Show full text]
  • Pituitary Tumor-Transforming Gene in Endocrine and Other Neoplasms: a Review and Update
    Endocrine-Related Cancer (2008) 15 721–743 REVIEW Pituitary tumor-transforming gene in endocrine and other neoplasms: a review and update Fateme Salehi1, Kalman Kovacs1, Bernd W Scheithauer 3, Ricardo V Lloyd 3 and Michael Cusimano2 Departments of 1Laboratory Medicine and 2Neurosurgery, St Michael’s Hospital, 30 Bond Street, Toronto, Ontario, Canada M5B 1W8 3Department of Laboratory Medicine and Pathology, Mayo Clinic, 200 First Street, SW, Rochester, Minnesota 55905, USA (Correspondence should be addressed to F Salehi; Email: [email protected]) Abstract Pituitary tumor-transforming gene (PTTG) was only recently discovered. Its overexpression occurs in a wide variety of endocrine and non-endocrine tumors, including ones of pituitary, thyroid, ovary, breast, prostate, lung, esophagus, colon, and the central nervous system. It affects tumor invasiveness and recurrence in several systems, functions as a securin during cell cycle progression, and inhibits premature sister chromatid separation. PTTG is involved in multiple cellular pathways, including proliferation, DNA repair, transformation, angiogenesis induction, invasion, and the induction of genetic instability. In thyroid carcinomas, PTTG expression is a marker of invasiveness. PTTG is overexpressed in most pituitary adenomas, where it appears to correlate with recurrence and angiogenesis. Increasing evidence also points to the role of PTTG in endocrine organ development. For example, PTTG knockout mice show defective pancreatic b-cell proliferation. Herein, we review the current knowledge regarding PTTG-mediated pathways based on evidence from in vivo and in vitro studies as well as knockout mice models. We also summarize the issue of PTTG expression and its correlation with clinicopathologic parameters in patients with neoplasms, particularly of endocrine organs.
    [Show full text]
  • Chapter 5: Responding to the World
    OXFORD BIG IDEAS SCIENCE 9: AUSTRALIAN CURRICULUM 5 RESPONDING TO THE WORLD 134 STRUCTURE AND FUNCTION 135 Each unit in this chapter opens with 5.3 What is a nervous response? an engaging image, supported by text <<BIG IDEAS>> Structure and function 1 Student responses will vary; however, the and questions. These can stimulate human body’s re exes and responses would Human presence causes major changes to the Earth, but how discussion, helping teachers to have helped them survive, regardless of the does our environment infl uence us? How does your body interact determine what students know and to Responding with the world around it? This chapter will open your eyes to the situation. give them an idea of the chapter theme. fi ne balance that must be maintained by your body to survive. 2 Student responses will vary. Examples of re exes 5 It is about how your body senses changes and threats and how it This encourages a self-directed inquiry include kicking out when a doctor taps your to the world responds to ensure you remain healthy. approach to learning. knee with a small hammer, pulling your hand away when you touch a hot kettle, and blinking What is a ➔ Fig 5.3 Our refl exes give us the ability to act when something suddenly comes very close to 5.3 and respond quickly. Curriculum guidance 5.2 hormonal What is a nervous response? your face. response? 3 If re exes didn’t occur, the body may be injured Previous Year 9 One ability of most superheroes is their amazingly 1 Think of a story you have heard or face some other type of danger.
    [Show full text]
  • The Evaluation of Pituitary Damage Associated with Cardiac Arrest: an Experimental Rodent Model Yu Okuma1, Tomoaki Aoki1, Santiago J
    www.nature.com/scientificreports OPEN The evaluation of pituitary damage associated with cardiac arrest: An experimental rodent model Yu Okuma1, Tomoaki Aoki1, Santiago J. Miyara1,2, Kei Hayashida1, Mitsuaki Nishikimi1, Ryosuke Takegawa1, Tai Yin1, Junhwan Kim1, Lance B. Becker1,3 & Koichiro Shinozaki1,3* The pituitary gland plays an important endocrinal role, however its damage after cardiac arrest (CA) has not been well elucidated. The aim of this study was to determine a pituitary gland damage induced by CA. Rats were subjected to 10-min asphyxia and cardiopulmonary resuscitation (CPR). Immunohistochemistry and ELISA assays were used to evaluate the pituitary damage and endocrine function. Samples were collected at pre-CA, and 30 and 120 min after cardio pulmonary resuscitation. Triphenyltetrazolium chloride (TTC) staining demonstrated the expansion of the pituitary damage over time. There was phenotypic validity between the pars distalis and nervosa. Both CT-proAVP (pars nervosa hormone) and GH/IGF-1 (pars distalis hormone) decreased over time, and a diferent expression pattern corresponding to the damaged areas was noted (CT-proAVP, 30.2 ± 6.2, 31.5 ± 5.9, and 16.3 ± 7.6 pg/mg protein, p < 0.01; GH/IGF-1, 2.63 ± 0.61, 0.62 ± 0.36, and 2.01 ± 0.41 ng/mg protein, p < 0.01 respectively). Similarly, the expression pattern between these hormones in the end-organ systems showed phenotypic validity. Plasma CT-proAVP (r = 0.771, p = 0.025) and IGF-1 (r = −0.775, p = 0.024) demonstrated a strong correlation with TTC staining area. Our data suggested that CA induces pathological and functional damage to the pituitary gland.
    [Show full text]
  • Introductory Guide Meddra Version 21.0
    Introductory Guide MedDRA Version 21.0 March 2018 000148 Notice to Reader Notice to Reader This Introductory Guide is written in English and is intended only for use with the English version of MedDRA. Additional Introductory Guides have been developed to support languages other than English and are included with their specific translation copies. The Introductory Guide is intended for use in conjunction with the MedDRA Browsers, available with each MedDRA subscription. Changes which are version specific or changes in documentation may be found in the What’s New document. This document is included with the MedDRA release and is also posted on the MSSO Web site under Support Documentation. The MedDRA terminology is maintained under an ISO 9001:2008 registered quality management system. Changes of note in the MedDRA Introductory Guide Version 21.0 include: • Section 4.8 BODY SITE CONSIDERATIONS Additional explanation is provided to support that in general, the abdominal wall is classified in MedDRA as a gastrointestinal structure. • Appendix B: MedDRA CONCEPT DESCRIPTIONS: New Concept Description Product storage has been added Existing Concept Description Medication error has been updated MedDRA Introductory Guide Version 21.0 ii March 2018 000148 Acknowledgements Acknowledgements MedDRA® trademark is registered by IFPMA on behalf of ICH. The following sources of information are also acknowledged: Diagnostic and Statistical Manual of Mental Disorders, Fifth Edition (DSM-5) Copyright 2013 American Psychiatric Association. ICD-9-CM, International Classification of Diseases, Ninth Revision, Clinical Modification, Copyright 1998 Medicode, Inc. COSTART Thesaurus Fifth Edition, Copyright 1995 US Food and Drug Administration (FDA). Hoechst Adverse Reaction Terminology System (HARTS), Copyright 1992 Aventis Pharma.
    [Show full text]
  • Pituitary Metastasis Unveiling a Lung Adenocarcinoma
    ID: 20-0211 -20-0211 A M Lopes and others Pituitary metastasis and lung ID: 20-0211; February 2021 adenocarcinoma DOI: 10.1530/EDM-20-0211 Pituitary metastasis unveiling a lung adenocarcinoma Ana M Lopes 1, Josué Pereira2, Isabel Ribeiro3, Ana Martins da Silva4,5, Henrique Queiroga6,7 and Cláudia Amaral1 1Endocrinology Department, Centro Hospitalar e Universitário do Porto, EPE, Porto, Portugal, 2Neurosurgery Correspondence Department, Centro Hospitalar de São João, EPE, Porto, Portugal, 3Neurosurgery Department, 4Neurology Department, should be addressed Centro Hospitalar e Universitário do Porto, EPE, Porto, Portugal, 5Unidade Multidisciplinar de Investigação Biomédica, to A M Lopes Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Portugal, 6Pulmonology Department, Email Centro Hospitalar de São João, EPE, Porto, Portugal, and 7Faculty of Medicine, Porto University, Porto, Portugal [email protected] Summary Pituitary metastasis (PM) can be the initial presentation of an otherwise unknown malignancy. As PM has no clinical or radiological pathognomonic features, diagnosis is challenging. The authors describe the case of a symptomatic PM that revealed a primary lung adenocarcinoma. A 62-year-old woman with multiple sclerosis and no history of malignancy, incidentallypresentedwithadiffuselyenlargedandhomogeneouslyenhancingpituitaryglandassociatedwithstalk enlargement. Clinical and biochemical evaluation revealed anterior hypopituitarism and diabetes insipidus. Hypophysitis was considered the most likely diagnosis. However, rapid visual deterioration and pituitary growth raised the suspicion of metastatic involvement. A search for systemic malignancy was performed, and CT revealed a lung mass, which proved to be a lung adenocarcinoma. Accordingly, the patient was started on immunotherapy. Resection of the pituitary lesion was performed, and histopathology analysis revealed metastatic lung adenocarcinoma. Following surgery, the patient underwent radiotherapy.
    [Show full text]