Pharmacology for Regional Anaesthesia
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 11 Local Anesthetics
Chapter LOCAL ANESTHETICS 11 Kenneth Drasner HISTORY MECHANISMS OF ACTION AND FACTORS ocal anesthesia can be defined as loss of sensation in AFFECTING BLOCK L a discrete region of the body caused by disruption of Nerve Conduction impulse generation or propagation. Local anesthesia can Anesthetic Effect and the Active Form of the be produced by various chemical and physical means. Local Anesthetic However, in routine clinical practice, local anesthesia is Sodium Ion Channel State, Anesthetic produced by a narrow class of compounds, and recovery Binding, and Use-Dependent Block is normally spontaneous, predictable, and complete. Critical Role of pH Lipid Solubility Differential Local Anesthetic Blockade Spread of Local Anesthesia after Injection HISTORY PHARMACOKINETICS Cocaine’s systemic toxicity, its irritant properties when Local Anesthetic Vasoactivity placed topically or around nerves, and its substantial Metabolism potential for physical and psychological dependence gene- Vasoconstrictors rated interest in identification of an alternative local 1 ADVERSE EFFECTS anesthetic. Because cocaine was known to be a benzoic Systemic Toxicity acid ester (Fig. 11-1), developmental strategies focused Allergic Reactions on this class of chemical compounds. Although benzo- caine was identified before the turn of the century, its SPECIFIC LOCAL ANESTHETICS poor water solubility restricted its use to topical anesthe- Amino-Esters sia, for which it still finds some limited application in Amino-Amide Local Anesthetics modern clinical practice. The -
Local Anesthetics
Local Anesthetics Introduction and History Cocaine is a naturally occurring compound indigenous to the Andes Mountains, West Indies, and Java. It was the first anesthetic to be discovered and is the only naturally occurring local anesthetic; all others are synthetically derived. Cocaine was introduced into Europe in the 1800s following its isolation from coca beans. Sigmund Freud, the noted Austrian psychoanalyst, used cocaine on his patients and became addicted through self-experimentation. In the latter half of the 1800s, interest in the drug became widespread, and many of cocaine's pharmacologic actions and adverse effects were elucidated during this time. In the 1880s, Koller introduced cocaine to the field of ophthalmology, and Hall introduced it to dentistry Overwiev Local anesthetics (LAs) are drugs that block the sensation of pain in the region where they are administered. LAs act by reversibly blocking the sodium channels of nerve fibers, thereby inhibiting the conduction of nerve impulses. Nerve fibers which carry pain sensation have the smallest diameter and are the first to be blocked by LAs. Loss of motor function and sensation of touch and pressure follow, depending on the duration of action and dose of the LA used. LAs can be infiltrated into skin/subcutaneous tissues to achieve local anesthesia or into the epidural/subarachnoid space to achieve regional anesthesia (e.g., spinal anesthesia, epidural anesthesia, etc.). Some LAs (lidocaine, prilocaine, tetracaine) are effective on topical application and are used before minor invasive procedures (venipuncture, bladder catheterization, endoscopy/laryngoscopy). LAs are divided into two groups based on their chemical structure. The amide group (lidocaine, prilocaine, mepivacaine, etc.) is safer and, hence, more commonly used in clinical practice. -
Comparison of Levobupivacaine and Lidocaine for Post-Operative Analgesia Following Tympanoplasty
Jemds.com Original Research Article Comparison of Levobupivacaine and Lidocaine for Post-Operative Analgesia Following Tympanoplasty Anagha Yogesh Rajguru1, Mannuru Khaleel Basha2, Yarlagadda Lakshmi Sravya3, Tripti Rai4, Naman Pincha5, Kaenat Ahmed6, Sanket Chandrasekhar Prabhune7 1, 2, 3, 4, 5, 6, 7 Department of Otorhinolaryngology, Krishna Institute of Medical Sciences, Deemed to Be University, Karad, Maharashtra, India. ABSTRACT BACKGROUND A pure s-enantiomer of bupivacaine known as levobupivacaine, is now considered a Corresponding Author: safer alternative for regional anaesthesia than a racemic solution, bupivacaine since Mannuru Khaleel Basha. it is as efficacious as bupivacaine, but with better pharmacokinetics. Levobupivacaine Department of ENT, Krishna Institute of is clinically tolerated well in cases requiring regional anaesthesia with both bolus Medical Sciences University, Karad- 415110, Maharashtra, India. administration and post-operative infusion. There are very few incidence of Adverse E-mail: [email protected] Drug Reactions (ADR) if administration is monitored appropriately as most ADRs are due to mistakes causing systemic exposure of drug. Hypersensitivity reaction to drug DOI: 10.14260/jemds/2020/664 1 or pharmacological effects of anaesthesia though rare can also cause ADRs. Lidocaine (Xylocaine), is available commonly in a 0.5 % or 1 % solution, though How to Cite This Article: several more concentrations are available. It is the most commonly used infiltrative Rajguru AY, Basha MK, Sravya YL, et al. amide anaesthetic. Higher concentrations show no difference in pharmacodynamics Comparison of levobupivacaine and but may increase the risk of toxicity.2 The duration of action may be increased by lidocaine for post-operative analgesia addition of epinephrine. It can be added in concentrations of 1:100,000 or 1:200,000. -
Estonian Statistics on Medicines 2016 1/41
Estonian Statistics on Medicines 2016 ATC code ATC group / Active substance (rout of admin.) Quantity sold Unit DDD Unit DDD/1000/ day A ALIMENTARY TRACT AND METABOLISM 167,8985 A01 STOMATOLOGICAL PREPARATIONS 0,0738 A01A STOMATOLOGICAL PREPARATIONS 0,0738 A01AB Antiinfectives and antiseptics for local oral treatment 0,0738 A01AB09 Miconazole (O) 7088 g 0,2 g 0,0738 A01AB12 Hexetidine (O) 1951200 ml A01AB81 Neomycin+ Benzocaine (dental) 30200 pieces A01AB82 Demeclocycline+ Triamcinolone (dental) 680 g A01AC Corticosteroids for local oral treatment A01AC81 Dexamethasone+ Thymol (dental) 3094 ml A01AD Other agents for local oral treatment A01AD80 Lidocaine+ Cetylpyridinium chloride (gingival) 227150 g A01AD81 Lidocaine+ Cetrimide (O) 30900 g A01AD82 Choline salicylate (O) 864720 pieces A01AD83 Lidocaine+ Chamomille extract (O) 370080 g A01AD90 Lidocaine+ Paraformaldehyde (dental) 405 g A02 DRUGS FOR ACID RELATED DISORDERS 47,1312 A02A ANTACIDS 1,0133 Combinations and complexes of aluminium, calcium and A02AD 1,0133 magnesium compounds A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 811120 pieces 10 pieces 0,1689 A02AD81 Aluminium hydroxide+ Magnesium hydroxide (O) 3101974 ml 50 ml 0,1292 A02AD83 Calcium carbonate+ Magnesium carbonate (O) 3434232 pieces 10 pieces 0,7152 DRUGS FOR PEPTIC ULCER AND GASTRO- A02B 46,1179 OESOPHAGEAL REFLUX DISEASE (GORD) A02BA H2-receptor antagonists 2,3855 A02BA02 Ranitidine (O) 340327,5 g 0,3 g 2,3624 A02BA02 Ranitidine (P) 3318,25 g 0,3 g 0,0230 A02BC Proton pump inhibitors 43,7324 A02BC01 Omeprazole -
Local Anesthetics in Cosmetic Dermatology
COSMETIC DERMATOLOGY Local Anesthetics in Cosmetic Dermatology Peter W. Hashim, MD, MHS; John K. Nia, MD; Mark Taliercio, BS; Gary Goldenberg, MD PRACTICE POINTS • The proper delivery of local anesthesia is integral to successful cosmetic interventions. • Regional nerve blocks can provide effective analgesia while reducing the number of injections and preserving the architecture of the cosmetic field. copy Local anesthetics play an important role in cos- LOCAL ANESTHETICS metic dermatology. Techniques using topical and The sensation of pain is carried to the central ner- regional anesthesia provide numerous pain man- vousnot system by unmyelinated C nerve fibers. Local agement options for laser and injection treatments. anesthetics (LAs) act by blocking fast voltage-gated In this article, we review strategies to maximize sodium channels in the cell membrane of the nerve, patient comfort during cosmetic interventions. thereby inhibiting downstream propagation of an Cutis. 2017;99:393-397.Doaction potential and the transmission of painful stimuli.1 The chemical structure of LAs is funda- mental to their mechanism of action and metabo- ocal anesthesia is a central component of suc- lism. Local anesthetics contain a lipophilic aromatic cessful interventions in cosmetic dermatol- group, an intermediate chain, and a hydrophilic Logy. The number of anesthetic medications amine group. Broadly, agents are classified as amides and administration techniques has grown in recent or esters depending on the chemical group attached years as outpatient cosmetic procedures continue to the intermediate chain.2 Amides (eg, lidocaine, to expand. Pain is a commonCUTIS barrier to cosmetic bupivacaine, articaine, mepivacaine, prilocaine, procedures, and alleviating the fear of painful inter- levobupivacaine) are metabolized by the hepatic sys- ventions is critical to patient satisfaction and future tem; esters (eg, procaine, proparacaine, benzocaine, visits. -
(12) United States Patent (10) Patent No.: US 8,828,437 B2 Sundberg Et Al
USOO8828437B2 (12) United States Patent (10) Patent No.: US 8,828,437 B2 Sundberg et al. (45) Date of Patent: *Sep. 9, 2014 (54) THERMOGELLING ANAESTHETIC USPC .......................................................... 424/484 COMPOSITIONS (58) Field of Classification Search None (71) Applicant: Pharmanest AB, Solna (SE) See application file for complete search history. (72) Inventors: Mark Sundberg, Arsta (SE); Arne (56) References Cited Brodin, Sodertalje (SE); Nils Kallberg, Taby (SE) U.S. PATENT DOCUMENTS (73) Assignee: Pharmanest AB, Solna (SE) 8,663,688 B2* 3/2014 Fernandez et al. ............ 424/487 2004/O220283 A1 11/2004 Zhang et al. 2005/0O27.019 A1 2/2005 Zhang et al. (*) Notice: Subject to any disclaimer, the term of this 2007/0298.005 A1 12, 2007 Thibault patent is extended or adjusted under 35 2008. O15421.0 A1 6/2008 Jordan et al. U.S.C. 154(b) by 0 days. 2012fO294907 A1 11/2012 Zhang et al. This patent is Subject to a terminal dis claimer. FOREIGN PATENT DOCUMENTS AU 2006201233 B2 10, 2007 (21) Appl. No.: 14/172,794 EP O517160 A1 12, 1992 EP 1629852 A2 3, 2006 (22) Filed: Feb. 4, 2014 KR 2002OO13248 A 2, 2002 (65) Prior Publication Data (Continued) OTHER PUBLICATIONS US 2014/O155.434 A1 Jun. 5, 2014 Written Opinion, Intellectual Property Office of Singapore, from the Related U.S. Application Data corresponding Singapore Application No. 201206824-3, Jul. 19. (63) Continuation of application No. 13/638.511, filed as 2013. application No. PCT/EP2011/055009 on Mar. 31, Notification of First Office Action, China Intellectual Property 2011. Office, from the corresponding Chinese Application No. -
Treatment for Acute Pain: an Evidence Map Technical Brief Number 33
Technical Brief Number 33 R Treatment for Acute Pain: An Evidence Map Technical Brief Number 33 Treatment for Acute Pain: An Evidence Map Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov Contract No. 290-2015-0000-81 Prepared by: Minnesota Evidence-based Practice Center Minneapolis, MN Investigators: Michelle Brasure, Ph.D., M.S.P.H., M.L.I.S. Victoria A. Nelson, M.Sc. Shellina Scheiner, PharmD, B.C.G.P. Mary L. Forte, Ph.D., D.C. Mary Butler, Ph.D., M.B.A. Sanket Nagarkar, D.D.S., M.P.H. Jayati Saha, Ph.D. Timothy J. Wilt, M.D., M.P.H. AHRQ Publication No. 19(20)-EHC022-EF October 2019 Key Messages Purpose of review The purpose of this evidence map is to provide a high-level overview of the current guidelines and systematic reviews on pharmacologic and nonpharmacologic treatments for acute pain. We map the evidence for several acute pain conditions including postoperative pain, dental pain, neck pain, back pain, renal colic, acute migraine, and sickle cell crisis. Improved understanding of the interventions studied for each of these acute pain conditions will provide insight on which topics are ready for comprehensive comparative effectiveness review. Key messages • Few systematic reviews provide a comprehensive rigorous assessment of all potential interventions, including nondrug interventions, to treat pain attributable to each acute pain condition. Acute pain conditions that may need a comprehensive systematic review or overview of systematic reviews include postoperative postdischarge pain, acute back pain, acute neck pain, renal colic, and acute migraine. -
Delivery System for Mefenamic Acid Based on the Nanocarrier Layered
Materials Science and Engineering C 58 (2016) 629–638 Contents lists available at ScienceDirect Materials Science and Engineering C journal homepage: www.elsevier.com/locate/msec Delivery system for mefenamic acid based on the nanocarrier layered double hydroxide: Physicochemical characterization and evaluation of anti-inflammatory and antinociceptive potential Vanessa R.R. Cunha a, Viviane A. Guilherme b,EneidadePaulab, Daniele R. de Araujo b,c, Renan O. Silva d, Jand V.R. Medeiros d, José R.S.A. Leite d, Philippe A.D. Petersen e, Marianna Foldvari f, Helena M. Petrilli e, Vera R.L. Constantino a,⁎ a Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, USP, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, São Paulo, Brazil b Departamento de Bioquímica, Instituto de Biologia, Universidade Estadual de Campinas, 13083-970, Campinas, São Paulo, Brazil c Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, 09210-170 Santo André, São Paulo, Brazil d Núcleo de Pesquisa em Biodiversidade e Biotecnologia, BIOTEC, Campus de Parnaíba, Universidade Federal do Piauí, UFPI, 64202020 Parnaíba, Piauí, Brazil e Departamento de Física dos Materiais e Mecânica, Instituto de Física, Universidade de São Paulo, USP, 05315-970 São Paulo, São Paulo, Brazil f School of Pharmacy, University of Waterloo, N2L 3G1 Waterloo, Ontario, Canada article info abstract Article history: Purpose: The anionic form of the drug mefenamic acid intercalated into the nanocarrier layered double hydroxide Received 7 June 2015 (LDH-Mef) was evaluated by anti-inflammatory and antinociceptive assays. Received in revised form 7 August 2015 Methods: The LDH-Mef material was characterized by a set of physicochemical techniques, which was supported Accepted 21 August 2015 by Density Functional Theory calculations. -
A Brief History Behind the Most Used Local Anesthetics
Tetrahedron xxx (xxxx) xxx Contents lists available at ScienceDirect Tetrahedron journal homepage: www.elsevier.com/locate/tet Tetrahedron report XXX A brief history behind the most used local anesthetics * Marco M. Bezerra, Raquel A.C. Leao,~ Leandro S.M. Miranda, Rodrigo O.M.A. de Souza Biocatalysis and Organic Synthesis Group, Chemistry Institute, Federal University of Rio de Janeiro, 21941-909, Brazil article info abstract Article history: The chemistry behind the discovery of local anesthetics is a beautiful way of understanding the devel- Received 13 April 2020 opment and improvement of medicinal/organic chemistry protocols towards the synthesis of biologically Received in revised form active molecules. Here in we present a brief history based on the chemistry development of the most 16 September 2020 used local anesthetics trying to draw a line between the first achievements obtained by the use of Accepted 18 September 2020 cocaine until the synthesis of the mepivacaine analogs nowadays. Available online xxx © 2020 Elsevier Ltd. All rights reserved. Keywords: Anesthetics Medicinal chemistry Organic synthesis Mepivacaíne Contents 1. Introduction . ............................. 00 1.1. Pain and anesthesia . ............................................... 00 1.2. Ancient techniques to achieve anesthesia . ............................... 00 1.3. The objective of this work . .......................................... 00 2. Cocaine .............................................................................................. ............................ -
Original Article Lidocaine May Contribute to General Anesthesia by Different Mechanisms in Mammalian Central Nervous System
Int J Clin Exp Med 2017;10(9):13433-13439 www.ijcem.com /ISSN:1940-5901/IJCEM0049799 Original Article Lidocaine may contribute to general anesthesia by different mechanisms in mammalian central nervous system Mingyang Shi1, Guangbo Xie1,2, Xiaoshuai Fan3, Weidong Pan3, Xiaoshuang Zhou3, Jingbo Yuan3, Zeyi Chen3, Guo Chen3 1Department of Biotechnology, School of Life Science and Technology, University of Electronic Science and Tech- nology of China, Chengdu, China; 2Center for Informational Biology, University of Electronic Science and Technol- ogy of China, Chengdu, China; 3Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu, China Received October 27, 2016; Accepted June 6, 2017; Epub September 15, 2017; Published September 30, 2017 Abstract: Background: Systemic administration of local anesthetics can produce systemic actions, but the details of these actions and mechanisms are still unclear. We evaluated the systemic actions of three local anesthetics and their underlying mechanisms in this study. Methods: Lidocaine, bupivacaine and ropivacaine were injected into C57BL/6 mice through tail vein, alone or together with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels blocker ZD 7288 or N-methyl-D-aspartic acid (NMDA) receptor blocker MK-801, and hypnotic actions of these local anesthetics, were evaluated by the length of loss of righting reflex (LORR). Results: All of these three lo- cal anesthetics directly produced hypnotic actions with half effective dose (ED50) of 19.0±2.4, 4.3±0.2 and 4.2±0.4 mg/kg. The effects of lidocaine on LORR were enhanced by ZD 7288, ED50 from 19.0±2.4 mg/kg to 14.1±1.0 mg/ kg (P<0.01) or to 13.1±0.8 mg/kg (P<0.01) by MK-801, respectively. -
Prescription Medications, Drugs, Herbs & Chemicals Associated With
Prescription Medications, Drugs, Herbs & Chemicals Associated with Tinnitus American Tinnitus Association Prescription Medications, Drugs, Herbs & Chemicals Associated with Tinnitus All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form, or by any means, without the prior written permission of the American Tinnitus Association. ©2013 American Tinnitus Association Prescription Medications, Drugs, Herbs & Chemicals Associated with Tinnitus American Tinnitus Association This document is to be utilized as a conversation tool with your health care provider and is by no means a “complete” listing. Anyone reading this list of ototoxic drugs is strongly advised NOT to discontinue taking any prescribed medication without first contacting the prescribing physician. Just because a drug is listed does not mean that you will automatically get tinnitus, or exacerbate exisiting tinnitus, if you take it. A few will, but many will not. Whether or not you eperience tinnitus after taking one of the listed drugs or herbals, or after being exposed to one of the listed chemicals, depends on many factors ‐ such as your own body chemistry, your sensitivity to drugs, the dose you take, or the length of time you take the drug. It is important to note that there may be drugs NOT listed here that could still cause tinnitus. Although this list is one of the most complete listings of drugs associated with tinnitus, no list of this kind can ever be totally complete – therefore use it as a guide and resource, but do not take it as the final word. The drug brand name is italicized and is followed by the generic drug name in bold. -
Interventions for Relieving Pain Associated with Panretinal
Eye (2006) 20, 712–719 & 2006 Nature Publishing Group All rights reserved 0950-222X/06 $30.00 www.nature.com/eye 1 2 1 1 CLINICAL STUDY Interventions W-C Wu , K-H Hsu , T-L Chen , Y-S Hwang , K-K Lin1, L-M Li1, C-P Shih2 and C-C Lai1 for relieving pain associated with panretinal photocoagulation: a prospective randomized trial Abstract mefenamic acid, and acetaminophen (either alone or in combination with each other) are Purpose To evaluate the efficacy of pain relief not effective in preventing PRP treatment- by oral diazepam, acetaminophen, mefenamic associated pain. Intramuscular injection of 1Department of acid, intramuscular ketorolac tromethamine, ketorolac tromethamine is also not effective in Ophthalmology, Chang and peribulbar anaesthesia in panretinal reducing PRP-associated pain. Gung Memorial Hospital, photocoagulation (PRP). Eye (2006) 20, 712–719. doi:10.1038/sj.eye.6701989; Taoyuan, Taiwan Methods A total of 220 patients with published online 8 July 2005 proliferative diabetic retinopathy requiring 2The Department of Business Administration, PRP treatment were enrolled in this study. Keywords: peribulbar anesthesia; pain; Chang Gung University, Before laser treatment, the patients were panretinal photocoagulation Taoyuan, Taiwan allocated randomly to one of eight groups: group 1: diazepam (n ¼ 22), group 2: Introduction Correspondence: C-C Lai, acetaminophen (n ¼ 21), group 3: mefenamic Department of acid (n ¼ 21), group 4: diazepam and Panretinal photocoagulation (PRP) is an Ophthalmology, Chang Gung Memorial Hospital, acetaminophen (n ¼ 22), group 5: diazepam effective treatment in reducing severe visual 5 Fu-Hsin St, Kwei-Shan, and mefenamic acid (n ¼ 22), group 6: loss in patients with proliferative diabetic 333, Taoyuan, peribulbar anaesthesia with lidocaine (n ¼ 23), retinopathy (PDR).