Local Anesthetics in Cosmetic Dermatology

Total Page:16

File Type:pdf, Size:1020Kb

Local Anesthetics in Cosmetic Dermatology COSMETIC DERMATOLOGY Local Anesthetics in Cosmetic Dermatology Peter W. Hashim, MD, MHS; John K. Nia, MD; Mark Taliercio, BS; Gary Goldenberg, MD PRACTICE POINTS • The proper delivery of local anesthesia is integral to successful cosmetic interventions. • Regional nerve blocks can provide effective analgesia while reducing the number of injections and preserving the architecture of the cosmetic field. copy Local anesthetics play an important role in cos- LOCAL ANESTHETICS metic dermatology. Techniques using topical and The sensation of pain is carried to the central ner- regional anesthesia provide numerous pain man- vousnot system by unmyelinated C nerve fibers. Local agement options for laser and injection treatments. anesthetics (LAs) act by blocking fast voltage-gated In this article, we review strategies to maximize sodium channels in the cell membrane of the nerve, patient comfort during cosmetic interventions. thereby inhibiting downstream propagation of an Cutis. 2017;99:393-397.Doaction potential and the transmission of painful stimuli.1 The chemical structure of LAs is funda- mental to their mechanism of action and metabo- ocal anesthesia is a central component of suc- lism. Local anesthetics contain a lipophilic aromatic cessful interventions in cosmetic dermatol- group, an intermediate chain, and a hydrophilic Logy. The number of anesthetic medications amine group. Broadly, agents are classified as amides and administration techniques has grown in recent or esters depending on the chemical group attached years as outpatient cosmetic procedures continue to the intermediate chain.2 Amides (eg, lidocaine, to expand. Pain is a commonCUTIS barrier to cosmetic bupivacaine, articaine, mepivacaine, prilocaine, procedures, and alleviating the fear of painful inter- levobupivacaine) are metabolized by the hepatic sys- ventions is critical to patient satisfaction and future tem; esters (eg, procaine, proparacaine, benzocaine, visits. To accommodate a multitude of cosmetic chlorprocaine, tetracaine, cocaine) are metabolized interventions, it is important for clinicians to be well by plasma cholinesterase, which produces para- versed in applications of topical and regional anes- aminobenzoic acid, a potentially dangerous metabo- thesia. In this article, we review pain management lite that has been implicated in allergic reactions.3 strategies for use in cosmetic practice. Lidocaine is the most prevalent LA used in der- matology practices. Importantly, lidocaine is a class IB antiarrhythmic agent used in cardiology to treat ven- tricular arrhythmias.4 As an anesthetic, a maximum dose of 4.5 mg/kg can be administered, increasing From the Department of Dermatology, Icahn School of Medicine at to 7.0 mg/kg when mixed with epinephrine; with Mount Sinai, New York, New York. higher doses, there is a risk for central nervous sys- The authors report no conflict of interest. tem and cardiovascular toxicity.5 Initial symptoms Correspondence: Gary Goldenberg, MD, Department of Dermatology, Icahn School of Medicine at Mount Sinai Medical of lidocaine toxicity include dizziness, tinnitus, cir- Center, 5 E 98th St, New York, NY 10029 cumoral paresthesia, blurred vision, and a metallic ([email protected]). taste in the mouth.6 Systemic absorption of topical WWW.CUTIS.COM VOLUME 99, JUNE 2017 393 Copyright Cutis 2017. No part of this publication may be reproduced, stored, or transmitted without the prior written permission of the Publisher. Cosmetic Dermatology anesthetics is heightened across mucosal membranes, with a 1064-nm Nd:YAG laser, no significant dif- and care should be taken when applying over large ferences were found.15 The maximum application surface areas. area is 100 cm2 in children weighing less than Allergic reactions to LAs may be local or less 20 kg. A study of healthy adults demonstrated safety frequently systemic. It is important to note that with the use of 30 to 60 g of occluded liposomal LAs tend to show cross-reactivity within their class lidocaine cream 4%.16 rather than across different classes.7 Reactions can be In addition to US Food and Drug Administration– classified as type I or type IV. Type I (IgE-mediated) approved products, several compounded pharmacy reactions evolve in minutes to hours, affecting the products are available for topical anesthesia. These skin and possibly leading to respiratory and cir- formulations include benzocaine-lidocaine-tetracaine culatory collapse. Delayed reactions to LAs have gel, tetracaine-adrenaline-cocaine solution, and increased in recent years, with type IV contact lidocaine-epinephrine-tetracaine solution. A triple- allergy most frequently found in connection with anesthetic gel, benzocaine-lidocaine-tetracaine is benzocaine and lidocaine.8 widely used in cosmetic practice. The product has been shown to provide adequate anesthesia for laser TOPICAL ANESTHESIA resurfacing after 20 minutes without occlusion.17 Topical anesthetics are effective and easy to use Of note, compounded anesthetics lack standardiza- and are particularly valuable in patients with needle tion, and different pharmacies may follow their own phobia. In certain cases, these medications may individual protocols. be applied by the patient prior to arrival, thereby reducing visit time. Topical agents act on nerve REGIONAL ANESTHESIA fibers running through the dermis; therefore, effi- Regional nervecopy blockade is a useful option for more cacy is dependent on successful penetration through widespread or complex interventions. Using regional the stratum corneum and viable epidermis. To nerve blockade, effective analgesia can be delivered enhance absorption, agents may be applied under an to a target area while avoiding the toxicity and pain occlusive dressing. associatednot with numerous anesthetic infiltrations. In Topical anesthetics are most commonly used addition, there is no distortion of the tissue architec- for injectable fillers, ablative and nonablative ture, allowing for improved visual evaluation during laser resurfacing, laser hair removal, and tattoo the procedure. Recently, hyaluronic acid fillers have removal. The eutectic mixture of 2.5% lidocaineDo been compounded with lidocaine as a means of and 2.5% prilocaine as well as topical 4% or reducing procedural pain. 5% lidocaine are the most commonly used US Food and Drug Administration–approved products for Blocks for Dermal Fillers topical anesthesia. In addition, several compounded Forehead—For dermal filler injections of the glabel- pharmacy products are available. lar and frontalis lines, anesthesia of the forehead After 60 minutes of application of the eutectic may be desired. The supraorbital and supratrochlear mixture of 2.5% lidocaine and 2.5% prilocaine, nerves supply this area. The supraorbital nerve can a 3-mm depth of analgesiaCUTIS is reached, and after be injected at the supraorbital notch, which is mea- 120 minutes, a 4.5-mm depth is reached.9 It elicits sured roughly 2.7 cm from the glabella. The orbital a biphasic vascular response of vasoconstriction and rim should be palpated with the nondominant hand, blanching followed by vasodilation and erythema.10 and 1 to 2 mL of anesthetic should be injected just Most adverse events are mild and transient, but below the rim (Figure 1). The supratrochlear nerve allergic contact dermatitis and contact urticaria have is located roughly 1.7 cm from the midline and can been reported.11-13 In older children and adults, the be similarly injected under the orbital rim with 1 to maximum application area is 200 cm2, with a maxi- 2 mL of anesthetic (Figure 1). mum dose of 20 g used for no longer than 4 hours. Lateral Temple Region—Anesthesia of the The 4% or 5% lidocaine cream uses a liposo- zygomaticotemporal nerve can be used to reduce mal delivery system, which is designed to improve pain from dermal filler injections of the lateral cutaneous penetration and has been shown to pro- canthal and temporal areas. The nerve is identified vide longer durations of anesthesia than nonliposo- by first palpating the zygomaticofrontal suture. A mal lidocaine preparations.14 Application should be long needle is then inserted posteriorly, immediately performed 30 to 60 minutes prior to a procedure. behind the concave surface of the lateral orbital rim, In a study comparing the eutectic mixture of and 1 to 2 mL of anesthetic is injected (Figure 1). 2.5% lidocaine and 2.5% prilocaine versus lidocaine Malar Region—Blockade of the zygomaticofacial cream 5% for pain control during laser hair removal nerve is commonly performed in conjunction with 394 CUTIS® WWW.CUTIS.COM Copyright Cutis 2017. No part of this publication may be reproduced, stored, or transmitted without the prior written permission of the Publisher. Cosmetic Dermatology the zygomaticotemporal nerve and provides anes- be anesthetized using 4 to 5 submucosal injections at thesia to the malar region for cheek augmentation evenly spaced intervals between the canine teeth.18 procedures. To identify the target area, the junc- tion of the lateral and inferior orbital rim should be Blocks for Palmoplantar Hyperhidrosis palpated. With the needle placed just lateral to this The treatment of palmoplantar hyperhidrosis ben- point, 1 to 2 mL of anesthetic is injected (Figure 1). efits from regional blocks. Botulinum toxin has been well established as an effective therapy for the condi- Blocks for Perioral Fillers tion.19-21 Given the sensitivity of palmoplantar sites, Upper Lips/Nasolabial Folds—Bilateral blockade of it is valuable to achieve
Recommended publications
  • Chapter 11 Local Anesthetics
    Chapter LOCAL ANESTHETICS 11 Kenneth Drasner HISTORY MECHANISMS OF ACTION AND FACTORS ocal anesthesia can be defined as loss of sensation in AFFECTING BLOCK L a discrete region of the body caused by disruption of Nerve Conduction impulse generation or propagation. Local anesthesia can Anesthetic Effect and the Active Form of the be produced by various chemical and physical means. Local Anesthetic However, in routine clinical practice, local anesthesia is Sodium Ion Channel State, Anesthetic produced by a narrow class of compounds, and recovery Binding, and Use-Dependent Block is normally spontaneous, predictable, and complete. Critical Role of pH Lipid Solubility Differential Local Anesthetic Blockade Spread of Local Anesthesia after Injection HISTORY PHARMACOKINETICS Cocaine’s systemic toxicity, its irritant properties when Local Anesthetic Vasoactivity placed topically or around nerves, and its substantial Metabolism potential for physical and psychological dependence gene- Vasoconstrictors rated interest in identification of an alternative local 1 ADVERSE EFFECTS anesthetic. Because cocaine was known to be a benzoic Systemic Toxicity acid ester (Fig. 11-1), developmental strategies focused Allergic Reactions on this class of chemical compounds. Although benzo- caine was identified before the turn of the century, its SPECIFIC LOCAL ANESTHETICS poor water solubility restricted its use to topical anesthe- Amino-Esters sia, for which it still finds some limited application in Amino-Amide Local Anesthetics modern clinical practice. The
    [Show full text]
  • Blockage of Neddylation Modification Stimulates Tumor Sphere Formation
    Blockage of neddylation modification stimulates tumor PNAS PLUS sphere formation in vitro and stem cell differentiation and wound healing in vivo Xiaochen Zhoua,b,1, Mingjia Tanb,1, Mukesh K. Nyatib, Yongchao Zhaoc,d, Gongxian Wanga,2, and Yi Sunb,c,e,2 aDepartment of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; bDivision of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109; cInstitute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; dKey Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; and eCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China Edited by Vishva M. Dixit, Genentech, San Francisco, CA, and approved March 10, 2016 (received for review November 13, 2015) MLN4924, also known as pevonedistat, is the first-in-class inhibitor acting alone or in combination with current chemotherapy of NEDD8-activating enzyme, which blocks the entire neddylation and/or radiation (6, 11). One of the seven clinical trials of MLN4924 modification of proteins. Previous preclinical studies and current (NCT00911066) was published recently, concluding a modest effect clinical trials have been exclusively focused on its anticancer property. of MLN4924 against acute myeloid leukemia (AML) (12). Unexpectedly, we show here, to our knowledge for the first time, To further elucidate the role of blocking neddylation in cancer that MLN4924, when applied at nanomolar concentrations, signif- treatment, we thought to study the effect of MLN4924 on cancer icantly stimulates in vitro tumor sphere formation and in vivo stem cells (CSCs) or tumor-initiating cells (TICs), a small group tumorigenesis and differentiation of human cancer cells and mouse of tumor cells with stem cell properties that have been claimed to embryonic stem cells.
    [Show full text]
  • Pharmacology for Regional Anaesthesia
    Sign up to receive ATOTW weekly - email [email protected] PHARMACOLOGY FOR REGIONAL ANAESTHESIA ANAESTHESIA TUTORIAL OF THE WEEK 49 26TH MARCH 2007 Dr J. Hyndman Questions 1) List the factors that determine the duration of a local anaesthetic nerve block. 2) How much more potent is bupivocaine when compared to lidocaine? 3) How does the addition of epinephrine increase the duration of a nerve block? 4) What is the maximum recommended dose of: a) Plain lidocaine? b) Lidocaine with epinephrine 1:200 000? 5) What is the recommended dose of a) Clonidine to be added to local anaesthetic solution? b) Sodium bicarbonate? In this section, I will discuss the pharmacology of local anaesthetic agents and then describe the various additives used with these agents. I will also briefly cover the pharmacology of the other drugs commonly used in regional anaesthesia practice. A great number of drugs are used in regional anaesthesia. I am sure no two anaesthetists use exactly the same combinations of drugs. I will emphasise the drugs I use in my own practice but the reader may select a different range of drugs according to his experience and drug availability. The important point is to use the drugs you are familiar with. For the purposes of this discussion, I am going to concentrate on the following drugs: Local anaesthetic agents Lidocaine Prilocaine Bupivacaine Levobupivacaine Ropivacaine Local anaesthetic additives Epinephrine Clonidine Felypressin Sodium bicarbonate Commonly used drugs Midazolam/Temazepam Fentanyl Ephedrine Phenylephrine Atropine Propofol ATOTW 49 Pharmacology for regional anaesthesia 29/03/2007 Page 1 of 6 Sign up to receive ATOTW weekly - email [email protected] Ketamine EMLA cream Ametop gel Naloxone Flumazenil PHARMACOLOGY OF LOCAL ANAESTHETIC DRUGS History In 1860, cocaine was extracted from the leaves of the Erythroxylon coca bush.
    [Show full text]
  • Medicare 2019 Part C & D Star Ratings Cut Point Trends
    Trends in Part C & D Star Rating Measure Cut Points Updated – 12/19/2018 (Last Updated 12/19/2018) Page 1 Document Change Log Previous Revision Version Description of Change Date - Final release of the 2019 Star Ratings Cut Point Trend document 12/19/2018 (Last Updated 12/19/2018) Page i Table of Contents DOCUMENT CHANGE LOG .............................................................................................................................. I TABLE OF CONTENTS .................................................................................................................................... II INTRODUCTION ............................................................................................................................................... 1 PART C MEASURES ........................................................................................................................................ 2 Measure: C01 - Breast Cancer Screening ........................................................................................................................ 2 Measure: C02 - Colorectal Cancer Screening .................................................................................................................. 3 Measure: C03 - Annual Flu Vaccine .................................................................................................................................. 4 Measure: C04 - Improving or Maintaining Physical Health ...........................................................................................
    [Show full text]
  • Local Anesthetics
    Local Anesthetics Introduction and History Cocaine is a naturally occurring compound indigenous to the Andes Mountains, West Indies, and Java. It was the first anesthetic to be discovered and is the only naturally occurring local anesthetic; all others are synthetically derived. Cocaine was introduced into Europe in the 1800s following its isolation from coca beans. Sigmund Freud, the noted Austrian psychoanalyst, used cocaine on his patients and became addicted through self-experimentation. In the latter half of the 1800s, interest in the drug became widespread, and many of cocaine's pharmacologic actions and adverse effects were elucidated during this time. In the 1880s, Koller introduced cocaine to the field of ophthalmology, and Hall introduced it to dentistry Overwiev Local anesthetics (LAs) are drugs that block the sensation of pain in the region where they are administered. LAs act by reversibly blocking the sodium channels of nerve fibers, thereby inhibiting the conduction of nerve impulses. Nerve fibers which carry pain sensation have the smallest diameter and are the first to be blocked by LAs. Loss of motor function and sensation of touch and pressure follow, depending on the duration of action and dose of the LA used. LAs can be infiltrated into skin/subcutaneous tissues to achieve local anesthesia or into the epidural/subarachnoid space to achieve regional anesthesia (e.g., spinal anesthesia, epidural anesthesia, etc.). Some LAs (lidocaine, prilocaine, tetracaine) are effective on topical application and are used before minor invasive procedures (venipuncture, bladder catheterization, endoscopy/laryngoscopy). LAs are divided into two groups based on their chemical structure. The amide group (lidocaine, prilocaine, mepivacaine, etc.) is safer and, hence, more commonly used in clinical practice.
    [Show full text]
  • Thermo-Responsive Poly(N-Isopropylacrylamide)- Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing
    Article Thermo-Responsive Poly(N-Isopropylacrylamide)- Cellulose Nanocrystals Hybrid Hydrogels for Wound Dressing Katarzyna Zubik 1, Pratyawadee Singhsa 1,2, Yinan Wang 1, Hathaikarn Manuspiya 2 and Ravin Narain 1,* 1 Department of Chemical and Materials Engineering, Donadeo Innovation Centre in Engineering, 116 Street and 85 Avenue, Edmonton, AB T6G 2G6, Canada; [email protected] (K.Z.); [email protected] (P.S.); [email protected] (Y.W.) 2 The Petroleum and Petrochemical College, Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Soi Chulalongkorn 12, Pathumwan, Bangkok 10330, Thailand; [email protected] * Correspondence: [email protected]; Tel.: +1-780-492-1736 Academic Editor: Shiyong Liu Received: 29 January 2017; Accepted: 21 March 2017; Published: 24 March 2017 Abstract: Thermo-responsive hydrogels containing poly(N-isopropylacrylamide) (PNIPAAm), reinforced both with covalent and non-covalent interactions with cellulose nanocrystals (CNC), were synthesized via free-radical polymerization in the absence of any additional cross-linkers. The properties of PNIPAAm-CNC hybrid hydrogels were dependent on the amounts of incorporated CNC. The thermal stability of the hydrogels decreased with increasing CNC content. The rheological measurement indicated that the elastic and viscous moduli of hydrogels increased with the higher amounts of CNC addition, representing stronger mechanical properties of the hydrogels. Moreover, the hydrogel injection also supported the hypothesis that CNC reinforced the hydrogels; the increased CNC content exhibited higher structural integrity upon injection. The PNIPAAm- CNC hybrid hydrogels exhibited clear thermo-responsive behavior; the volume phase transition temperature (VPTT) was in the range of 36 to 39 °C, which is close to normal human body temperature.
    [Show full text]
  • Comparison of Levobupivacaine and Lidocaine for Post-Operative Analgesia Following Tympanoplasty
    Jemds.com Original Research Article Comparison of Levobupivacaine and Lidocaine for Post-Operative Analgesia Following Tympanoplasty Anagha Yogesh Rajguru1, Mannuru Khaleel Basha2, Yarlagadda Lakshmi Sravya3, Tripti Rai4, Naman Pincha5, Kaenat Ahmed6, Sanket Chandrasekhar Prabhune7 1, 2, 3, 4, 5, 6, 7 Department of Otorhinolaryngology, Krishna Institute of Medical Sciences, Deemed to Be University, Karad, Maharashtra, India. ABSTRACT BACKGROUND A pure s-enantiomer of bupivacaine known as levobupivacaine, is now considered a Corresponding Author: safer alternative for regional anaesthesia than a racemic solution, bupivacaine since Mannuru Khaleel Basha. it is as efficacious as bupivacaine, but with better pharmacokinetics. Levobupivacaine Department of ENT, Krishna Institute of is clinically tolerated well in cases requiring regional anaesthesia with both bolus Medical Sciences University, Karad- 415110, Maharashtra, India. administration and post-operative infusion. There are very few incidence of Adverse E-mail: [email protected] Drug Reactions (ADR) if administration is monitored appropriately as most ADRs are due to mistakes causing systemic exposure of drug. Hypersensitivity reaction to drug DOI: 10.14260/jemds/2020/664 1 or pharmacological effects of anaesthesia though rare can also cause ADRs. Lidocaine (Xylocaine), is available commonly in a 0.5 % or 1 % solution, though How to Cite This Article: several more concentrations are available. It is the most commonly used infiltrative Rajguru AY, Basha MK, Sravya YL, et al. amide anaesthetic. Higher concentrations show no difference in pharmacodynamics Comparison of levobupivacaine and but may increase the risk of toxicity.2 The duration of action may be increased by lidocaine for post-operative analgesia addition of epinephrine. It can be added in concentrations of 1:100,000 or 1:200,000.
    [Show full text]
  • High-Dose Chemotherapy Less Frequent Catheter Dressing Changes
    Bone Marrow Transplantation (2002) 29, 653–658 2002 Nature Publishing Group All rights reserved 0268–3369/02 $25.00 www.nature.com/bmt High-dose chemotherapy Less frequent catheter dressing changes decrease local cutaneous toxicity of high-dose chemotherapy in children, without increasing the rate of catheter-related infections: results of a randomised trial E Benhamou1, E Fessard2, C Com-Nougue´1,3, PS Beaussier2, G Nitenberg4, C Tancre`de5, S Dodeman2 and O Hartmann2 1Department of Biostatistics and Epidemiology, Institut Gustave Roussy, Villejuif, France; 2Department of Pediatrics, Institut Gustave Roussy, Villejuif, France; 3Pierre et Marie Curie University, Paris, France; 4Intensive Care Unit, Institut Gustave Roussy, Villejuif, France; and 5Department of Microbiology, Institut Gustave Roussy, Villejuif, France Summary: In our hospital, patients treated with high-dose chemo/radiotherapy (HDC) regimens followed by bone Cutaneous lesions caused by catheter dressing changes marrow transplantation (BMT) are fitted with a central can be serious and generate local pain in children venous catheter which is usually inserted a few days before undergoing high-dose chemotherapy followed by bone hospitalisation in the transplantation unit. Usually, central marrow transplantation. One hundred and thirteen venous catheter dressings are changed, empirically, every children entered a randomised trial to compare two 3 or 4 days,1,2 whatever the state of the dressing and mostly catheter dressing change frequencies (15 days vs 4 days). because less frequent changes are suspected of promoting Skin toxicity was classified according to the following local infections likely to give rise to bacteraemia in granul- scale: grade 0: healthy skin, to grade 4: severe skin tox- ocytopenic patients.
    [Show full text]
  • EMA/CVMP/508559/2019 Committee for Medicinal Products for Veterinary Use
    28 August 2020 EMA/CVMP/508559/2019 Committee for Medicinal Products for Veterinary Use Advice on implementing measures under Article 106 (6) of Regulation (EU) 2019/6 on veterinary medicinal products – scientific problem analysis and recommendations to ensure a safe and efficient administration of oral veterinary medicinal products via routes other than medicated feed Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020. Reproduction is authorised provided the source is acknowledged. Introduction On 1 July 2019 the European Commission requested the European Medicines Agency to provide a scientific problem analysis and recommendations to ensure the safe and efficient oral administration of veterinary medicinal products via routes other than medicated feed, by taking into account: - the effective and safe use of veterinary medicinal products authorised and prescribed for oral administration via routes other than medicated feed, such as mixing of water for drinking with a veterinary medicinal product, mixing of a veterinary medicinal product into the ordinary feed by the farmer or by use of top-dressing of the feed offered to the animal in a feeding device with a veterinary medicinal product (solid or as an emulsion); this issue should address the borderline between medication with medicated feed
    [Show full text]
  • A Field Guide to Common Wildlife Diseases and Parasites in the Northwest Territories
    A Field Guide to Common Wildlife Diseases and Parasites in the Northwest Territories 6TH EDITION (MARCH 2017) Introduction Although most wild animals in the NWT are healthy, diseases and parasites can occur in any wildlife population. Some of these diseases can infect people or domestic animals. It is important to regularly monitor and assess diseases in wildlife populations so we can take steps to reduce their impact on healthy animals and people. • recognize sickness in an animal before they shoot; •The identify information a disease in this or field parasite guide in should an animal help theyhunters have to: killed; • know how to protect themselves from infection; and • help wildlife agencies monitor wildlife disease and parasites. The diseases in this booklet are grouped according to where they are most often seen in the body of the Generalanimal: skin, precautions: head, liver, lungs, muscle, and general. Hunters should look for signs of sickness in animals • poor condition (weak, sluggish, thin or lame); •before swellings they shoot, or lumps, such hair as: loss, blood or discharges from the nose or mouth; or • abnormal behaviour (loss of fear of people, aggressiveness). If you shoot a sick animal: • Do not cut into diseased parts. • Wash your hands, knives and clothes in hot, soapy animal, and disinfect with a weak bleach solution. water after you finish cutting up and skinning the 2 • If meat from an infected animal can be eaten, cook meat thoroughly until it is no longer pink and juice from the meat is clear. • Do not feed parts of infected animals to dogs.
    [Show full text]
  • Instructions After Anorectal Surgery
    Instructions After Anorectal Surgery You are scheduled for ambulatory or same day admission surgery. Your colorectal attending surgeon, resident staff and the anesthesia staff will meet you in the preanesthesia area to answer any questions that you may have before your surgery. Your surgeon will talk with your family members in the waiting area after the procedure by telephone or in person. Any special instructions will be given to you or your family member at that time. If general or regional anesthesia is used, you will be monitored in the recovery room for 1-2 hours after your surgery. A responsible adult must accompany you home. You should not drive or operate machinery for the remainder of the day. You will be given any prescriptions or dressings needed for discharge. Wound Care You should remove your dressings on the morning after your procedure. If the dressing become soiled or soaked, you may change them on the evening of the procedures. Any packing within the anus or wounds should be removed gently from the anus before or during the first bath. It may be easier to remove the gauze after you get into the water once it is wet. Warm tub or sitz baths should be taken 3-4 times per day initially, especially after each bowel movement. After the first week you may decrease this to 2 times per day. You do not need to add anything to the water (no Epson salts, etc). You may notice slight ooze or bleeding for several days, usually with bowel movements. You do not need to apply or insert any packing after your first bath but you must place gauze pads to absorb any drainage and protect your undergarments.
    [Show full text]
  • Treatment for Acute Pain: an Evidence Map Technical Brief Number 33
    Technical Brief Number 33 R Treatment for Acute Pain: An Evidence Map Technical Brief Number 33 Treatment for Acute Pain: An Evidence Map Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov Contract No. 290-2015-0000-81 Prepared by: Minnesota Evidence-based Practice Center Minneapolis, MN Investigators: Michelle Brasure, Ph.D., M.S.P.H., M.L.I.S. Victoria A. Nelson, M.Sc. Shellina Scheiner, PharmD, B.C.G.P. Mary L. Forte, Ph.D., D.C. Mary Butler, Ph.D., M.B.A. Sanket Nagarkar, D.D.S., M.P.H. Jayati Saha, Ph.D. Timothy J. Wilt, M.D., M.P.H. AHRQ Publication No. 19(20)-EHC022-EF October 2019 Key Messages Purpose of review The purpose of this evidence map is to provide a high-level overview of the current guidelines and systematic reviews on pharmacologic and nonpharmacologic treatments for acute pain. We map the evidence for several acute pain conditions including postoperative pain, dental pain, neck pain, back pain, renal colic, acute migraine, and sickle cell crisis. Improved understanding of the interventions studied for each of these acute pain conditions will provide insight on which topics are ready for comprehensive comparative effectiveness review. Key messages • Few systematic reviews provide a comprehensive rigorous assessment of all potential interventions, including nondrug interventions, to treat pain attributable to each acute pain condition. Acute pain conditions that may need a comprehensive systematic review or overview of systematic reviews include postoperative postdischarge pain, acute back pain, acute neck pain, renal colic, and acute migraine.
    [Show full text]