Russia's Posture in Space
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Issue #1 – 2012 October
TTSIQ #1 page 1 OCTOBER 2012 Introducing a new free quarterly newsletter for space-interested and space-enthused people around the globe This free publication is especially dedicated to students and teachers interested in space NEWS SECTION pp. 3-22 p. 3 Earth Orbit and Mission to Planet Earth - 13 reports p. 8 Cislunar Space and the Moon - 5 reports p. 11 Mars and the Asteroids - 5 reports p. 15 Other Planets and Moons - 2 reports p. 17 Starbound - 4 reports, 1 article ---------------------------------------------------------------------------------------------------- ARTICLES, ESSAYS & MORE pp. 23-45 - 10 articles & essays (full list on last page) ---------------------------------------------------------------------------------------------------- STUDENTS & TEACHERS pp. 46-56 - 9 articles & essays (full list on last page) L: Remote sensing of Aerosol Optical Depth over India R: Curiosity finds rocks shaped by running water on Mars! L: China hopes to put lander on the Moon in 2013 R: First Square Kilometer Array telescopes online in Australia! 1 TTSIQ #1 page 2 OCTOBER 2012 TTSIQ Sponsor Organizations 1. About The National Space Society - http://www.nss.org/ The National Space Society was formed in March, 1987 by the merger of the former L5 Society and National Space institute. NSS has an extensive chapter network in the United States and a number of international chapters in Europe, Asia, and Australia. NSS hosts the annual International Space Development Conference in May each year at varying locations. NSS publishes Ad Astra magazine quarterly. NSS actively tries to influence US Space Policy. About The Moon Society - http://www.moonsociety.org The Moon Society was formed in 2000 and seeks to inspire and involve people everywhere in exploration of the Moon with the establishment of civilian settlements, using local resources through private enterprise both to support themselves and to help alleviate Earth's stubborn energy and environmental problems. -
System Analysis and Design of the Geostationary Earth Orbit All-Electric Communication Satellites
https://doi.org/10.1590/jatm.v13.1205 REVIEW ARTICLE System Analysis and Design of the Geostationary Earth Orbit All-Electric Communication Satellites Parsa Abbasrezaee1,* , Ali Saraaeb2 1.Sapienza University of Rome – Aerospace Engineering School – Rome – Italy. 2.Khaje Nasir Toosi University of Technology – Aerospace department – Tehran – Iran. *Corresponding author: [email protected] ABSTRACT With the help of gathered data and formulas extracted from a previous conference paper, the all-electric geostationary Earth orbit (GEO) communication satellite statistical design was conducted and further studied with analytic hierarchy process (AHP) and technique for order of preference by similarity to ideal solution (TOPSIS) methods. Moreover, with the help of previously determined system parameters, the orbital ascension, orbital maintenance and deorbiting specifications, calculations and simulations were persuaded. Furthermore, a parametric subsystem design was conducted to test the methods reliability and prove the feasibility of such approach. The parametric subsystem design was used for electrical power subsystem (EPS), attitude determination and control system (ADCS), electric propulsion, telemetry, tracking and control (TT&C) in conceptual subsystem design level, which highly relies on the satellite type and other specifications, were concluded in this paper; other subsystem designs were not of a significant difference to hybrid and chemical satellites. Eventually, the verification of the mentioned subsystems has been evaluated by contrasting the results with the Space mission engineering: the new SMAD, and subsystem design book reference. Keywords: All-electric; GEO; AHP and TOPSIS Method; Maintenance; Deorbiting; Parametric. INTRODUCTION From the previous conference paper, the contrast between all-electric geostationary Earth orbit (GEO) communication and other hybrid and chemical satellite design has shown that using all-electric satellite design has many advantages. -
Russia Nuclear Chronology
Russia Nuclear Chronology 2010 | 2009 | 2008 | 2007 | 2006 | 2005 | 2004 | 2003 2002 | 2001-2000 | 1999 | 1998 | 1997-1993 Last update: July 2010 This annotated chronology is based on the data sources that follow each entry. Public sources often provide conflicting information on classified military programs. In some cases we are unable to resolve these discrepancies, in others we have deliberately refrained from doing so to highlight the potential influence of false or misleading information as it appeared over time. In many cases, we are unable to independently verify claims. Hence in reviewing this chronology, readers should take into account the credibility of the sources employed here. Inclusion in this chronology does not necessarily indicate that a particular development is of direct or indirect proliferation significance. Some entries provide international or domestic context for technological development and national policymaking. Moreover, some entries may refer to developments with positive consequences for nonproliferation 2010 10 January 2010 UNIT OF VOLGODONSK POWER PLANT UNDERGOES EMERGENCY SHUTDOWN The first power unit of the Volgodonsk nuclear power plant in south Russia was shut down by an emergency protection system. Problems with a steam generator were the likely cause of the protection system activation. Rosenergoatom reported a normal level of background radiation at the plant. The Volgodonsk power plant began operating in 2001. It is situated some 1,000 km (621 miles) south of Moscow and has a single pressurized water reactor. —"Radiation Level Normal at Volgodonsk NPP After Emergency Shutdown," RIA Novosti, 1 January 2010, http://en.rian.ru; "Volgodonsk NPP Shuts Down First Power Unit in Emergency Mode," RIA Novosti, 1 January 2010, http://en.rian.ru. -
Space Technology and Telecommunication" Cluster of the Skolkovo Foundation
STRATEGIC DIRECTIONS AND PRIORITY AREAS OF DEVELOPMENT FOR "S PACE TECHNOLOGY AND TELECOMMUNICATION " CLUSTER OF THE SKOLKOVO FOUNDATION 2012 Strategic Directions and Priority Areas of Development for "Space Technology and Telecommunication" Cluster of the Skolkovo Foundation The present document describes the results of methodology development and evaluation of strategic directions and priority areas for "Space Technology and Telecommunication" Cluster of the Skolkovo Fund. The first iteration was obtained by ST&T expert group with assistance of leading space R&D institutes using the Federal Space Agency materials. The Strategic Directions will be subsequently specified under the foresight research based on the contract between the Skolkovo Fund and one of the leading R&D and consulting organizations in the field of space activity and its results' commercialization. The Glossary can be found at the end of the document EXECUTIVE SUMMARY: PRIORITIES ST&T Cluster ensures search for, attraction and selection of potential subjects of innovative process in the field of development and target use of spacecrafts operation and diversification of rocket and space industry potential, facilitates their cooperation and provides the environment for full cycle innovation process establishment, based on the Strategic directions and priority areas of development, initially defined by this document and regularly updated considering opinion of sci-tech and business community that is identified in process of foresight procedure. At the moment, the Cluster finds it necessary, along with comprehensive support for innovative activity of the Skolkovo Fund participants and applicants, to focus on proactive implementation of several priority areas which particularly include: Establishing national infrastructure of full cycle microsatellite technology which involves leading universities. -
Space Business Review
January 2009 A monthly round-up of space industry developments for the information of our clients and friends. Intelsat Senior Notes Offering Swedish Space Corporation Acquires USN Intelsat, Ltd. announced on January 29 that Swedish Space Corporation (SSC) its subsidiary, Intelsat Subsidiary Holding announced on January 21 that it had Company, Ltd. (Intelsat Sub Holdco), priced reached an agreement to acquire all of the $400 million aggregate principal amount of shares of Universal Space Network (USN). 8.875% senior notes due 2015 at an issue The two companies have been collaborating price of 88.50%. The net proceeds of the notes for the last ten years in providing worldwide will be used to fund Intelsat Sub Holdco’s satellite tracking services via PrioraNet, a purchase of a portion of Intelsat, Ltd.’s global network of ground stations. The outstanding 7.625% Senior Notes due 2012 acquisition is subject to regulatory approvals and 6.50% Senior Notes due 2013 that are in the U.S., and upon closing, USN will tendered in Intelsat Sub Holdco’s cash offer. operate as a U.S.-based subsidiary of SSC. Launched on January 14, the tender offer China Great Wall to Replace NigComSat-1 initially contemplated the purchase of $200 Following the failure of the NigComSat-1 million maximum aggregate principal amount satellite in November 2008, it is reported that of notes, however was increased to $375 Nigerian Communications Satellite Ltd. million and ultimately doubled due to strong (NigComSat) and China Great Wall Industry demand. Goldman, Sachs & Co. acted as the Corporation reached an agreement in dealer manager for the notes offering, which is December 2008 for the manufacture and in- expected to close on February 12. -
Classification of Geosynchronous Objects
esoc European Space Operations Centre Robert-Bosch-Strasse 5 D-64293 Darmstadt Germany T +49 (0)6151 900 www.esa.int CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Produced with the DISCOS Database Prepared by T. Flohrer & S. Frey Reference GEN-DB-LOG-00195-OPS-GR Issue 18 Revision 0 Date of Issue 3 June 2016 Status ISSUED Document Type TN European Space Agency Agence spatiale europeenne´ Abstract This is a status report on geosynchronous objects as of 1 January 2016. Based on orbital data in ESA’s DISCOS database and on orbital data provided by KIAM the situation near the geostationary ring is analysed. From 1434 objects for which orbital data are available (of which 2 are outdated, i.e. the last available state dates back to 180 or more days before the reference date), 471 are actively controlled, 747 are drifting above, below or through GEO, 190 are in a libration orbit and 15 are in a highly inclined orbit. For 11 objects the status could not be determined. Furthermore, there are 50 uncontrolled objects without orbital data (of which 44 have not been cata- logued). Thus the total number of known objects in the geostationary region is 1484. In issue 18 the previously used definition of ”near the geostationary ring” has been slightly adapted. If you detect any error or if you have any comment or question please contact: Tim Flohrer, PhD European Space Agency European Space Operations Center Space Debris Office (OPS-GR) Robert-Bosch-Str. 5 64293 Darmstadt, Germany Tel.: +49-6151-903058 E-mail: tim.fl[email protected] Page 1 / 178 European Space Agency CLASSIFICATION OF GEOSYNCHRONOUS OBJECTS Agence spatiale europeenne´ Date 3 June 2016 Issue 18 Rev 0 Table of contents 1 Introduction 3 2 Sources 4 2.1 USSTRATCOM Two-Line Elements (TLEs) . -
An Assessment James Oberg July 2007
The following report will be published early in 2008 as a chapter in the National Defense University series on space power. See http://www.ndu.edu/inss/press/nduphp.html for details on availability of the entire volume. Meanwhile it is copyright @2007, James Oberg and the NDU. Russia’s Space Program at Fifty – An Assessment James Oberg July 2007 After half a century of space activities, Russia will be spending 2007 celebrating anniversaries of its space past, but with good reason will also be celebrating improving prospects for its space future. The past events include the 150th birth anniversary of Konstantin Tsiolkovsky, the birth centenary of Sergei Korolev, and 50 years since the world's first artificial satellite was launched in the Soviet Union. Lamentable hangovers from the more recent “space slump” have been fading away, although not entirely. Not far from the main launch pad at the Baykonur cosmodrome, a pad that hosted the Sputnik blastoff on October 4, 1957, the Gagarin blast-off on April 12, 1961, and still hosts ‘Soyuz’ booster launches, stands a simple obelisk. It is surmounted by a full-size metal sculpture of the ‘Sputnik’, and supports a small plaque. “Here through the genius of Soviet man began the relentless assault on space,” reads the plaque. But the succeeding fifty years saw a mixture of relentless assault and single-minded perseverance with wasteful detours, dead-ended spectaculars, desperate gambles, and shriveling budgets. Interplanetary probes pioneered the routes to nearby planets, but could reach no further. Operating lifetimes of affordable satellites were so short that mass quantitites had to be successively launched into orbit – with the unintended benefit of providing a major surge (or casualty replacement) capability for military systems. -
Failures in Spacecraft Systems: an Analysis from The
FAILURES IN SPACECRAFT SYSTEMS: AN ANALYSIS FROM THE PERSPECTIVE OF DECISION MAKING A Thesis Submitted to the Faculty of Purdue University by Vikranth R. Kattakuri In Partial Fulfillment of the Requirements for the Degree of Master of Science in Mechanical Engineering August 2019 Purdue University West Lafayette, Indiana ii THE PURDUE UNIVERSITY GRADUATE SCHOOL STATEMENT OF THESIS APPROVAL Dr. Jitesh H. Panchal, Chair School of Mechanical Engineering Dr. Ilias Bilionis School of Mechanical Engineering Dr. William Crossley School of Aeronautics and Astronautics Approved by: Dr. Jay P. Gore Associate Head of Graduate Studies iii ACKNOWLEDGMENTS I am extremely grateful to my advisor Prof. Jitesh Panchal for his patient guidance throughout the two years of my studies. I am indebted to him for considering me to be a part of his research group and for providing this opportunity to work in the fields of systems engineering and mechanical design for a period of 2 years. Being a research and teaching assistant under him had been a rewarding experience. Without his valuable insights, this work would not only have been possible, but also inconceivable. I would like to thank my co-advisor Prof. Ilias Bilionis for his valuable inputs, timely guidance and extremely engaging research meetings. I thank my committee member, Prof. William Crossley for his interest in my work. I had a great opportunity to attend all three courses taught by my committee members and they are the best among all the courses I had at Purdue. I would like to thank my mentors Dr. Jagannath Raju of Systemantics India Pri- vate Limited and Prof. -
Space Security Index 2013
SPACE SECURITY INDEX 2013 www.spacesecurity.org 10th Edition SPACE SECURITY INDEX 2013 SPACESECURITY.ORG iii Library and Archives Canada Cataloguing in Publications Data Space Security Index 2013 ISBN: 978-1-927802-05-2 FOR PDF version use this © 2013 SPACESECURITY.ORG ISBN: 978-1-927802-05-2 Edited by Cesar Jaramillo Design and layout by Creative Services, University of Waterloo, Waterloo, Ontario, Canada Cover image: Soyuz TMA-07M Spacecraft ISS034-E-010181 (21 Dec. 2012) As the International Space Station and Soyuz TMA-07M spacecraft were making their relative approaches on Dec. 21, one of the Expedition 34 crew members on the orbital outpost captured this photo of the Soyuz. Credit: NASA. Printed in Canada Printer: Pandora Print Shop, Kitchener, Ontario First published October 2013 Please direct enquiries to: Cesar Jaramillo Project Ploughshares 57 Erb Street West Waterloo, Ontario N2L 6C2 Canada Telephone: 519-888-6541, ext. 7708 Fax: 519-888-0018 Email: [email protected] Governance Group Julie Crôteau Foreign Aairs and International Trade Canada Peter Hays Eisenhower Center for Space and Defense Studies Ram Jakhu Institute of Air and Space Law, McGill University Ajey Lele Institute for Defence Studies and Analyses Paul Meyer The Simons Foundation John Siebert Project Ploughshares Ray Williamson Secure World Foundation Advisory Board Richard DalBello Intelsat General Corporation Theresa Hitchens United Nations Institute for Disarmament Research John Logsdon The George Washington University Lucy Stojak HEC Montréal Project Manager Cesar Jaramillo Project Ploughshares Table of Contents TABLE OF CONTENTS TABLE PAGE 1 Acronyms and Abbreviations PAGE 5 Introduction PAGE 9 Acknowledgements PAGE 10 Executive Summary PAGE 23 Theme 1: Condition of the space environment: This theme examines the security and sustainability of the space environment, with an emphasis on space debris; the potential threats posed by near-Earth objects; the allocation of scarce space resources; and the ability to detect, track, identify, and catalog objects in outer space. -
GNSS Satellite-Based Augmentation Systems for Australia
GNSS Satellite-Based Augmentation Systems for Australia Dr. Suelynn Choy School of Science, RMIT University GPO BOX 2476V, Melbourne 3001, Victoria, Australia. Tel: +61 3 9925 2650 Fax: + +61 3 9663 2517 Email: [email protected] Dr. Joost Kuckartz School of Science, RMIT University GPO BOX 2476V, Melbourne 3001, Victoria, Australia. Email: [email protected] Professor Andrew G Dempster School of Electrical Engineering & Telecommunications, The University of New South Wales (UNSW) Sydney 2052, New South Wales, Australia. Tel: +61 2 93856890 Fax: +61 2 93855519 Email: [email protected] Professor Chris Rizos School of Civil & Environmental Engineering, The University of New South Wales (UNSW) Sydney 2052, New South Wales, Australia. Tel: +61 2 93854205 Fax: +61 2 9385 6139 Email: [email protected] Matt Higgins Queensland Department of Natural Resources and Mine Brisbane 4000, Queensland, Australia. Tel: +61 7 389 63754 Email: [email protected] 1 GNSS Satellite-Based Augmentation Systems for Australia ABSTRACT This paper provides an overview of various Satellite-Based Augmentation Systems (SBAS) options for augmented GNSS services in Australia, and potentially New Zealand, with the aim to tease out key similarities and differences in their augmentation capabilities. SBAS systems can technically be classified into two user categories, namely SBAS for aviation and “non-aviation” SBAS. Aviation SBAS is an International Civil Aviation Organisation (ICAO) certified civil aviation safety critical system providing wide-area GNSS augmentation by broadcasting augmentation information using geostationary satellites. The primary aim is to improve integrity, availability and accuracy of basic GNSS signals for aircraft navigation. -
Behind the Scenes All About the Chinese Space Programme GO TAIKONAUTS!
Issue 3 January 2012 MISSION DOCKING Behind the Scenes All about the Chinese Space Programme GO TAIKONAUTS! Editor’s Note The year 2011 may become a key turning point in the Chinese space programme. In this year, China surpassed the United States in annual space launch rate , start- ed initial Beidou positioning service, re- vived commercial launch ... page 2 Quarterly Report July - September 2011 Launch Events As in previous years, Chi- nese launch activities ac- celerated in the second half of the year. There were nine space launches in the third quarter of 2011, eight of which were suc- Mission Docking: Behind the Scene cessful, which established a string of re- The Shenzhou 8 and the Tiangong 1 rendezvous and docking mission was cords in the history of the Chinese space undoubtedly one of the most important space events in 2011. It becomes programme ... page 3 especially dramatic now that the US has retired its shuttle fleet and lost its capability to send humans into space, and Russia has recently encountered a string of disappointing launch failures and the loss of the high-profile Pho- Analysis bos-Grunt probe ... page 6 When Two Became One International Cooperation As media both inside and outside China have reported, the Shenzhou 8 docking Harmonious Interference Dissolves mission with Tiangong 1 towards the end Galileo “Misunderstandings” of 2011 was a full success. What does suc- People often like to talk about the “new space race to the Moon”. But in cess mean in this context? What are the the background, almost un-noticed by the public, another more tangible direct consequences for China’s ambi- race is taking place. -
List of Russian Space Launch Vehicle Failures Since Dec. 2010
Fact Sheet Updated March 25, 2019 LIST OF RUSSIAN SPACE LAUNCH FAILURES SINCE DEC. 2010 Russia’s once reliable fleet of space launch vehicles began a string of failures beginning in December 2010 that has created significant consternation in Russia’s space program and brought about firings and reorganizations, but the failures continue. Following is a list, with links to SpacePolicyOnline.com articles where available. • December 2010, Proton-Block DM, upper stage failure, three Russian GLONASS navigation satellites lost • February 2011, GEO-IK2, Rokot-Briz, upper stage failure, Russian geodetic satellite stranded in transfer orbit • August 2011, Ekspress AM-4, Proton-Briz, upper stage failure, Russian communications satellite stranded in transfer orbit • August 2011, Progress M-12M (called Progress 44 by NASA), Soyuz U-Fregat, third stage failure due to clogged fuel line, Russian cargo spacecraft for International Space Station lost • November 2011, Phobos-Grunt, Zenit-Fregat, upper stage failure, Russian Mars-bound spacecraft stranded in Earth orbit • December 2011, Soyuz 2.1a, third stage failure, Russian Meridian military communication satellite lost • August 2012, Proton-Briz, upper stage failure, Russian Ekspress-MD2 and Indonesian Telkom-3 communications satellites stranded in transfer orbit • December 2012, Proton-Briz, upper stage failure, Russian Yamal 402 communications satellite delivered to wrong orbit. • January 2013, Rokot-Briz KM, upper stage failure. Three Russian Strela military communications satellites incorrectly placed