Cover Page 2017 James P. Cuda, Ph.D. Professor and Fulbright

Total Page:16

File Type:pdf, Size:1020Kb

Cover Page 2017 James P. Cuda, Ph.D. Professor and Fulbright IPM Award Nomination 1 James Cuda Cover Page 2017 James P. Cuda, Ph.D. Professor and Fulbright Scholar Charles Steinmetz Hall UF/IFAS Entomology & Nematology Dept. Bldg. 970, Natural Area Drive PO Box 110620 Gainesville, FL 32611-0620 (352) 273-3921 [email protected] IPM Award Nomination 2 James Cuda College of Agricultural and Life Sciences Steinmetz Hall, Bldg. 970 Entomology and Nematology Department 1881 Natural Area Drive P.O Box 110620 Gainesville, FL 32611-0620 352-273-3901 352-392-0190 Fax January 24, 2017 Southeastern Branch of the ESA Awards Committee Dear Committee: Although I have only recently joined the Entomology and Nematology Department at the University of Florida, I have quickly come to learn of Dr. Jim Cuda’s accomplishments and passion for research and education in in biocontrol and integrated pest management. As a consequence, I have decided to nominate him for the ESA SEB Recognition Award in IPM and believe he is deserving of your strongest consideration. Jim has developed an internationally recognized program in biocontrol of invasive weeds and has become a globally recognized authority in identifying and evaluating potential biocontrol agents of invasive weeds. He has made significant contributions to the successful management of important invasive weed species in both aquatic and terrestrial environments. He also has made important discoveries in understanding the attributes of successful introduction of exotic biocontrol agents in a manner that successfully mitigates the invasion without disruption of native species. Information from this work has been critical to the management of important invasive plant species such as the tropical soda apple. He has recently identified an integrated approach to management of the important aquatic weed, Hydrilla verticllata that combines integrating different low risk control tactics including insect herbivory, a native pathogen and newly developed herbicide, effective control of hydrilla can be achieved. More importantly, combinations of a diversity of tactics in an IPM approach will lengthen the useful life of our valuable yet limited number of aquatic herbicides. More recently, he has taken a leadership role in revision of the interagency management plan for Brazilian Peppertree in which an IPM section was included for the first time. In this plan, the interaction of natural ecological processes such as selective herbivory and plant parasitism as well as allelopathy and plant competition could be used in conjunction with conventional control practices to effectively restore sensitive natural areas. Importantly, he has recently been recognized as a Fulbright Scholar and has traveled multiple times to Brazil to continue his research on biocontrol of this important weed species. Dr. Cuda has published over 120 peer-reviewed journal articles and book chapters, and has received nearly $2 million in external research funding from state and federal funding agencies since 2004. I have also become aware of Jim’s contributions to our teaching and extension missions. In the annual offering of his course, “Consequences of Biological Invasions,” Jim has developed novel teaching methods for distance delivery of course materials and in contributing to one of the first on- line majors developed at the University of Florida. He actively mentors graduate students and sets IPM Award Nomination 3 James Cuda high standards for both his students and for himself, and I believe that the students respond positively to his mentoring style. His students and post-docs have gone on to important positions in our profession and it is clear that he is a talented and dedicated mentor. He has also shown an enduring commitment to undergraduate education and mentoring by employing students in his laboratory and instilling in them the excitement and joy of discovery that comes with learning to do research. Additional details of his accomplishments can be found in the supporting materials and letters that accompany this nomination. I believe strongly that Dr. Cuda deserves your strongest consideration for this important and prestigious award. Sincerely, Blair D. Siegfried Professor and Chairman The Foundation for The Gator Nation An Equal Opportunity Institution IPM Award Nomination 4 James Cuda Academic Record and Professional IPM Experience Dr. James P. Cuda is a Professor and Fulbright Scholar in the Department of Entomology & Nematology at the University of Florida. He grew up in Chicago Heights, IL and attended Southern Illinois University, Carbondale, where he obtained his BS (1973) and MS (1976) degrees in Zoology. He earned his Ph.D. in entomology at Texas A&M University in 1983, was a postdoc/research entomologist with the USDA in Texas and Montana from 1984-1993, and joined the University of Florida in 1994. He currently has a split appointment- 65 percent research, 25 percent extension, and 10 percent teaching. At UF, he is an affiliate faculty member for the School of Natural Resources and the Environment and Center for Aquatic and Invasive Plants. His research involves the sustainable management of invasive weeds with a focus on biological control. Dr. Cuda has published over 150 peer-reviewed journal articles and book chapters, and has received nearly $2.5 million in external research funding from state and federal funding agencies over past 10 years. He has chaired 12 graduate student committees, served as a member or co-chair on an additional 7 committees, and has mentored 14 undergraduate honors students. He also developed/teaches an online course on biological invasions. RESEARCH • Classical biological control of invasive aquatic and terrestrial weeds. • Development of bio-based IPM practices for the aquatic weed hydrilla. EXTENSION • Demonstration and implementation of bio-based weed management strategies. • Develop IPM training materials for county faculty, Master Naturalists, general public. TEACHING • ENY 4162/6935, Consequences of Biological Invasions • ENY 6934, Biological Weed Control • Guest lecturer, IFAS graduate/undergraduate courses • Advising and mentoring graduate students IPM Award Nomination 5 James Cuda Statement of IPM Accomplishments Since its inception, numerous definitions have been proposed for the concept of Integrated Pest Management, or simply IPM. However, they all have a common theme: IPM is “. an ecologically based, environmentally conscious method that combines, or integrates, biological and nonbiological control techniques to suppress weeds, insects and diseases.” (Frisbee and Luna 1989)*. Biological control by natural enemies (predators, herbivores, parasitoids, and pathogens) should be the foundation of any IPM program because of its broad applicability to virtually all groups of pest organisms (Rosen et al. 1996)*. Throughout my professional career, I have worked tirelessly to promote biological control as the basis for IPM in my extension, teaching and research programs. In 2001, I was awarded a $93,949 grant from the Southern Region Sustainable Agriculture Research and Education Program titled, “Delivery of Biological Control Information and Technology in Florida”. This grant facilitated practical training in biological control and IPM as the preferred pest management strategy for conventional and organic growers, Master Gardeners and Master Naturalists, and other pest consultants. It also provided critical resources to improve the knowledge base of Florida’s extension professionals through the development and implementation of in-service training programs/educational tools in biological control techniques and IPM protocols. For example, we developed two image galleries of Beneficial Arthropods (vol. 1-Predators, vol. 2-Parasitoids) to assist UF/IFAS county and state faculty in identifying natural enemies of Florida’s key pests. The grant also provided first year funding for IPM Florida (http://ipm.ifas.ufl.edu/index.shtml), which today serves as clearinghouse for a wealth of up-to-date information on biological control and IPM technologies. These technologies are needed to reduce the risk of environmental contamination, food poisoning, and human and animal illness resulting from the misuse of pesticides in Florida. ________ *Frisbee, R.E. and J.M. Luna. 1989. Integrated pest management systems: protecting profits and the environment. Farm Management: the 1989 Yearbook of Agriculture, p. 226. NAL Call No. 1Ag84y. Rosen, D., F.D. Bennett, and J.L. Capinera (eds.). 1996. Pest management in the subtropics integrated pest management- a Florida perspective. Andover, UK. IPM Award Nomination 6 James Cuda Earlier in my career at the University of Florida, I facilitated the screening of the leaf beetle Gratiana boliviana that eventually led to its release for classical biological control of tropical soda apple, Solanum viarum in Polk County, Florida, in August 2003. To date, more than 220,000 beetles have been released in 39 counties in Florida, three counties in Georgia, two counties in Alabama, and one county in Texas. The beetles, which established at all sites in central and south Florida, cause extensive defoliation (20-100%), and have spread from ~2 to 16 km/year from the initial release sites. High populations of G. boliviana provided effective control of tropical soda apple in 1-2 years post-release. Furthermore, non-target plants growing in close proximity to tropical soda apple have not been attacked by the beetle post-release. The leaf beetle was incorporated into a successful IPM program for tropical soda apple. Although the economic impact
Recommended publications
  • Water Beetles
    Ireland Red List No. 1 Water beetles Ireland Red List No. 1: Water beetles G.N. Foster1, B.H. Nelson2 & Á. O Connor3 1 3 Eglinton Terrace, Ayr KA7 1JJ 2 Department of Natural Sciences, National Museums Northern Ireland 3 National Parks & Wildlife Service, Department of Environment, Heritage & Local Government Citation: Foster, G. N., Nelson, B. H. & O Connor, Á. (2009) Ireland Red List No. 1 – Water beetles. National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland. Cover images from top: Dryops similaris (© Roy Anderson); Gyrinus urinator, Hygrotus decoratus, Berosus signaticollis & Platambus maculatus (all © Jonty Denton) Ireland Red List Series Editors: N. Kingston & F. Marnell © National Parks and Wildlife Service 2009 ISSN 2009‐2016 Red list of Irish Water beetles 2009 ____________________________ CONTENTS ACKNOWLEDGEMENTS .................................................................................................................................... 1 EXECUTIVE SUMMARY...................................................................................................................................... 2 INTRODUCTION................................................................................................................................................ 3 NOMENCLATURE AND THE IRISH CHECKLIST................................................................................................ 3 COVERAGE .......................................................................................................................................................
    [Show full text]
  • 2004Jointannualmeetingwi
    We sincerely thank our sponsors and exhibitors for their support here in Pensacola Beach and added thanks for all of their ongoing help back home: Sponsors ExhibitorsNendors Dow AgroSciences Aquatic Vegetation Control, Inc. NPS, SE Exotic Plant Mgmt. Team Arbor Tree and Land Syngenta BASF Pro Source One Brewer International BASF Callahan's Kudzu Management LLC DuPont Cerexagri, Inc. Brewer International Cbemical Containers, Inc. Cerexagri, Inc. Dow AgroSciences Callahan's Kudzu Management LLC Habitat Restoration Resources, Inc. UAP Timberland LLC Helena Chemical Co. U. S. Forest Service Monsanto SAMAB (Southern Appalachian Man Natural Resource Planning Svcs., Inc. and Biosphere) NaturCbem, Inc. SAK Specialty Sales LLC SePro Corporation Syngenta UAP Timberland LLC TAME (The Area Wide Mgmt. and Evaluation of Melaleuca) University of Florida IFAS Bookstore Southeast Exotic Pest Plant Council 6th Annual Symposium and Florida Exotic Pest Plant Council 19th Annual Symposium "West of Eden: Where Research, Policy and Practice Meet" April 28-30, 2004 Clarion Suites and Convention Center Pensacola Beach, Florida Agenda Wednesday, April 28th 2004 Moderator: Mike Bodle 0900 - 0910 Welcome Mike Bodle, Brian Bowen 0910 - 0945 Keynote Speaker Phyllis Windle Nine hundred experts and groups call for action! 0945 - 1005 National invasive species issues Randall Stocker 1005 -1020 Break Moderator: Brian Bowen 1020 - 1100 Exotic plant management teams: meeting the National Park Service natural resources challenge Nancy Fraley 1100 - 1120 South Florida and Caribbean parks exotic plant management plan and EIS Sandy Hamilton 1120 - 1140 Industry influence on exotic plant pest policies Barbara Lucas 1140 -1200 IFAS Assessment Alison Fox 1200 - 1300 Lunch (On your own) Moderator: Alison Fox 1300 - 1320 Fla.
    [Show full text]
  • 27April12acquatic Plants
    International Plant Protection Convention Protecting the world’s plant resources from pests 01 2012 ENG Aquatic plants their uses and risks Implementation Review and Support System Support and Review Implementation A review of the global status of aquatic plants Aquatic plants their uses and risks A review of the global status of aquatic plants Ryan M. Wersal, Ph.D. & John D. Madsen, Ph.D. i The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of speciic companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned.All rights reserved. FAO encourages reproduction and dissemination of material in this information product. Non-commercial uses will be authorized free of charge, upon request. Reproduction for resale or other commercial purposes, including educational purposes, may incur fees. Applications for permission to reproduce or disseminate FAO copyright materials, and all queries concerning rights and licences, should be addressed by e-mail to [email protected] or to the Chief, Publishing Policy and Support Branch, Ofice of Knowledge Exchange,
    [Show full text]
  • BSES Limited
    BSES Limited FINAL REPORT – SRDC PROJECT BSS280 OVERSEAS SUGARCANE QUARANTINE AND EMERGENCY RESPONSE PLANNING by MN SALLAM SD05017 Contact: Dr Mohamed Sallam Research Officer BSES Limited PO Box 122 Gordonvale Q 4865 Telephone: 07 4056 1255 Facsimile: 07 4056 2405 Email: [email protected] BSES is not a partner, joint venturer, employee or agent of SRDC and has no authority to legally bind SRDC, in any publication of substantive details or results of this Project. BSES Limited Publication SRDC Final report SD05017 November 2005 Copyright © 2005 by BSES Limited All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior permission of BSES Limited. Warning: Our tests, inspections and recommendations should not be relied on without further, independent inquiries. They may not be accurate, complete or applicable for your particular needs for many reasons, including (for example) BSES Limited being unaware of other matters relevant to individual crops, the analysis of unrepresentative samples or the influence of environmental, managerial or other factors on production. Disclaimer: Except as required by law and only to the extent so required, none of BSES Limited, its directors, officers or agents makes any representation or warranty, express or implied, as to, or shall in any way be liable (including liability in negligence) directly or indirectly for any loss, damages, costs, expenses or reliance arising out of or in connection with, the accuracy, currency, completeness or balance of (or otherwise), or any errors in or omissions from, any test results, recommendations statements or other information provided to you.
    [Show full text]
  • Field Host Range, Foraging Depth, and Impact Of
    FIELD HOST RANGE, FORAGING DEPTH, AND IMPACT OF CRICOTOPUS LEBETIS SUBLETTE (DIPTERA: CHIRONOMIDAE), A BIOLOGICAL CONTROL AGENT OF HYDRILLA VERTICILLATA (L.F.) ROYLE (HYDROCHARITACEAE) By EUTYCHUS MUKURE KARIUKI A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 2017 © 2017 Eutychus Mukure Kariuki To my loving family ACKNOWLEDGMENTS I would like to thank my Major Advisor, Dr. Raymond L. Hix, and my Co-Advisor, Dr. James P. Cuda, for their support and guidance during my Ph.D. program. I am also thankful to my committee members, Dr. Stephen D. Hight for his invaluable support and mentorship during the course of my research; Dr. Jennifer Gillett-Kaufman for her constant support, especially through the writing process of my dissertation; and Dr. Lyn Gettys for always being available to help with questions. I am grateful to all others who provided their assistance, including Dr. Edzard van Santen (University of Florida), Dr. Lazarus Mramba (University of Florida), Dr. Emma Weeks (University of Florida), John Mass (United States Department of Agriculture (USDA), Tallahassee, Florida), Kelle Sullivan (Florida Fish and Wildlife Conservation Commission), Dr. Lamberth Kanga (Florida A&M University), and Dr. Muhammad Haseeb (Florida A&M University). I am thankful to all my colleagues and lab mates at the University of Florida who reviewed this manuscript and offered valuable comments and suggestions. I am equally thankful to the USDA for providing funding to this study through the Hydrilla Integrated Pest Management Risk Avoidance and Mitigation Project (IPM RAMP) grant 2010-02825 and the National Institute of Food and Agriculture Crop Protection and Pest Management (NIFA CPPM) grant 2014-70006-22517.
    [Show full text]
  • Generic Names in Magnaporthales Ning Zhang, Jing Luo, Amy Y
    Generic names in Magnaporthales Ning Zhang, Jing Luo, Amy Y. Rossman, Takayuki Aoki, Izumi Chuma, Pedro W. Crous, Ralph Dean, Ronald P. de Vries, Nicole Donofrio, Kevin D. Hyde, et al. To cite this version: Ning Zhang, Jing Luo, Amy Y. Rossman, Takayuki Aoki, Izumi Chuma, et al.. Generic names in Magnaporthales. IMA Fungus, 2016, 7 (1), pp.155-159. 10.5598/imafungus.2016.07.01.09. hal- 01608608 HAL Id: hal-01608608 https://hal.archives-ouvertes.fr/hal-01608608 Submitted on 28 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - ShareAlike| 4.0 International License IMA FUNGUS · 7(1): 155–159 (2016) doi:10.5598/imafungus.2016.07.01.09 ARTICLE Generic names in Magnaporthales Ning Zhang1, Jing Luo1, Amy Y. Rossman2, Takayuki Aoki3, Izumi Chuma4, Pedro W. Crous5, Ralph Dean6, Ronald P. de Vries5,7, Nicole Donofrio8, Kevin D. Hyde9, Marc-Henri Lebrun10, Nicholas J. Talbot11, Didier Tharreau12, Yukio Tosa4, Barbara Valent13, Zonghua Wang14, and Jin-Rong Xu15 1Department of Plant Biology and Pathology, Rutgers University, New Brunswick, NJ 08901, USA; corresponding author e-mail: zhang@aesop.
    [Show full text]
  • Metacommunities and Biodiversity Patterns in Mediterranean Temporary Ponds: the Role of Pond Size, Network Connectivity and Dispersal Mode
    METACOMMUNITIES AND BIODIVERSITY PATTERNS IN MEDITERRANEAN TEMPORARY PONDS: THE ROLE OF POND SIZE, NETWORK CONNECTIVITY AND DISPERSAL MODE Irene Tornero Pinilla Per citar o enllaçar aquest document: Para citar o enlazar este documento: Use this url to cite or link to this publication: http://www.tdx.cat/handle/10803/670096 http://creativecommons.org/licenses/by-nc/4.0/deed.ca Aquesta obra està subjecta a una llicència Creative Commons Reconeixement- NoComercial Esta obra está bajo una licencia Creative Commons Reconocimiento-NoComercial This work is licensed under a Creative Commons Attribution-NonCommercial licence DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode Irene Tornero Pinilla 2020 DOCTORAL THESIS Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode IRENE TORNERO PINILLA 2020 DOCTORAL PROGRAMME IN WATER SCIENCE AND TECHNOLOGY SUPERVISED BY DR DANI BOIX MASAFRET DR STÉPHANIE GASCÓN GARCIA Thesis submitted in fulfilment of the requirements to obtain the Degree of Doctor at the University of Girona Dr Dani Boix Masafret and Dr Stéphanie Gascón Garcia, from the University of Girona, DECLARE: That the thesis entitled Metacommunities and biodiversity patterns in Mediterranean temporary ponds: the role of pond size, network connectivity and dispersal mode submitted by Irene Tornero Pinilla to obtain a doctoral degree has been completed under our supervision. In witness thereof, we hereby sign this document. Dr Dani Boix Masafret Dr Stéphanie Gascón Garcia Girona, 22nd November 2019 A mi familia Caminante, son tus huellas el camino y nada más; Caminante, no hay camino, se hace camino al andar.
    [Show full text]
  • Research Article: Life History and Host Range of Prochoerodes Onustaria, an Unsuitable Classical Biological Control Agent of Brazilian Peppertree
    Biocontrol Science and Technology ISSN: 0958-3157 (Print) 1360-0478 (Online) Journal homepage: http://www.tandfonline.com/loi/cbst20 Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree E. Jones & G. S. Wheeler To cite this article: E. Jones & G. S. Wheeler (2017) Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree, Biocontrol Science and Technology, 27:4, 565-580, DOI: 10.1080/09583157.2017.1325837 To link to this article: http://dx.doi.org/10.1080/09583157.2017.1325837 Published online: 16 May 2017. Submit your article to this journal Article views: 24 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=cbst20 Download by: [University of Florida] Date: 13 July 2017, At: 08:24 BIOCONTROL SCIENCE AND TECHNOLOGY, 2017 VOL. 27, NO. 4, 565–580 https://doi.org/10.1080/09583157.2017.1325837 Research article: life history and host range of Prochoerodes onustaria, an unsuitable classical biological control agent of Brazilian peppertree E. Jonesa,b and G. S. Wheelera aUSDA/ARS Invasive Plant Research Laboratory, Ft Lauderdale, FL, USA; bSCA/AmeriCorps, Ft Lauderdale, FL, USA ABSTRACT ARTICLE HISTORY The life history and host range of the South American defoliator Received 13 January 2017 Prochoerodes onustaria (Lepidoptera: Geometridae) were examined Accepted 26 April 2017 to determine its suitability as a classical biological control agent of KEYWORDS the invasive weed Brazilian Peppertree, Schinus terebinthifolia,in Schinus terebinthifolia; the U.S.A.
    [Show full text]
  • Influence of Host-Plant Quality on the Performance of Episimus
    BioControl (2009) 54:475–484 DOI 10.1007/s10526-008-9196-3 Influence of host-plant quality on the performance of Episimus unguiculus, a candidate biological control agent of Brazilian peppertree in Florida Veronica Manrique Æ J. P. Cuda Æ W. A. Overholt Æ S. M. L. Ewe Received: 18 June 2008 / Accepted: 30 October 2008 / Published online: 15 November 2008 Ó International Organization for Biological Control (IOBC) 2008 Abstract Brazilian peppertree, Schinus terebinthifo- addition, higher survival (40%), faster development lius Raddi (Sapindales: Anacardiaceae), introduced (34 day) and higher fertility (88% eggs hatched) from South America, invades a variety of habitats in occurred in high-nutrient treatments. Based on these Florida (e.g. disturbed sites, coastal mangrove forests). results, field releases should be conducted in favorable The objective of this study was to evaluate the effect of habitats (e.g., low salinity, high fertility soils) to host-plant quality on the performance of Episimus maximize the possibility of establishment and popu- unguiculus Clarke (=E. utilis Zimmerman) (Lepidop- lation growth of E. unguiculus in Florida. tera: Tortricidae), a potential biocontrol agent of Brazilian peppertree. Experiments were conducted in Keywords Insect–plant interactions Á the laboratory using Brazilian peppertrees exposed Weed biological control Á Tortricidae Á either to different salinity levels (0, 6, 12 parts per Anacardiaceae Á Schinus terebinthifolius thousand), or to different nutrient levels (low, medium, high). Higher survival (55%) and faster development (32 day) to adulthood was observed on plants grown in fresh-water environments (0 ppt) compared to low (6 ppt) or high-salinity environments (12 ppt). In Introduction Brazilian peppertree, Schinus terebinthifolius Raddi Handling Editor: John Scott.
    [Show full text]
  • Downloaded from BOLD Or Requested from Other Authors
    www.nature.com/scientificreports OPEN Towards a global DNA barcode reference library for quarantine identifcations of lepidopteran Received: 28 November 2018 Accepted: 5 April 2019 stemborers, with an emphasis on Published: xx xx xxxx sugarcane pests Timothy R. C. Lee 1, Stacey J. Anderson2, Lucy T. T. Tran-Nguyen3, Nader Sallam4, Bruno P. Le Ru5,6, Desmond Conlong7,8, Kevin Powell 9, Andrew Ward10 & Andrew Mitchell1 Lepidopteran stemborers are among the most damaging agricultural pests worldwide, able to reduce crop yields by up to 40%. Sugarcane is the world’s most prolifc crop, and several stemborer species from the families Noctuidae, Tortricidae, Crambidae and Pyralidae attack sugarcane. Australia is currently free of the most damaging stemborers, but biosecurity eforts are hampered by the difculty in morphologically distinguishing stemborer species. Here we assess the utility of DNA barcoding in identifying stemborer pest species. We review the current state of the COI barcode sequence library for sugarcane stemborers, assembling a dataset of 1297 sequences from 64 species. Sequences were from specimens collected and identifed in this study, downloaded from BOLD or requested from other authors. We performed species delimitation analyses to assess species diversity and the efectiveness of barcoding in this group. Seven species exhibited <0.03 K2P interspecifc diversity, indicating that diagnostic barcoding will work well in most of the studied taxa. We identifed 24 instances of identifcation errors in the online database, which has hampered unambiguous stemborer identifcation using barcodes. Instances of very high within-species diversity indicate that nuclear markers (e.g. 18S, 28S) and additional morphological data (genitalia dissection of all lineages) are needed to confrm species boundaries.
    [Show full text]
  • Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY
    Flora of the Carolinas, Virginia, and Georgia, Working Draft of 17 March 2004 -- BIBLIOGRAPHY BIBLIOGRAPHY Ackerfield, J., and J. Wen. 2002. A morphometric analysis of Hedera L. (the ivy genus, Araliaceae) and its taxonomic implications. Adansonia 24: 197-212. Adams, P. 1961. Observations on the Sagittaria subulata complex. Rhodora 63: 247-265. Adams, R.M. II, and W.J. Dress. 1982. Nodding Lilium species of eastern North America (Liliaceae). Baileya 21: 165-188. Adams, R.P. 1986. Geographic variation in Juniperus silicicola and J. virginiana of the Southeastern United States: multivariant analyses of morphology and terpenoids. Taxon 35: 31-75. ------. 1995. Revisionary study of Caribbean species of Juniperus (Cupressaceae). Phytologia 78: 134-150. ------, and T. Demeke. 1993. Systematic relationships in Juniperus based on random amplified polymorphic DNAs (RAPDs). Taxon 42: 553-571. Adams, W.P. 1957. A revision of the genus Ascyrum (Hypericaceae). Rhodora 59: 73-95. ------. 1962. Studies in the Guttiferae. I. A synopsis of Hypericum section Myriandra. Contr. Gray Herbarium Harv. 182: 1-51. ------, and N.K.B. Robson. 1961. A re-evaluation of the generic status of Ascyrum and Crookea (Guttiferae). Rhodora 63: 10-16. Adams, W.P. 1973. Clusiaceae of the southeastern United States. J. Elisha Mitchell Sci. Soc. 89: 62-71. Adler, L. 1999. Polygonum perfoliatum (mile-a-minute weed). Chinquapin 7: 4. Aedo, C., J.J. Aldasoro, and C. Navarro. 1998. Taxonomic revision of Geranium sections Batrachioidea and Divaricata (Geraniaceae). Ann. Missouri Bot. Gard. 85: 594-630. Affolter, J.M. 1985. A monograph of the genus Lilaeopsis (Umbelliferae). Systematic Bot. Monographs 6. Ahles, H.E., and A.E.
    [Show full text]
  • Biogeochemical Relationships of a Subtropical Dry Forest on Karst
    2017 CARIBBEANCaribbean Naturalist NATURALIST No. 41:1–24No. 41 E. Medina, E. Cuevas, H. Marcano-Vega, E. Meléndez-Ackerman, and E.H. Helmer Biogeochemical Relationships of a Subtropical Dry Forest on Karst Ernesto Medina1,2,*, Elvira Cuevas3, Humfredo Marcano-Vega4, Elvia Meléndez-Ackerman3, and Eileen H. Helmer1 Abstract - Tropical dry forests on calcareous substrate constitute the main vegetation cover in many islands of the Caribbean. Dry climate and nutrient scarcity in those environments are ideal to investigate the potential role of high levels of soil calcium (Ca) in regulating plant selection and productivity. We analyzed the elemental composition of soil, loose lit- ter, and leaf samples of the woody vegetation on the plateau of Mona Island, an emergent block of carbonate rock in the Caribbean located between Puerto Rico and the Dominican Republic, to explore the nutrient relationships of plants growing on calcareous substrates. The mineral soil has an elemental composition characterized by high levels of aluminum (Al) and iron (Fe) in agreement with the hypothesis that it derives in part from sediments transported by rivers eroding plutonic rocks, and deposited before the massive lifting of biological limestone. Calcium concentration varied within sites, and Ca–Al and Ca–Fe cor- relations were negative in soils and positive in plant material, implying that element uptake from these soils depends on acidification of the rhizosphere. This acidification should be high enough to extract carbonate-bound elements and solubilize Al, Fe, and probably phos- phate (P) compounds. The most abundant cation in leaves was Ca, followed by potassium (K) and magnesium (Mg); Ca/K and Ca/Mg molar ratios averaged 2 and 3, respectively, in- dicating that most species maintain K and Mg uptake in the presence of high Ca levels.
    [Show full text]