IL-33 Activates Tumor Stroma to Promote Intestinal Polyposis
IL-33 activates tumor stroma to promote PNAS PLUS intestinal polyposis Rebecca L. Maywalda, Stephanie K. Doernerb, Luca Pastorellic,d,e, Carlo De Salvoc, Susan M. Bentona, Emily P. Dawsona, Denise G. Lanzaa, Nathan A. Bergerb,f,g,h, Sanford D. Markowitzh,i,j, Heinz-Josef Lenzk, Joseph H. Nadeaul, Theresa T. Pizarroc, and Jason D. Heaneya,m,n,1 aDepartment of Molecular and Human Genetics, mDan L. Duncan Cancer Center, and nTexas Medical Center Digestive Diseases Center, Baylor College of Medicine, Houston, TX 77030; Departments of bGenetics and Genome Sciences, cPathology, fBiochemistry, and iMedicine, gCenter for Science, Health and Society, hCase Comprehensive Cancer Center, and jUniversity Hospitals Case Medical Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106; dDepartment of Biomedical Sciences for Health, University of Milan, Milan 20133, Italy; eGastroenterology and Gastrointestinal Endoscopy Unit, Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Donato, San Donato Milanese 20097, Italy; lPacific Northwest Research Institute, Seattle, WA 98122; and kDivision of Medical Oncology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033 Edited by Charles A. Dinarello, University of Colorado Denver, Aurora, CO, and approved April 2, 2015 (received for review November 25, 2014) Tumor epithelial cells develop within a microenvironment consist- epithelial restitution and proliferation (6, 7). The CRC stroma ing of extracellular matrix, growth factors, and cytokines produced acquires a similar activated phenotype and produces the same by nonepithelial stromal cells. In response to paracrine signals from soluble factors and ECM components associated with inflammation tumor epithelia, stromal cells modify the microenvironment to pro- and wound healing to promote proliferation and survival of trans- mote tumor growth and metastasis.
[Show full text]