Phoma Narcissi) Strains for Enzymatic Attack and Defence Capabilities Against Phytoalexins
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Full Article in PDF Format
Cryptogamie, Mycologie, 2015, 36 (2): 225-236 © 2015 Adac. Tous droits réservés Poaceascoma helicoides gen et sp. nov., a new genus with scolecospores in Lentitheciaceae Rungtiwa PHOOkAmSAk a,b,c,d, Dimuthu S. mANAmGOdA c,d, Wen-jing LI a,b,c,d, Dong-Qin DAI a,b,c,d, Chonticha SINGTRIPOP a,b,c,d & kevin d. HYdE a,b,c,d* akey Laboratory for Plant diversity and Biogeography of East Asia, kunming Institute of Botany, Chinese Academy of Sciences, kunming 650201, China bWorld Agroforestry Centre, East and Central Asia, kunming 650201, China cInstitute of Excellence in Fungal Research, mae Fah Luang University, Chiang Rai 57100, Thailand dSchool of Science, mae Fah Luang University, Chiang Rai 57100, Thailand Abstract – An ophiosphaerella-like species was collected from dead stems of a grass (Poaceae) in Northern Thailand. Combined analysis of LSU, SSU and RPB2 gene data, showed that the species clusters with Lentithecium arundinaceum, Setoseptoria phragmitis and Stagonospora macropycnidia in the family Lentitheciaceae and is close to katumotoa bambusicola and Ophiosphaerella sasicola. Therefore, a monotypic genus, Poaceascoma is introduced to accommodate the scolecosporous species Poaceascoma helicoides. The species has similar morphological characters to the genera Acanthophiobolus, Leptospora and Ophiosphaerella and these genera are compared. Lentitheciaceae / Leptospora / Ophiosphaerella / phylogeny InTRoDuCTIon Lentitheciaceae was introduced by Zhang et al. (2012) to accommodate massarina-like species in the suborder Massarineae. In the recent monograph of Dothideomycetes (Hyde et al., 2013), the family Lentitheciaceae comprised the genera Lentithecium, katumotoa, keissleriella and Tingoldiago and all species had fusiform to cylindrical, 1-3-septate ascospores and mostly occurred on grasses. -
Influence of Mulching and Foliar Nutrition on The
Journal of Elementology ISSN 1644-2296 Błażewicz-Woźniak M., Wach D., Najda A., Mucha S. 2019. Influence of mulching and foliar nutrition on the formation of bulbs and content of some components in leaves and bulbs of Spanish bluebell (Hyacinthoides hispanica (Mill.) Rothm.). J. Elem., 24(1): 305-318. DOI: 10.5601/jelem.2018.23.1.1646 RECEIVED: 12 March 2018 ACCEPTED: 23 August 2018 ORIGINAL PAPER INFLUENCE OF MULCHING AND FOLIAR NUTRITION ON THE FORMATION OF BULBS AND CONTENT OF SOME COMPONENTS IN LEAVES AND BULBS OF SPANISH BLUEBELL (HYACINTHOIDES HISPANICA (MILL.) ROTHM.)* Marzena Błażewicz-Woźniak1, Dariusz Wach1, Agnieszka Najda2, Sylwia Mucha1 1 Department of Cultivation and Nutrition of Plants 2 Department of Vegetable Crops and Medicinal Plants University of Life Sciences in Lublin, Poland ABSTRACT Hyacinthoides hispanica (Mill.) Rothm. is a typical spring geophyte and has been cultivated for a long time in gardens as an ornamental bulbous plant. Bulbs are not only the storage and dor- mant organs, but also a means for the plant’s vegetative reproduction. In Poland, due to the climate, the wintering and reproduction of this plant can be a problem. The aim of the study was to determine the effect of foliar nutrition using phosphorous fertilizer and soil mulching on the formation of bulbs and content of some components in leaves and bulbs of H. hispanica. To this end, a field experiment was carried out in 2010-2012. Mulching the soil with pine bark had a beneficial effect on the weight of bulbs in the core, the average weight of one bulb and the weight, length, diameter and circumference of the largest bulb from the H. -
Download Full Article in PDF Format
cryptogamie Mycologie 2019 ● 40 ● 7 Vittaliana mangrovei Devadatha, Nikita, A.Baghela & V.V.Sarma, gen. nov, sp. nov. (Phaeosphaeriaceae), from mangroves near Pondicherry (India), based on morphology and multigene phylogeny Bandarupalli DEVADATHA, Nikita MEHTA, Dhanushka N. WANASINGHE, Abhishek BAGHELA & V. Venkateswara SARMA art. 40 (7) — Published on 8 November 2019 www.cryptogamie.com/mycologie DIRECTEUR DE LA PUBLICATION : Bruno David, Président du Muséum national d’Histoire naturelle RÉDACTEUR EN CHEF / EDITOR-IN-CHIEF : Bart BuyCk ASSISTANT DE RÉDACTION / ASSISTANT EDITOR : Étienne CAyEuX ([email protected]) MISE EN PAGE / PAGE LAYOUT : Étienne CAyEuX RÉDACTEURS ASSOCIÉS / ASSOCIATE EDITORS Slavomír AdAmčík Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Dúbravská cesta 9, Sk-84523, Bratislava, Slovakia André APTROOT ABL Herbarium, G.v.d. Veenstraat 107, NL-3762 Xk Soest, The Netherlands Cony decock Mycothèque de l’université catholique de Louvain, Earth and Life Institute, Microbiology, université catholique de Louvain, Croix du Sud 3, B-1348 Louvain-la- Neuve, Belgium André FRAITURE Botanic Garden Meise, Domein van Bouchout, B-1860 Meise, Belgium kevin HYDE School of Science, Mae Fah Luang university, 333 M.1 T.Tasud Muang District - Chiang Rai 57100, Thailand Valérie HOFSTETTER Station de recherche Agroscope Changins-Wädenswil, Dépt. Protection des plantes, Mycologie, CH-1260 Nyon 1, Switzerland Sinang HONGSANAN College of life science and oceanography, ShenZhen university, 1068, Nanhai Avenue, Nanshan, ShenZhen 518055, China egon HorAk Schlossfeld 17, A-6020 Innsbruck, Austria Jing LUO Department of Plant Biology & Pathology, Rutgers university New Brunswick, NJ 08901, uSA ruvishika S. JAYAWARDENA Center of Excellence in Fungal Research, Mae Fah Luang university, 333 M. -
STUDY on GROWTH, DEVELOPMENT and SOME BIOCHEMICAL ASPECTS of SEVERAL VARIETIES of Nerine
• STUDY ON GROWTH, DEVELOPMENT AND SOME BIOCHEMICAL ASPECTS OF SEVERAL VARIETIES OF Nerine by KUMALA DEWI partia,1 Submitted in,fulfilment of the requirements for the A degree of Master of Science Studies Department of Plant Science University of Tasmania May, 1993 DECLARATION To the best of my knowledge and belief, this thesis contains no material which has been submitted for the award of any other degree or diploma, nor does it contain any paraphrase of previously published material except where due reference is made in the text. Kumala Dewi ii ABSTRACT Nerine fothergillii bulbs were stored at different temperatures for a certain period of time and then planted and grown in an open condition. The effect of the different storage temperatures on carbohydrate -; content and endogenous gibberellins w Ct,5 examined in relation to flowering. Flowering percentage and flower number in each umbel was reduced when the bulbs were stored at 300 C while bulbs which received 50 C treatment possess earlier flowering and longer flower stalksthan bulbs without 5 0 C storage treatment. Carbohydrates in both outer and inner scales of N. fothergillii were examined semi-quantitatively by paper chromatography. Glucose, fructose and sucrose have been identified from paper chromatogramS. Endogenous gibberellins in N. fothergillii have been identified by GC - SIM and full mass spectra from GCMS. These include GA19, GA20 and G Al, their presence suggests the occurence of the early 13 - hydroxylation pathway. The response of N. bowdenii grown under Long Day (LD) and Short Day (SD) conditions w as studied. Ten plants from each treatment were examined at intervalsof 4 weeks. -
Biology and Recent Developments in the Systematics of Phoma, a Complex Genus of Major Quarantine Significance Reviews, Critiques
Fungal Diversity Reviews, Critiques and New Technologies Reviews, Critiques and New Technologies Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance Aveskamp, M.M.1*, De Gruyter, J.1, 2 and Crous, P.W.1 1CBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands 2Plant Protection Service (PD), P.O. Box 9102, 6700 HC Wageningen, The Netherlands Aveskamp, M.M., De Gruyter, J. and Crous, P.W. (2008). Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Diversity 31: 1-18. Species of the coelomycetous genus Phoma are ubiquitously present in the environment, and occupy numerous ecological niches. More than 220 species are currently recognised, but the actual number of taxa within this genus is probably much higher, as only a fraction of the thousands of species described in literature have been verified in vitro. For as long as the genus exists, identification has posed problems to taxonomists due to the asexual nature of most species, the high morphological variability in vivo, and the vague generic circumscription according to the Saccardoan system. In recent years the genus was revised in a series of papers by Gerhard Boerema and co-workers, using culturing techniques and morphological data. This resulted in an extensive handbook, the “Phoma Identification Manual” which was published in 2004. The present review discusses the taxonomic revision of Phoma and its teleomorphs, with a special focus on its molecular biology and papers published in the post-Boerema era. Key words: coelomycetes, Phoma, systematics, taxonomy. -
Taxonomy and Multigene Phylogenetic Evaluation of Novel Species in Boeremia and Epicoccum with New Records of Ascochyta and Didymella (Didymellaceae)
Mycosphere 8(8): 1080–1101 (2017) www.mycosphere.org ISSN 2077 7019 Article Doi 10.5943/mycosphere/8/8/9 Copyright © Guizhou Academy of Agricultural Sciences Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae) Jayasiri SC1,2, Hyde KD2,3, Jones EBG4, Jeewon R5, Ariyawansa HA6, Bhat JD7, Camporesi E8 and Kang JC1 1 Engineering and Research Center for Southwest Bio-Pharmaceutical Resources of National Education Ministry of China, Guizhou University, Guiyang, Guizhou Province 550025, P.R. China 2Center of Excellence in Fungal Research, Mae Fah Luang University, Chiang Rai 57100, Thailand 3World Agro forestry Centre East and Central Asia Office, 132 Lanhei Road, Kunming 650201, P. R. China 4Botany and Microbiology Department, College of Science, King Saud University, Riyadh, 1145, Saudi Arabia 5Department of Health Sciences, Faculty of Science, University of Mauritius, Reduit, Mauritius 6Department of Plant Pathology and Microbiology, College of BioResources and Agriculture, National Taiwan University, No.1, Sec.4, Roosevelt Road, Taipei 106, Taiwan, ROC. 7No. 128/1-J, Azad Housing Society, Curca, P.O. Goa Velha, 403108, India 89A.M.B. Gruppo Micologico Forlivese “Antonio Cicognani”, Via Roma 18, Forlì, Italy; A.M.B. CircoloMicologico “Giovanni Carini”, C.P. 314, Brescia, Italy; Società per gliStudiNaturalisticidella Romagna, C.P. 144, Bagnacavallo (RA), Italy *Correspondence: [email protected] Jayasiri SC, Hyde KD, Jones EBG, Jeewon R, Ariyawansa HA, Bhat JD, Camporesi E, Kang JC 2017 – Taxonomy and multigene phylogenetic evaluation of novel species in Boeremia and Epicoccum with new records of Ascochyta and Didymella (Didymellaceae). -
Etiology of Spring Dead Spot of Bermudagrass
ETIOLOGY OF SPRING DEAD SPOT OF BERMUDAGRASS By FRANCISCO FLORES Bachelor of Science in Biotechnology Engineering Escuela Politécnica del Ejército Quito, Ecuador 2008 Master of Science in Entomology and Plant Pathology Oklahoma State University Stillwater, Oklahoma 2010 Submitted to the Faculty of the Graduate College of the Oklahoma State University in partial fulfillment of the requirements for the Degree of DOCTOR OF PHILOSOPHY December, 2014 ETIOLOGY OF SPRING DEAD SPOT OF BERMUDAGRASS Thesis Approved: Dr. Nathan Walker Thesis Adviser Dr. Stephen Marek Dr. Jeffrey Anderson Dr. Thomas Mitchell ii ACKNOWLEDGEMENTS I would like to acknowledge all the people who made the successful completion of this project possible. Thanks to my major advisor, Dr. Nathan Walker, who guided me through every step of the process, was always open to answer any question, and offered valuable advice whenever it was needed. Thanks to all the members of my advisory committee, Dr. Stephen Marek, Dr. Jeff Anderson, and Dr. Thomas Mitchell, whose expertise provided relevant insight for solving the problems I found in the way. I also want to thank the department of Entomology and Plant Pathology at Oklahoma State University for being a welcoming family and for keeping things running smoothly. Special thanks to the members of the turfgrass pathology lab, Kelli Black and Andrea Payne, to Dr. Carla Garzón and members of her lab, to Dr. Stephen Marek and members of his lab, and to Dr. Jack Dillwith, who were always eager to help with their technical and intellectual capacities. Thanks to my friends and family, especially to my wife Patricia, who helped me regain my strength several times during this process. -
Approaches to Species Delineation in Anamorphic (Mitosporic) Fungi: a Study on Two Extreme Cases
Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 917 Approaches to Species Delineation in Anamorphic (mitosporic) Fungi: A Study on Two Extreme Cases BY OLGA VINNERE ACTA UNIVERSITATIS UPSALIENSIS UPPSALA 2004 ! ""# $"%"" & ' & & ( ) * + ') , -) ""#) . / . 0 1 2 '% . / *+ ) . ) 3$4) 4 ) ) 5/6 3$788#78!9 74 / ' ' & ' & & ' ' & ' & ) ' + +& & & & ' ) : ' & ' ' ' & + & & & 0 1 & ') 5 5 & & & + ' & ' ) - & ; + + ' & ' + ' ' & ' & ) * & ' ' & < & & ) * + ; & ' & & ' + & & & < & < ' ' & & ' ' & ' + ) ' + < ' & ') 5 + < 5 & ' 0 1 0 1 ) 2 & ' + + & 6. = ' & = ' ) . 7 & & 0 1 + + + ) 2 & ' & + & ' ' ' ) - ' & + ' + ' + & ' + ) . & & & & ' + ' ' & ) /= ' & ' & 6. ' ' ' + 7 ' + & ' ' ' ! ) > + ' ' ' + ) * & & ' & & ' = ' & & ' ' & < +') " # $ & ' ? / ( ' & ' % & ' ( -
United (& States • Department of Agricbltm
UNITED STATES DEPARTMENT OF AGRICBLTM • (& INVENTORY No. 75 Washington, D. c. T Issued February, 1926 SEEDS AND PLANTS IMPORTED BY THE OFFICE OF FOREIGN SEED AND PLANT INTRODUCTION, BUREAU OF PLANT INDUSTRY, DURING THE PERIOD FROM APRIL 1 TO JUNE 30,1923 (NOS. 56791 TO 57679) CONTENTS Page Introductory statement 1 Inventory 3 Index of common and scientific names __ 32 INTRODUCTORY STATEMENT When the first Inventory of Seeds and Plants Imported was prepared in 1898, there were practically no government plant-breeding institutions in existence, and almost all of the plants introduced were for direct trial as new crops. Few wild forms were represented, and almost no collections of seeds which were the result of the hybridization or selection work of foreign plant breeders. To-day, as is particularly evident in this inventory, an exchange between the plant breeders of the world is going on which shows a remarkable activity in this field. This practice should be encouraged, for it opens up a wide field of trial for any new variety, and it can be confidently predicted that out of these newly made and plastic forms are likely to come many great commercial varieties of the future. Forms which in the country of their origin have proved inferior to others may prove superior in some other environment. This inventory contains a record of many selected and previously studied varieties of plants sent by foreign plant-breeding institutions: A collection of peanut varieties from the Department of Agriculture at Buitenzorg, Java (Arachis hypogaea; Nos. 56842 to 56849); a new strain of red clover from Dr. -
Fungal Biology 123 (2019) 517E527
Fungal Biology 123 (2019) 517e527 Contents lists available at ScienceDirect Fungal Biology journal homepage: www.elsevier.com/locate/funbio Evaluation of ITS2 molecular morphometrics effectiveness in species delimitation of Ascomycota e A pilot study * Natesan Sundaresan, Amit Kumar Sahu, Enthai Ganeshan Jagan, Mohan Pandi Department of Molecular Microbiology, School of Biotechnology, Madurai Kamaraj University, Madurai, Tamil Nadu, India article info abstract Article history: Exploring the secondary structure information of nuclear ribosomal internal transcribed spacer 2 (ITS2) Received 15 June 2018 has been a promising approach in species delimitation. However, Compensatory base changes (CBC) Received in revised form concept employed in this approach turns futile when CBC is absent. This prompted us to investigate the 1 April 2019 utility of insertion/deletion (INDELs) and substitutions in fungal delineation at species level. Upon this Accepted 2 May 2019 rationale, 116 strains representing 97 species, belonging to 6 genera (Colletotrichum, Boeremia, Lep- Available online 8 May 2019 tosphaeria, Peyronellaea, Plenodomus and Stagonosporopsis) of Ascomycota were retrieved from Q-bank Corresponding Editor: Gabor M. Kovacs for molecular morphometric analysis. CBC, INDELs and substitutions between the species of their respective genus were recorded. Most species combinations lacked CBC. Among the substitution events, Keywords: transitions were predominant. INDELs were less frequent than the substitutions. These evolutionary CBC events were mapped upon the helices to discern species specific variation sites. In 68 species unique Fungal barcoding variation sites were recognised. The remaining 29 species shared absolute similarity with distinctly INDELs named species. The variation sites catalogued in them overlapped with other distinct species and Sequence-secondary structure resulted in the blurring of species boundaries. -
Molecular Phylogeny of Phoma and Allied Anamorph Genera: Towards a Reclassification of the Phoma Complex
mycological research 113 (2009) 508–519 journal homepage: www.elsevier.com/locate/mycres Molecular phylogeny of Phoma and allied anamorph genera: Towards a reclassification of the Phoma complex Johannes DE GRUYTERa,b,*, Maikel M. AVESKAMPa, Joyce H. C. WOUDENBERGa, Gerard J. M. VERKLEYa, Johannes Z. GROENEWALDa, Pedro W. CROUSa aCBS Fungal Biodiversity Centre, P.O. Box 85167, 3508 AD Utrecht, The Netherlands bPlant Protection Service, P.O. Box 9102, 6700 HC Wageningen, The Netherlands article info abstract Article history: The present generic concept of Phoma is broadly defined, with nine sections being recog- Received 2 July 2008 nised based on morphological characters. Teleomorph states of Phoma have been described Received in revised form in the genera Didymella, Leptosphaeria, Pleospora and Mycosphaerella, indicating that Phoma 19 December 2008 anamorphs represent a polyphyletic group. In an attempt to delineate generic boundaries, Accepted 8 January 2009 representative strains of the various Phoma sections and allied coelomycetous genera were Published online 18 January 2009 included for study. Sequence data of the 18S nrDNA (SSU) and the 28S nrDNA (LSU) regions Corresponding Editor: of 18 Phoma strains included were compared with those of representative strains of 39 al- David L. Hawksworth lied anamorph genera, including Ascochyta, Coniothyrium, Deuterophoma, Microsphaeropsis, Pleurophoma, Pyrenochaeta, and 11 teleomorph genera. The type species of the Phoma sec- Keywords: tions Phoma, Phyllostictoides, Sclerophomella, Macrospora and Peyronellaea grouped in a sub- Ascochyta clade in the Pleosporales with the type species of Ascochyta and Microsphaeropsis. The new Coelomycetes family Didymellaceae is proposed to accommodate these Phoma sections and related ana- Coniothyrium morph genera. -
101 Dothideomycetes Genomes: a Test Case for Predicting Lifestyles and Emergence of Pathogens
available online at www.studiesinmycology.org STUDIES IN MYCOLOGY 96: 141–153 (2020). 101 Dothideomycetes genomes: A test case for predicting lifestyles and emergence of pathogens S. Haridas1, R. Albert1,2, M. Binder3, J. Bloem3, K. LaButti1, A. Salamov1, B. Andreopoulos1, S.E. Baker4, K. Barry1, G. Bills5, B.H. Bluhm6, C. Cannon7, R. Castanera1,8,20, D.E. Culley4, C. Daum1, D. Ezra9, J.B. Gonzalez10, B. Henrissat11,12,13, A. Kuo1, C. Liang14,21, A. Lipzen1, F. Lutzoni15, J. Magnuson4, S.J. Mondo1,16, M. Nolan1, R.A. Ohm1,17, J. Pangilinan1, H.-J. Park10, L. Ramírez8, M. Alfaro8, H. Sun1, A. Tritt1, Y. Yoshinaga1, L.-H. Zwiers3, B.G. Turgeon10, S.B. Goodwin18, J.W. Spatafora19, P.W. Crous3,17*, and I.V. Grigoriev1,2* 1US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA; 2Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, USA; 3Westerdijk Fungal Biodiversity Institute, Utrecht, The Netherlands; 4Functional and Systems Biology Group, Environmental Molecular Sciences Division, Earth and Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington, USA; 5University of Texas Health Science Center, Houston, TX, USA; 6University of Arkansas, Fayelletville, AR, USA; 7Texas Tech University, Lubbock, TX, USA; 8Institute for Multidisciplinary Research in Applied Biology (IMAB-UPNA), Universidad Pública de Navarra, Pamplona, Navarra, Spain; 9Agricultural Research Organization, Volcani Center, Rishon LeTsiyon, Israel; 10Section