A Field Guide to Common Wildlife Diseases and Parasites in the Northwest Territories
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cervid TB DPP Testing August 2017
Cervid TB DPP Testing August 2017 Elisabeth Patton, DVM, PhD, Diplomate ACVIM Veterinary Program Manager Wisconsin Department of Agriculture, Trade and Consumer Protection Division of Animal Health Why Use the Serologic Test? Employ newer, accurate diagnostic test technology Minimizes capture and handling events for animal safety Expected to promote additional cervid TB testing • Requested by USAHA and cervid industry Comparable sensitivity and specificity to skin tests 2 Historical Timeline 3 Stat-Pak licensed for elk and red deer, 2009 White-tailed and fallow deer, 2010-11 2010 - USAHA resolution - USDA evaluate Stat-Pak as official TB test 2011 – Project to evaluate TB serologic tests in cervids (Cervid Serology Project); USAHA resolution to approve Oct 2012 – USDA licenses the Dual-Path Platform (DPP) secondary test for elk, red deer, white-tailed deer, and fallow deer Improved specificity compared to Stat-Pak Oct 2012 – USDA approves the Stat-Pak (primary) and DPP (secondary) as official bovine TB tests in elk, red deer, white- tailed deer, fallow deer and reindeer Recent Actions Stat-Pak is no longer in production 9 CFR 77.20 has been amended to approve the DPP as official TB program test. An interim rule was published on 9 January 2013 USDA APHIS created a Guidance Document (6701.2) to provide instructions for using the tests https://www.aphis.usda.gov/animal_health/animal_ diseases/tuberculosis/downloads/vs_guidance_670 1.2_dpp_testing.pdf 4 Cervid Serology Project Objective 5 Evaluate TB detection tests for official bovine tuberculosis (TB) program use in captive and free- ranging cervids North American elk (Cervus canadensis) White-tailed deer (Odocoileus virginianus) Reindeer (Rangifer tarandus) Primary/screening test AND Secondary Test: Dual Path Platform (DPP) Rapid immunochromatographic lateral-flow serology test Detect antibodies to M. -
Amerithrax Investigative Summary
The United States Department of Justice AMERITHRAX INVESTIGATIVE SUMMARY Released Pursuant to the Freedom of Information Act Friday, February 19, 2010 TABLE OF CONTENTS I. THE ANTHRAX LETTER ATTACKS . .1 II. EXECUTIVE SUMMARY . 4 A. Overview of the Amerithrax Investigation . .4 B. The Elimination of Dr. Steven J. Hatfill as a Suspect . .6 C. Summary of the Investigation of Dr. Bruce E. Ivins . 6 D. Summary of Evidence from the Investigation Implicating Dr. Ivins . .8 III. THE AMERITHRAX INVESTIGATION . 11 A. Introduction . .11 B. The Investigation Prior to the Scientific Conclusions in 2007 . 12 1. Early investigation of the letters and envelopes . .12 2. Preliminary scientific testing of the Bacillus anthracis spore powder . .13 3. Early scientific findings and conclusions . .14 4. Continuing investigative efforts . 16 5. Assessing individual suspects . .17 6. Dr. Steven J. Hatfill . .19 7. Simultaneous investigative initiatives . .21 C. The Genetic Analysis . .23 IV. THE EVIDENCE AGAINST DR. BRUCE E. IVINS . 25 A. Introduction . .25 B. Background of Dr. Ivins . .25 C. Opportunity, Access and Ability . 26 1. The creation of RMR-1029 – Dr. Ivins’s flask . .26 2. RMR-1029 is the source of the murder weapon . 28 3. Dr. Ivins’s suspicious lab hours just before each mailing . .29 4. Others with access to RMR-1029 have been ruled out . .33 5. Dr. Ivins’s considerable skill and familiarity with the necessary equipment . 36 D. Motive . .38 1. Dr. Ivins’s life’s work appeared destined for failure, absent an unexpected event . .39 2. Dr. Ivins was being subjected to increasing public criticism for his work . -
Bison and Elk in Yellowstone National Park - Linking Ecosystem, Animal Nutrition, and Population Processes
Bison and Elk in Yellowstone National Park - Linking Ecosystem, Animal Nutrition, and Population Processes Part 3 - Final Report to U.S. Geological Survey Biological Resources Division Bozeman, MT Project: Spatial-Dynamic Modeling of Bison Carrying Capacity in the Greater Yellowstone Ecosystem: A Synthesis of Bison Movements, Population Dynamics, and Interactions with Vegetation Michael B. Coughenour Natural Resource Ecology Laboratory Colorado State University Fort Collins, Colorado December 2005 INTRODUCTION Over the last three decades bison in Yellowstone National Park have increased in numbers and expanded their ranges inside the park up to and beyond the park boundaries (Meagher 1989a,b, Taper et al. 2000, Meagher et al. 2003). Potentially, they have reached, if not exceeded the capacity of the park to support them. The bison are infected with brucellosis, and it is feared that the disease will be readily transmitted to domestic cattle, with widespread economic repercussions. Brucellosis is an extremely damaging disease for livestock, causing abortions and impaired calf growth. After a long campaign beginning in 1934 and costing over $1.3 billion (Thorne et al. 1991), brucellosis has been virtually eliminated from cattle and bison everywhere in the conterminous United States except in the Greater Yellowstone Ecosystem. Infection of any livestock in Montana, Idaho, or Wyoming would result in that state losing its brucellosis-free status, leading to considerable economic hardships resulting from intensified surveillance, testing, and control (Thorne et al. 1991). Management alternatives that have been considered include hazing animals back into the park, the live capture and holding of animals that leave the park, and culling or removal from within the park. -
Investigation of Anthrax Associated with Intentional Exposure
October 19, 2001 / Vol. 50 / No. 41 889 Update: Investigation of Anthrax Associated with Intentional Exposure and Interim Public Health Guidelines, October 2001 893 Recognition of Illness Associated with the Intentional Release of a Biologic Agent 897 Weekly Update: West Nile Virus Activity — United States, October 10–16, 2001 Update: Investigation of Anthrax Associated with Intentional Exposure and Interim Public Health Guidelines, October 2001 On October 4, 2001, CDC and state and local public health authorities reported a case of inhalational anthrax in Florida (1 ). Additional cases of anthrax subsequently have been reported from Florida and New York City. This report updates the findings of these case investigations, which indicate that infections were caused by the intentional release of Bacillus anthracis. This report also includes interim guidelines for postexposure pro- phylaxis for prevention of inhalational anthrax and other information to assist epidemi- ologists, clinicians, and laboratorians responding to intentional anthrax exposures. For these investigations, a confirmed case of anthrax was defined as 1) a clinically compatible case of cutaneous, inhalational, or gastrointestinal illness* that is laboratory confirmed by isolation of B. anthracis from an affected tissue or site or 2) other labora- tory evidence of B. anthracis infection based on at least two supportive laboratory tests. A suspected case was defined as 1) a clinically compatible case of illness without isola- tion of B. anthracis and no alternative diagnosis, but with laboratory evidence of B. anthracis by one supportive laboratory test or 2) a clinically compatible case of an- thrax epidemiologically linked to a confirmed environmental exposure, but without cor- roborative laboratory evidence of B. -
Changes to Virus Taxonomy 2004
Arch Virol (2005) 150: 189–198 DOI 10.1007/s00705-004-0429-1 Changes to virus taxonomy 2004 M. A. Mayo (ICTV Secretary) Scottish Crop Research Institute, Invergowrie, Dundee, U.K. Received July 30, 2004; accepted September 25, 2004 Published online November 10, 2004 c Springer-Verlag 2004 This note presents a compilation of recent changes to virus taxonomy decided by voting by the ICTV membership following recommendations from the ICTV Executive Committee. The changes are presented in the Table as decisions promoted by the Subcommittees of the EC and are grouped according to the major hosts of the viruses involved. These new taxa will be presented in more detail in the 8th ICTV Report scheduled to be published near the end of 2004 (Fauquet et al., 2004). Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., and Ball, L.A. (eds) (2004). Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 1258. Recent changes to virus taxonomy Viruses of vertebrates Family Arenaviridae • Designate Cupixi virus as a species in the genus Arenavirus • Designate Bear Canyon virus as a species in the genus Arenavirus • Designate Allpahuayo virus as a species in the genus Arenavirus Family Birnaviridae • Assign Blotched snakehead virus as an unassigned species in family Birnaviridae Family Circoviridae • Create a new genus (Anellovirus) with Torque teno virus as type species Family Coronaviridae • Recognize a new species Severe acute respiratory syndrome coronavirus in the genus Coro- navirus, family Coronaviridae, order Nidovirales -
Pending World Record Waterbuck Wins Top Honor SC Life Member Susan Stout Has in THIS ISSUE Dbeen Awarded the President’S Cup Letter from the President
DSC NEWSLETTER VOLUME 32,Camp ISSUE 5 TalkJUNE 2019 Pending World Record Waterbuck Wins Top Honor SC Life Member Susan Stout has IN THIS ISSUE Dbeen awarded the President’s Cup Letter from the President .....................1 for her pending world record East African DSC Foundation .....................................2 Defassa Waterbuck. Awards Night Results ...........................4 DSC’s April Monthly Meeting brings Industry News ........................................8 members together to celebrate the annual Chapter News .........................................9 Trophy and Photo Award presentation. Capstick Award ....................................10 This year, there were over 150 entries for Dove Hunt ..............................................12 the Trophy Awards, spanning 22 countries Obituary ..................................................14 and almost 100 different species. Membership Drive ...............................14 As photos of all the entries played Kid Fish ....................................................16 during cocktail hour, the room was Wine Pairing Dinner ............................16 abuzz with stories of all the incredible Traveler’s Advisory ..............................17 adventures experienced – ibex in Spain, Hotel Block for Heritage ....................19 scenic helicopter rides over the Northwest Big Bore Shoot .....................................20 Territories, puku in Zambia. CIC International Conference ..........22 In determining the winners, the judges DSC Publications Update -
Differential Habitat Selection by Moose and Elk in the Besa-Prophet Area of Northern British Columbia
ALCES VOL. 44, 2008 GILLINGHAM AND PARKER – HABITAT SELECTION BY MOOSE AND ELK DIFFERENTIAL HABITAT SELECTION BY MOOSE AND ELK IN THE BESA-PROPHET AREA OF NORTHERN BRITISH COLUMBIA Michael P. Gillingham and Katherine L. Parker Natural Resources and Environmental Studies Institute, University of Northern British Columbia, 3333 University Way, Prince George, British Columbia, Canada V2N 4Z9, email: [email protected] ABSTRACT: Elk (Cervus elaphus) populations are increasing in the Besa-Prophet area of northern British Columbia, coinciding with the use of prescribed burns to increase quality of habitat for ungu- lates. Moose (Alces alces) and elk are now the 2 large-biomass species in this multi-ungulate, multi- predator system. Using global positioning satellite (GPS) collars on 14 female moose and 13 female elk, remote-sensing imagery of vegetation, and assessments of predation risk for wolves (Canis lupus) and grizzly bears (Ursus arctos), we examined habitat use and selection. Seasonal ranges were typi- cally smallest for moose during calving and for elk during winter and late winter. Both species used largest ranges in summer. Moose and elk moved to lower elevations from winter to late winter, but subsequent calving strategies differed. During calving, moose moved to lowest elevations of the year, whereas elk moved back to higher elevations. Moose generally selected for mid-elevations and against steep slopes; for Stunted spruce habitat in late winter; for Pine-spruce in summer; and for Subalpine during fall and winter. Most recorded moose locations were in Pine-spruce during late winter, calv- ing, and summer, and in Subalpine during fall and winter. -
2001 Anthrax Letters
Chapter Five: 2001 Anthrax Letters Author’s Note: The analysis and comments regarding the communication efforts described in this case study are solely those of the authors; this analysis does not represent the official position of the FDA. This case was selected because it is one of the few major federal efforts to distribute medical countermeasures in response to an acute biological incident. These events occurred more than a decade ago and represent the early stages of US biosecurity preparedness and response; however, this incident serves as an excellent illustration of the types of communication challenges expected in these scenarios. Due in part to the extended time since these events and the limited accessibility of individual communications and messages, this case study does not provide a comprehensive assessment of all communication efforts. In contrast to the previous case studies in this casebook, the FDA’s role in the 2001 anthrax response was relatively small, and as such, this analysis focuses principally on the communication efforts of the CDC and state and local public health agencies. The 2001 anthrax attacks have been studied extensively, and the myriad of internal and external assessments led to numerous changes to response and communications policies and protocols. The authors intend to use this case study as a means of highlighting communication challenges strictly within the context of this incident, not to evaluate the success or merit of changes made as a result of these events. Abstract The dissemination of Bacillus anthracis via the US Postal Service (USPS) in 2001 represented a new public health threat, the first intentional exposure to anthrax in the United States. -
Muskox Management Report Alaska Dept of Fish and Game Wildlife
Muskox Management Report of survey-inventory activities 1 July 1998–30 June 2000 Mary V. Hicks, Editor Alaska Department of Fish and Game Division of Wildlife Conservation December 2001 ADF&G Please note that population and harvest data in this report are estimates and may be refined at a later date. If this report is used in its entirety, please reference as: Alaska Department of Fish and Game. 2001. Muskox management report of survey-inventory activities 1 July 1998–30 June 2000. M.V. Hicks, editor. Juneau, Alaska. If used in part, the reference would include the author’s name, unit number, and page numbers. Authors’ names can be found at the end of each unit section. Funded in part through Federal Aid in Wildlife Restoration, Proj. 16, Grants W-27-2 and W-27-3. LOCATION 2 GAME MANAGEMENT UNIT: 18 (41,159 mi ) GEOGRAPHIC DESCRIPTION: Yukon–Kuskokwim Delta BACKGROUND NUNIVAK ISLAND Muskoxen were once widely distributed in northern and western Alaska but were extirpated by the middle or late 1800s. In 1929, with the support of the Alaska Territorial Legislature, the US Congress initiated a program to reintroduce muskoxen in Alaska. Thirty-one muskoxen were introduced from Greenland to Nunivak Island in Unit 18 during 1935–1936, as a first step toward reintroducing this species to Alaska. The Nunivak Island population grew slowly until approximately 1958 and then began a period of rapid growth. The first hunting season was opened in 1975, and the population has since fluctuated between 400 and 750 animals, exhibiting considerable reproductive potential, even under heavy harvest regimes. -
BISON Workshop Slides
Bison Workshop Implicit, parallel, fully-coupled nuclear fuel performance analysis Computational Mechanics and Materials Department Idaho National Laboratory Table of ContentsI Bison Overview . 4 Getting Started with Bison . 19 Git...........................................................20 Building Bison . 28 Cloning to a New Machine . 30 Contributing to Bison. .31 External Users. .35 Thermomechanics Basics . 37 Heat Conduction . 40 Solid Mechanics . 55 Contact . 66 Fuels Specific Models . 80 Example Problem . 89 Mesh Generation. .132 Running Bison . 147 Postprocessing. .159 Best Practices and Solver Options (Advanced Topic) . 224 Adding a New Material Model to Bison . 239 2 / 277 Table of ContentsII Adding a Regression Test to bison/test . 261 Additional Information . 273 References . 276 3 / 277 Bison Overview Bison Team Members • Rich Williamson • Al Casagranda – [email protected] – [email protected] • Steve Novascone • Stephanie Pitts – [email protected] – [email protected] • Jason Hales • Adam Zabriskie – [email protected] – [email protected] • Ben Spencer • Wenfeng Liu – [email protected] – [email protected] • Giovanni Pastore • Ahn Mai – [email protected] – [email protected] • Danielle Petersen • Jack Galloway – [email protected] – [email protected] • Russell Gardner • Christopher Matthews – [email protected] – [email protected] • Kyle Gamble – [email protected] 5 / 277 Fuel Behavior: Introduction At beginning of life, a fuel element is quite simple... Michel et al., Eng. Frac. Mech., 75, 3581 (2008) Olander, p. 323 (1978) =) Fuel Fracture Fission Gas but irradiation brings about substantial complexity... Olander, p. 584 (1978) Bentejac et al., PCI Seminar (2004) Multidimensional Contact and Stress Corrosion Deformation Cracking Cladding Nakajima et al., Nuc. -
The Effects of Beef Liver on the Growth of Catfish and Goldfish
THE EFFECTS OF BEEF LIVER ON THE GROWTH OF CATFISH AND GOLDFISH by MARION ISABELL CAMPBELL B. S., Kansas State Teachers College, Pittsburg, 1924 A THESIS submitted in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE KANSAS STATE AGRICULTURAL COLLEGE 1930 2 TABLE OF CONTENTS page INTRODUCTION 2 REVIEW OF LITERATURE 3 METHODS 4 DISCUSSION 8 SUMMARY 18 ACKNOWLEDGMENTS 19 BIBLIOGRAPHY 20 PLATES 21 INTRODUCTION In experiments worked out by Edward Schneberger, under the direction of Dr. Minna E. Jewell in 1928-29 at the Kansas State Agricultural College, fish fed a diet contain- ing liver gained more in growth than those fed a non-liver diet. These results suggested the following questions: 1. Is liver just a desirable source of protein in the diet of catfish and goldfish or is some other growth factor contained in it? 2. Is the amount of liver a factor in the rate of growth of catfish and goldfish? 3 These studies were made under the direction of Dr. Edward J. Wimmer of the Kansas State Agricultural College under the auspices of the Zoology Department of the Kansas State Agricultural College. REVIEW OF LITERATURE The field of fish nutrition is comparatively new. Liver has always been a favorite food among hatchery people, because fish eat it readily and it has fulfilled the requirements of an adequate diet. Pearse (1925) worked out the chemical composition of certain fresh water fishes and found the body to contain an average of 2.44 per cent nitrogen for the year. This would be supplied by the protein content of the food. -
Blockage of Neddylation Modification Stimulates Tumor Sphere Formation
Blockage of neddylation modification stimulates tumor PNAS PLUS sphere formation in vitro and stem cell differentiation and wound healing in vivo Xiaochen Zhoua,b,1, Mingjia Tanb,1, Mukesh K. Nyatib, Yongchao Zhaoc,d, Gongxian Wanga,2, and Yi Sunb,c,e,2 aDepartment of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330006, China; bDivision of Radiation and Cancer Biology, Department of Radiation Oncology, University of Michigan, Ann Arbor, MI 48109; cInstitute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China; dKey Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; and eCollaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou 310058, China Edited by Vishva M. Dixit, Genentech, San Francisco, CA, and approved March 10, 2016 (received for review November 13, 2015) MLN4924, also known as pevonedistat, is the first-in-class inhibitor acting alone or in combination with current chemotherapy of NEDD8-activating enzyme, which blocks the entire neddylation and/or radiation (6, 11). One of the seven clinical trials of MLN4924 modification of proteins. Previous preclinical studies and current (NCT00911066) was published recently, concluding a modest effect clinical trials have been exclusively focused on its anticancer property. of MLN4924 against acute myeloid leukemia (AML) (12). Unexpectedly, we show here, to our knowledge for the first time, To further elucidate the role of blocking neddylation in cancer that MLN4924, when applied at nanomolar concentrations, signif- treatment, we thought to study the effect of MLN4924 on cancer icantly stimulates in vitro tumor sphere formation and in vivo stem cells (CSCs) or tumor-initiating cells (TICs), a small group tumorigenesis and differentiation of human cancer cells and mouse of tumor cells with stem cell properties that have been claimed to embryonic stem cells.