Intel Stratix 10 Avalon-MM Interface for PCI Express Solutions User

Total Page:16

File Type:pdf, Size:1020Kb

Intel Stratix 10 Avalon-MM Interface for PCI Express Solutions User L-tile and H-tile Avalon® Memory- mapped Intel® FPGA IP for PCI Express* User Guide Updated for Intel® Quartus® Prime Design Suite: 21.1 Subscribe UG-20033 | 2021.05.27 Send Feedback Latest document on the web: PDF | HTML Contents Contents 1. Introduction................................................................................................................... 5 1.1. Avalon-MM Interface for PCIe.................................................................................. 5 1.2. Features...............................................................................................................6 1.3. Release Information ..............................................................................................8 1.4. Device Family Support ...........................................................................................8 1.5. Recommended Fabric Speed Grades......................................................................... 9 1.6. Performance and Resource Utilization .................................................................... 10 1.7. Transceiver Tiles.................................................................................................. 10 1.8. PCI Express IP Core Package Layout.......................................................................11 1.9. Channel Availability..............................................................................................15 2. Quick Start Guide.......................................................................................................... 17 2.1. Design Components............................................................................................. 17 2.2. Directory Structure.............................................................................................. 18 2.3. Generating the Design Example............................................................................. 19 2.4. Simulating the Design Example..............................................................................21 2.5. Compiling the Design Example and Programming the Device..................................... 22 2.6. Installing the Linux Kernel Driver........................................................................... 23 2.7. Running the Design Example Application................................................................. 23 3. Interface Overview....................................................................................................... 25 3.1. Avalon-MM DMA Interfaces when Descriptor Controller Is Internally Instantiated.......... 25 3.2. Avalon-MM DMA Interfaces when Descriptor Controller is Externally Instantiated.......... 29 3.3. Other Avalon-MM Interfaces.................................................................................. 30 3.3.1. Avalon-MM Master Interfaces ....................................................................31 3.3.2. Avalon-MM Slave Interfaces.......................................................................32 3.3.3. Control Register Access (CRA) Avalon-MM Slave...........................................32 3.4. Clocks and Reset................................................................................................. 33 3.5. System Interfaces................................................................................................33 4. Parameters .................................................................................................................. 35 4.1. Avalon-MM Settings..............................................................................................36 4.2. Base Address Registers.........................................................................................37 4.3. Device Identification Registers...............................................................................38 4.4. PCI Express and PCI Capabilities Parameters........................................................... 39 4.4.1. Device Capabilities................................................................................... 39 4.4.2. Link Capabilities ......................................................................................39 4.4.3. MSI and MSI-X Capabilities ...................................................................... 39 4.4.4. Slot Capabilities ......................................................................................40 4.4.5. Power Management .................................................................................41 4.4.6. Vendor Specific Extended Capability (VSEC)................................................ 42 4.5. Configuration, Debug and Extension Options........................................................... 42 4.6. PHY Characteristics ............................................................................................. 43 4.7. Example Designs................................................................................................. 43 5. Designing with the IP Core........................................................................................... 44 5.1. Generation..........................................................................................................44 5.2. Simulation.......................................................................................................... 44 ® ® L-tile and H-tile Avalon Memory-mapped Intel FPGA IP for PCI Express* Send Feedback User Guide 2 Contents 5.3. IP Core Generation Output (Intel Quartus Prime Pro Edition)......................................45 5.4. Channel Layout and PLL Usage.............................................................................. 48 6. Block Descriptions........................................................................................................ 54 6.1. Interfaces........................................................................................................... 55 6.1.1. Intel Stratix 10 DMA Avalon-MM DMA Interface to the Application Layer......... 55 6.1.2. Avalon-MM Interface to the Application Layer...............................................67 6.1.3. Clocks and Reset..................................................................................... 72 6.1.4. Interrupts............................................................................................... 73 6.1.5. Flush Requests........................................................................................ 74 6.1.6. Serial Data, PIPE, Status, Reconfiguration, and Test Interfaces ......................75 7. Registers...................................................................................................................... 83 7.1. Configuration Space Registers............................................................................... 83 7.1.1. Register Access Definitions........................................................................85 7.1.2. PCI Configuration Header Registers............................................................ 86 7.1.3. PCI Express Capability Structures...............................................................87 7.1.4. Intel Defined VSEC Capability Header ........................................................ 90 7.1.5. Uncorrectable Internal Error Status Register ............................................... 92 7.1.6. Uncorrectable Internal Error Mask Register..................................................92 7.1.7. Correctable Internal Error Status Register .................................................. 93 7.1.8. Correctable Internal Error Mask Register .................................................... 93 7.2. Avalon-MM DMA Bridge Registers........................................................................... 94 7.2.1. PCI Express Avalon-MM Bridge Register Address Map....................................94 7.2.2. DMA Descriptor Controller Registers .......................................................... 99 8. Programming Model for the DMA Descriptor Controller...............................................105 8.1. Read DMA Example ........................................................................................... 107 8.2. Write DMA Example ...........................................................................................110 8.3. Software Program for Simultaneous Read and Write DMA ....................................... 113 8.4. Read DMA and Write DMA Descriptor Format .........................................................114 9. Programming Model for the Avalon-MM Root Port.......................................................116 9.1. Root Port TLP Data Control and Status Registers.....................................................116 9.2. Sending a TLP................................................................................................... 117 9.3. Receiving a Non-Posted Completion TLP................................................................ 117 9.4. Example of Reading and Writing BAR0 Using the CRA Interface................................ 117 10. Avalon-MM Testbench and Design Example ..............................................................121 10.1. Avalon-MM Endpoint Testbench ......................................................................... 122 10.2. Endpoint Design Example.................................................................................. 123 10.2.1. BAR Setup...........................................................................................125 10.3. Avalon-MM Test Driver Module............................................................................125
Recommended publications
  • Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI Infrastructure
    UNLV Theses, Dissertations, Professional Papers, and Capstones 5-1-2014 Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI Infrastructure Bill Jason Pidlaoan Tomas University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/thesesdissertations Part of the Computer Engineering Commons, Computer Sciences Commons, and the Electrical and Computer Engineering Commons Repository Citation Tomas, Bill Jason Pidlaoan, "Co-Emulation of Scan-Chain Based Designs Utilizing SCE-MI Infrastructure" (2014). UNLV Theses, Dissertations, Professional Papers, and Capstones. 2152. http://dx.doi.org/10.34917/5836171 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Theses, Dissertations, Professional Papers, and Capstones by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. CO-EMULATION OF SCAN-CHAIN BASED DESIGNS UTILIZING SCE-MI INFRASTRUCTURE By: Bill Jason Pidlaoan Tomas Bachelor‟s Degree of Electrical Engineering Auburn University 2011 A thesis submitted
    [Show full text]
  • Simulating Altera Designs
    1. Simulating Altera Designs May 2013 QII53025-13.0.0 QII53025-13.0.0 This document describes simulating designs that target Altera® devices. Simulation verifies design behavior before device programming. The Quartus® II software supports RTL and gate level design simulation in third-party EDA simulators. Altera Simulation Overview Simulation involves setting up your simulator working environment, compiling simulation model libraries, and running your simulation. Generate simulation files in an automated or custom flow. Refer to Figure 1–1 and Table 1–3. Figure 1–1. Simulation in Quartus II Design Flow Design Entry (HDL, Qsys, DSP Builder) Altera Simulation RTL Simulation Models Quartus II Design Flow Gate-Level Simulation Post-synthesis functional Post-synthesis Analysis & Synthesis simulation netlist functional simulation EDA Fitter Netlist Post-fit functional Post-fit functional (place-and-route) Writer simulation netlist simulation Post-fit timing TimeQuest Timing Analyzer (Optional)Post-fit timing Post-fit simulation netlist (1) timing simulation simulation (3) Device Programmer (1) Timing simulation is not supported for Arria® V, Cyclone® V, Stratix® V, and newer families. You can use the Quartus II NativeLink feature to automatically generate simulation files and scripts. NativeLink can launch your simulator a from within the Quartus II software. Use a custom flow for more control over all aspects of simulation file generation. © 2013 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html.
    [Show full text]
  • PCI-X & PCI Core User's Guide
    PCI-X & PCI Core User's Guide Version 7.1.0 27-Feb-2007 © PLD Applications, 1996-2007 PLD Applications Web: http://www.plda.com Europarc Pichaury A2 Email: [email protected] 1330, rue Guillibert USA : 1 866 513 0362 (toll free) 13856 Aix-en-Provence Intl : + 33 442 393 600 CEDEX 3 - France Fax : + 33 442 394 902 Associate Member PCI-X & PCI Core User's Guide Features General ° 32-bit/64-bit PCI-X & PCI master/target interface ° Supports bus speed up to 133 MHz ° Multi-function core can implement up to 2 independent functions ° Full support for 64-bit addressing ° PCI-X Specification 2.0a mode 1 compliant ° PCI Specification 3.0 compliant ° Supports PCI power management ° Built-in support for in-site programming through JTAG interface ° Supports Message Signalled Interrupts Customization ° Easy customization with the PCI Wizard's user interface and on-line help. ° PCI Wizard has built-in support for VHDL and Verilog. ° All features can be parameterized, removing all unused logic ° Full plug-and-play support Configuration ° Supports all required and optional type 0 configuration registers ° Up to 6 BARs plus expansion ROM can be implemented ° Up to 32 user defined configuration registers Data transfer ° Supports up to 4KB burst transfers with zero wait-state insertion. ° Supports all memory and I/O commands ° Supports interrupt acknowledge cycles in target mode ° Can insert wait-states and generate all types of terminations ° Up to two split channels and 32 outstanding split transactions DMA ° Up to 4 independent DMA channels with rotating priority ° Flexible backend interface can directly control FIFO devices.
    [Show full text]
  • In the United States District Court for the Eastern District of Texas Tyler Division
    Case 6:06-cv-00480-LED Document 1 Filed 11/08/06 Page 1 of 8 IN THE UNITED STATES DISTRICT COURT FOR THE EASTERN DISTRICT OF TEXAS TYLER DIVISION NARPAT BHANDARI § § Plaintiff § § v. § Case No. 6:06-cv-480 § CADENCE DESIGN SYSTEMS, INC.; § MAGMA DESIGN AUTOMATION, § INC.; DYNALITH SYSTEMS, INC.; § JURY TRIAL DEMANDED ALTERA CORP.; MENTOR GRAPHICS § CORP.; AND ALDEC, INC. § § Defendants § § § § § PLAINTIFF’S ORIGINAL COMPLAINT Plaintiff, Narpat Bhandari (“Bhandari”), files this Original Complaint against Defendants, Cadence Design Systems, Inc. (“Cadence”), Magma Design Automation, Inc. (“Magma”), Dynalith Systems, Inc. (“Dynalith”), Altera Corp. (“Altera”), Mentor Graphics Corp. (“Mentor”), and Aldec, Inc. (“Aldec”) and alleges as follows: THE PARTIES 1. Bhandari is an individual who resides at 14530 Deer Park Court, Los Gatos, CA 95032. 2. Cadence, on information and belief, is a corporation organized under the laws of the State of Delaware. Cadence is doing business in Texas, and, on information and belief, has a principal place of business at 2655 Seely Ave, Building 5, San Jose, CA 95134-1931. Case 6:06-cv-00480-LED Document 1 Filed 11/08/06 Page 2 of 8 Cadence may be served with process by serving its registered agent, CT Corp System at 350 N. St. Paul Street, Dallas, TX 75201. 3. Magma, on information and belief, is a corporation organized under the laws of the State of Delaware. Magma is doing business in Texas, and, on information and belief, has a principal place of business at 5460 Bayfront Plaza, Santa Clara, CA 95054. Magma may be served with process by serving its registered agent, Corporation Service Company, d/b/a CSC-Lawyers Incorporating Service Company at 701 Brazos Street Suite 1050, Austin, TX 78701.
    [Show full text]
  • Quartus Prime Standard Edition Handbook Volume 3: Verification
    Quartus Prime Standard Edition Handbook Volume 3: Verification Subscribe QPS5V3 101 Innovation Drive 2015.11.02 San Jose, CA 95134 Send Feedback www.altera.com Simulating Altera Designs 1 2015.11.02 QPS5V3 Subscribe Send Feedback This document describes simulating designs that target Altera devices. Simulation verifies design behavior before device programming. The Quartus® Prime software supports RTL- and gate-level design simulation in supported EDA simulators. Simulation involves setting up your simulator working environ‐ ment, compiling simulation model libraries, and running your simulation. Simulator Support The Quartus Prime software supports specific EDA simulator versions for RTL and gate-level simulation. Table 1-1: Supported Simulators Vendor Simulator Version Platform Aldec Active-HDL 10.2 Update 2 Windows Aldec Riviera-PRO 2015.06 Windows, Linux Cadence Incisive Enterprise 14.2 Linux Mentor ModelSim-Altera (provided) 10.4b Windows, Linux Graphics Mentor ModelSim PE 10.4b Windows Graphics Mentor ModelSim SE 10.4b Windows, Linux Graphics Mentor QuestaSim 10.4b Windows, Linux Graphics Synopsys VCS/VCS MX 2014,12-SP1 Linux Simulation Levels The Quartus Prime software supports RTL and gate-level simulation of IP cores in supported EDA simulators. © 2015 Altera Corporation. All rights reserved. ALTERA, ARRIA, CYCLONE, ENPIRION, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/common/legal.html. Altera warrants performance ISO of its semiconductor products to current specifications in accordance with Altera's standard warranty, but reserves the right to make changes to any 9001:2008 products and services at any time without notice.
    [Show full text]
  • Xilinx Xcell 25
    Issue 25 Second Quarter 1997 THE QUARTERLYX JOURNALCELL FOR XILINX PROGRAMMABLE LOGIC USERS R PRODUCT INFORMATION The Programmable Xilinx Delivers Next Logic CompanySM Generation Platform Inside This Issue: The new XACTstep version M1 release enables GENERAL The Fawcett - FPGAs, Power users to increase design performance while & Packages .......................................... 2 leveraging high-level design methodologies ... Guest Editorial: See pages 12 & 19 HardWire and PCI LogiCOREs ...... 3 Customer Success Story ...................... 5 WebLINX Enhancements .................... 6 XC4000 Series: The World’s “Power of Innovation” Seminars ...... 7 Technical Training Update ................. 7 Upcoming Events .................................. 8 Largest and Fastest FPGAs New Product Literature ....................... 8 The world’s highest-capacity FPGA, the XC4085XL, Financial Results .................................... 8 begins sampling as the world’s highest-performance PRODUCTS FPGAs, the XC4000E-1 family, move into production ... XC4000E-1 Speed Grade .................... 9 See Pages 9 & 11 XC95288 CPLD in Production ........ 10 XC4085XL Now Largest FPGA ....... 11 New 64,000-Gate XC6264 .............. 11 DESIGN TIPS & HINTS DEVELOPMENT SYSTEMS XACTstep M1 Software Released .. 12 Xilinx Shipping Cadence Interface . 13 XC9500 CPLD CORE Generator for PCI .................. 14 DSP CORE Generator ........................ 15 Programming HINTS & ISSUES Simple XC9500 CPLD Guidelines Programming Guidelines ............... 16 To reap
    [Show full text]
  • Volume 12: PCIE Configuration Registers (Haswell)
    © 2013 Intel Corporation Intel Open Source Graphics Programmer’s Reference Manual (PRM) for the 2013 Intel® Core™ Processor Family, including Intel HD Graphics, Intel Iris™ Graphics and Intel Iris Pro Graphics Volume 12: PCIE Configuration Registers (Haswell) 12/18/2013 1 Copyright INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. A "Mission Critical Application" is any application in which failure of the Intel Product could result, directly or indirectly, in personal injury or death. SHOULD YOU PURCHASE OR USE INTEL'S PRODUCTS FOR ANY SUCH MISSION CRITICAL APPLICATION, YOU SHALL INDEMNIFY AND HOLD INTEL AND ITS SUBSIDIARIES, SUBCONTRACTORS AND AFFILIATES, AND THE DIRECTORS, OFFICERS, AND EMPLOYEES OF EACH, HARMLESS AGAINST ALL CLAIMS COSTS, DAMAGES, AND EXPENSES AND REASONABLE ATTORNEYS' FEES ARISING OUT OF, DIRECTLY OR INDIRECTLY, ANY CLAIM OF PRODUCT LIABILITY, PERSONAL INJURY, OR DEATH ARISING IN ANY WAY OUT OF SUCH MISSION CRITICAL APPLICATION, WHETHER OR NOT INTEL OR ITS SUBCONTRACTOR WAS NEGLIGENT IN THE DESIGN, MANUFACTURE, OR WARNING OF THE INTEL PRODUCT OR ANY OF ITS PARTS. Intel may make changes to specifications and product descriptions at any time, without notice.
    [Show full text]
  • Cyberworkbench® High-Level Synthesis and Verification By
    CyberWorkBench® High-Level Synthesis and Verification by: SystemC ANSI-C High-Level Synthesis and Verification CyberWorkBench® enables higher design efficiency, low power Source Code Debugger and high performance of the chip by allowing designers to Behavioral Synthesizer implement hardware at the algorithmic level. This “All-in-C” Property Checker Behavioral Simulator high-level synthesis and verification tool set for ASIC and FPGAs Library Characterizer Cycle Level Simulator C-RTL (Xilinx/Altera) reduces the development time and cost Equivalence Prover QoR Analyzer Testbench Generator significantly. Formal Verification High-Level Synthesis Simulation Designers can describe hardware at higher abstraction level using SystemC and ANSI-C and using CyberWorkBench they can generate highly optimized RTL for their ASIC and FPGAs RTL (Xilinx/Altera) chip. Automatic pipelining, power optimization and powerful parallelism extraction allows designers to ASIC FPGA generate smaller and low power designs compared to manual RTL design approach. “All-in-C” Synthesis Behavioral synthesizer in CyberWorkBench can synthesize any Top Benef its type of application including control dominated circuits and datapath. This best-in-class high-level synthesizer features • Support for both control dominated circuits and automatic pipelining, power optimization and powerful datapath module parallelism extraction to reduce chip area and power through maximum resource sharing. Designers with IP/RTL legacy Dedicated technology support for Altera® & Xilinx® • modules can use top level structural description generator FPGAs and can easily connect to C-based modules. To improve • Best-in-class High-Level Synthesizer that features the design productivity CyberWorkBench also includes automatic pipelining, power optimization, powerful numerous behavioral IPs that can be retargeted to different parallelism extraction implementation technologies or system requirements.
    [Show full text]
  • Starting Active-HDL As the Default Simulator in Xilinx
    7/29/13 Support - Resources - Documentation - Application Notes - Aldec 日本語 Sign In | Register Search aldec.com SOLUTIONS PRODUCTS EVENTS COMPANY SUPPORT DOWNLOADS Home Support Resources Documentation Application Notes RESOURCES Starting Active-HDL as the Default Simulator in Xilinx ISE « Prev | Next » Documentation Application Notes Introduction FAQ This document describes how to start Active-HDL simulator from Xilinx ISE Project Navigator to run behavioral and timing simulations. This Manuals application note has been verified on Active-HDL 9.1 and Xilinx ISE 13.4. This interface allows users to run mixed VHDL, Verilog and White Papers System Verilog (design ) simulation using Active-HDL as a default simulator. Tutorials Installing Xilinx libraries in Active-HDL Multimedia Demonstration In order to run the simulation successfully, depending on the design both VHDL and Verilog libraries for Xilinx may have to be installed in Videos Active-HDL. You can check what libraries are currently installed in your Active-HDL using Library Manager tool. You can access the Library Manager from the menu View>Library Manger>. Recorded Webinars You can install precompiled libraries in multiple ways: 1. If you are using Active-HDL DVD to install the software, during the installation, you will get the option to select and install the Xilinx libraries 2. If you have received a web link to download Active-HDL, on the same page you will find the links to download Xilinx libraries. 3. At any time you can visit the update center to download the latest Xilinx libraries at http://www.aldec.com/support Set Active-HDL as Simulator in Xilinx Project Navigator After creating a project, open your Xilinx project in ISE Project Navigator.
    [Show full text]
  • Riviera-PRO 2012.06
    R e l e a s e N o t e s Riviera-PRO 2012.06 Release Notes www.aldec.com This page is intentionally left blank. TABLE OF CONTENTS Table of Contents Release Notes for Riviera-PRO 2012.06 ...................................................................................................... 4 What's New ............................................................................................................................................. 4 Performance Improvements ............................................................................................................... 4 SystemVerilog Simulation ................................................................................................................... 4 OVM and UVM Libraries ..................................................................................................................... 5 DPI Interface ....................................................................................................................................... 5 Mixed VHDL and SystemVerilog Simulation ....................................................................................... 5 VCD Files ........................................................................................................................................... 6 Interface to SystemVue ...................................................................................................................... 6 Macro Commands .............................................................................................................................
    [Show full text]
  • HES-DVM™ HW/SW Validation Platform
    HES-DVM™ HW/SW Validation Platform ● Bit-Level Acceleration AXI4, AHB, APB, OCP ● ● SCE-MI Emulation USB 2.0, PCIe, Ethernet ● ● Prototyping UART, I2C, JTAG ● ● Virtual Modeling Transactors Verification Hybrid Verification Platform Interfaces HES-DVMTM is a Hybrid Verification and Validation Platform for TM Hardware and Software developers of SoC and ASIC designs up HES Hardware Emulation to 144M ASIC gates. Utilizing the latest in Xilinx® FPGA Solutions ● Design Partitioning Setup/DVM Debugging ● Static & Dynamic Probes technology and the most up-to-date modeling interfaces for ● ASIC to FPGA ● Siloti/Verdi integration Conversion ● Memory visibility & API co-emulation, HES-DVM provides a high-speed emulation ● Memory Mapping ● Speed Adapters solution for pre-silicon test and debug with hardware speeds, HES-5 ● Prototyping HES-7 ● Boards real-time data interfaces, and an automated design In-House ● environment. Partnered with Virtual Platform integration, API/ GUI interfaces for memory and signal debug, and a library of synthesizable peripheral transactors, design teams are able to reduce the verification cycle, increase throughput, and Acceleration, Emulation, and reduce overall costs. Hardware Prototyping HES-DVM enables hardware design teams with multiple modes of high-speed verification and validation including simulation Top Features acceleration, SCE-MI 2.1 emulation (Macro/ DPI Function based), and hardware prototyping for chip and system level verification of SoC and ASIC systems. Combined with fully • Bit-Level Simulation Acceleration integrated array of debugging tools allowing 100% visibility • SoC HW/SW Co-Verification into the DUT and speed adapters to connect industry standard interfaces to the design environment, verification teams are Transaction Level Emulation with SCE-MI 2.1, • able to reduce time and risks of silicon re-spins.
    [Show full text]
  • Creating a Pci Express Interconnect in the Gem5 Simulator
    CREATING A PCI EXPRESS INTERCONNECT IN THE GEM5 SIMULATOR BY KRISHNA PARASURAM SRINIVASAN THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering in the Graduate College of the University of Illinois at Urbana-Champaign, 2018 Urbana, Illinois Adviser: Associate Professor Nam Sung Kim ABSTRACT In this thesis, the objective was to implement a PCI (Peripheral Component Interconnect) Express interconnect in the gem5 architecture simulator. The interconnect was designed with the goal of aiding accurate modeling of PCI Express-based devices in gem5 in the future. The PCI Express interconnect that was created consisted of a root complex, PCI Express switch, as well as individual PCI Express links. Each of these created components can work independently, and can be easily integrated into the existing gem5 platforms for the ARM Instruction Set Architecture. The created PCI Express interconnect was evaluated against a real PCI Express interconnect present on an Intel Xeon server platform. The bandwidth offered by both interconnects was compared by reading data from storage devices using the Linux utility “dd”. The results indicate that the gem5 PCI Express interconnect can provide between 81% - 91.6% of the bandwidth of the real PCI Express interconnect. However, architectural differences between the gem5 and Intel Xeon platforms used, as well as unimplemented features of the PCI Express protocol in the gem5 PCI Express interconnect, necessitate more strenuous validation
    [Show full text]