Lithium Chloride and GSK3 Inhibition Reduce Aquaporin-2 Expression in Primary Cultured Inner Medullary Collecting Duct Cells Due to Independent Mechanisms

Total Page:16

File Type:pdf, Size:1020Kb

Lithium Chloride and GSK3 Inhibition Reduce Aquaporin-2 Expression in Primary Cultured Inner Medullary Collecting Duct Cells Due to Independent Mechanisms cells Article Lithium Chloride and GSK3 Inhibition Reduce Aquaporin-2 Expression in Primary Cultured Inner Medullary Collecting Duct Cells Due to Independent Mechanisms Marc Kaiser 1 and Bayram Edemir 2,* 1 Medizinische Klinik D, Experimentelle Nephrologie, Universitätsklinikum Münster, 48143 Münster, Germany; [email protected] 2 Department of Medicine, Hematology and Oncology, Martin Luther University Halle-Wittenberg, 06120 Halle (Saale), Germany * Correspondence: [email protected]; Tel.: +49-345-557-4890; Fax: +49-345-557-2950 Received: 20 March 2020; Accepted: 19 April 2020; Published: 23 April 2020 Abstract: Lithium chloride (LiCl) is a widely used drug for the treatment of bipolar disorders, but as a side effect, 40% of the patients develop diabetes insipidus. LiCl affects the activity of the glycogen synthase kinase 3 (GSK3), and mice deficient for GSK3β showed a reduction in the urine concentration capability. The cellular and molecular mechanisms are not fully understood. We used primary cultured inner medullary collecting duct cells to analyze the underlying mechanisms. LiCl and the inhibitor of GSK3 (SB216763) induced a decrease in the aquaporin-2 (Aqp2) protein level. LiCl induced downregulation of Aqp2 mRNA expression while SB216763 had no effect and TWS119 led to increase in expression. The inhibition of the lysosomal activity with bafilomycin or chloroquine prevented both LiCl- and SB216763-mediated downregulation of Aqp2 protein expression. Bafilomycin and chloroquine induced the accumulation of Aqp2 in lysosomal structures, which was prevented in cells treated with dibutyryl cyclic adenosine monophosphate (dbcAMP), which led to phosphorylation and membrane localization of Aqp2. Downregulation of Aqp2 was also evident when LiCl was applied together with dbcAMP, and dbcAMP prevented the SB216763-induced downregulation. We showed that LiCl and SB216763 induce downregulation of Aqp2 via different mechanisms. While LiCl also affected the mRNA level, SB216763 induced lysosmal degradation. Specific GSK3β inhibition had an opposite effect, indicating a more complex regulatory mechanism. Keywords: aquaporin; diabetes insipidus; lithium chloride 1. Introduction In the renal collecting duct, the final urine concentration is predominantly regulated by the action of the antidiuretic hormone vasopressin (AVP), which is secreted by the neuronal lobule of the pituitary gland [1]. The binding of AVP to the vasopressin type 2 receptor (V2R) at the basolateral membrane of the collecting duct’s principal cells leads to, via an activation of a Gs-protein, the stimulation of the adenylyl cyclase and an increase of the cyclic adenosine monophosphate (cAMP) level [2]. This activates the protein kinase A (PKA), which in turn phosphorylates the water channel aquaporin-2 (Aqp2) at serine 256 [3]. This phosphorylation induces the translocation and fusion of Aqp2-containing vesicles with the luminal plasma membrane. Thus, water can enter the cell along an osmotic gradient and leaves the cell on the basolateral site facilitated by aquaporin-3 (Aqp3) and aquaporin-4 (Aqp4) [4]. Defects in this pathway often lead to a urine concentration deficiency, a disorder called diabetes insipidus (DI) [5]. This disorder can be inherited, either when specific mutations lead to a defect in Cells 2020, 9, 1060; doi:10.3390/cells9041060 www.mdpi.com/journal/cells Cells 2020, 9, 1060 2 of 15 the secretion of AVP from the pituitary gland (central DI) or to nephrogenic diabetes insipidus (NDI) when the V2R or Aqp2 genes are mutated [5]. Alternatively, DI can be acquired, e.g., due to therapy with the drug lithium chloride (LiCl) or due to diseases affecting the pituitary gland [6,7]. LiCl is widely used for the treatment of bipolar disorders and causes NDI in up to 40% of these patients as severe side effect [8]. Various mechanisms have been described of how LiCl could induce NDI. One postulated mechanism is the stimulation of the Gi protein by LiCl, which would inhibit the activity of the adenylate cyclase [8]. As a consequence, the trafficking of Aqp2-containing vesicles to the apical membrane and Aqp2 expression, which is also cAMP and protein kinase A (PKA) dependent, would be reduced [9]. Another postulated mechanism is that LiCl reduces the density of the V2R at the plasma membrane, which would have the same effect as described above. Moreover, LiCl might cause a defect independent of the classical V2R pathway [10,11]. LiCl, for example, inhibits the activity of the glycogen synthase kinase 3 alpha/beta (GSK3α/β), but it is still not well understood how the inhibition of GSK3α/β by LiCl causes NDI [12]. A global GSK3β-deficient mouse was embryonic lethal [13], and in contrast, a renal collecting duct specific knockout mouse showed only mild polyuria. However, under water deprivation or stimulation with AVP, reduced cAMP levels and in turn a urine concentration disability was observed [14]. Therefore, it was concluded that GSK3β is involved in the urine concentration under water-deprived conditions. Still, the underlying cellular and molecular mechanisms were not fully understood. To further address this issue, we used primary cultured inner medullary collecting duct (IMCD) cells and analyzed the effects of pharmacological GSK3 inhibition and LiCl on Aqp2 expression. The treatment of IMCD cells with LiCl provoked a decrease of Aqp2 expression on both the transcriptional and protein level. Inhibition of both isoforms of the GSK3 with SB216763, however, decreased only the expression of Aqp2 protein. In contrast, a sole inhibition of GSK3β by the specific inhibitor, TWS119 [15], showed an upregulation of Aqp2 on the protein level as well as in mRNA expression. Further analysis showed that LiCl and GSK3 inhibition by SB216763 enhanced the degradation rate of Aqp2 protein in lysosomes. 2. Materials and Methods 2.1. Cell Culture Primary cultured IMCD cells were prepared as previously described [16]. Female Wistar rats at the age of 23 months were sacrificed by decapitation and the kidneys were removed. The inner medulla and the papilla were isolated, cut into small pieces, and incubated at 37 ◦C for 90 min in a digesting solution, which contained phosphate buffered saline (PBS) (Biochrom, Berlin, Germany), 0.2% hyaluronidase (Sigma, Deisenhofen, Germany), and 0.2% collagenase type CLS-II (Sigma). The isolated cells were seeded with a density of approximately 105 cells/cm2 and grown to confluency in 24-well plates (Greiner Bio-One, Frickenhausen, Germany) coated with collagen type IV (Becton-Dickinson, Heidelberg, Germany). For cultivation, Dulbecco’s modified Eagle’s medium (DMEM) containing 100 IU/mL penicillin and 100 µg/mL streptomycin, 0.2% glutamine, 1% non-essential amino acids, and 1% ultroser (BioSepra Inc., Marlborough, MA, USA) was used. The medium osmolality was increased to 600 mOsmol/kg by the addition of 100 mM NaCl and 100 mM urea. Osmolality was checked using an osmometer (Knauer, Berlin, Germany). Cells were cultured for 67 days and treated with LiCl; SB216763, a potent inhibitor of both GSK3 isoforms [17] (Sigma, Deisenhofen, Germany); TWS119, a potent inhibitor of the GSK3β isoform [15] (Millipore, Darmstadt, Germany); bafilomycin A1 and chloroquine, both inhibitors of the vacuolar ATPase [18,19] and thereby lysosomal activity inhibitors; MG132, as a proteasome inhibitor [20]; and dbcAMP (all from Sigma, Deisenhofen, Germany) in different concentrations and durations, alone or together as indicated. All experiments were conducted with at least 3 independent cell cultures from different rats. All animals were handled according to German animal protection guidelines and the experiments were approved by a governmental committee on animal welfare (A 60/1993 and A 67/09). Cells 2020, 9, 1060 3 of 15 2.2. Immunoblotting Immunoblotting was performed as previously described [21]. Briefly, the same protein amounts were separated by SDS-polyacrylamide (4–20%) electrophoresis and transferred to a polyvinylidene difluoride (PVDF) membrane (Amersham, Freiburg, Germany). Membranes were subsequently incubated with primary antibodies in a 1:1.000 dilution. Antibodies raised against Aqp2-4 were obtained from Alomone Labs (Jerusalem, Israel) and antibodies directed against phosphorylated Aqp2 at position S256 were a generous gift from M. Knepper (National Institutes of Health, Bethesda, MD, USA). A secondary, horseradish-peroxidase-linked anti-rabbit antibody was used. Membranes were stripped (30 min/60 ◦C) using stripping buffer (15 g/L glycine, 1 g/L sodium dodecyl sulfate, 10 mL/L Tween 20, pH to 2.2) and reincubated with an antibody directed against glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to ensure equal loading. Quantification of specific signals was performed using the Lumianalyst software (Roche, Basel, Switzerland). 2.3. Real-Time PCR Total RNA and cDNA synthesis were performed as described before [16]. Real-time PCR was performed using the SYBR Green PCR Master Mix with the ABI PRISM 7900 Sequence Detection System. All instruments and reagents were purchased from Applied Biosystems (Darmstadt, Germany). DDCt Relative gene expression values were evaluated with the 2− method using GAPDH as the reference gene [22]. Specific primer pairs were used, and a list with the gene names, accession numbers, and gene symbols is provided in Table1. Table 1. Gene names, gene symbols, accession numbers, and primer sequences of genes used for real-time PCR. Gene Description and Acc. No. Primer Sequences Sense-TGC ATC TTT GCC TCC ACC GAC GAG Aquaporin-2 (Aqp2) Antisense-CAT
Recommended publications
  • Differential Expression of Hydroxyurea Transporters in Normal and Polycythemia Vera Hematopoietic Stem and Progenitor Cell Subpopulations
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2021 Differential expression of hydroxyurea transporters in normal and polycythemia vera hematopoietic stem and progenitor cell subpopulations Tan, Ge ; Meier-Abt, Fabienne Abstract: Polycythemia vera (PV) is a myeloproliferative neoplasm marked by hyperproliferation of the myeloid lineages and the presence of an activating JAK2 mutation. Hydroxyurea (HU) is a standard treat- ment for high-risk patients with PV. Because disease-driving mechanisms are thought to arise in PV stem cells, effective treatments should target primarily the stem cell compartment. We tested for theantipro- liferative effect of patient treatment with HU in fluorescence-activated cell sorting-isolated hematopoietic stem/multipotent progenitor cells (HSC/MPPs) and more committed erythroid progenitors (common myeloid/megakaryocyte-erythrocyte progenitors [CMP/MEPs]) in PV using RNA-sequencing and gene set enrichment analysis. HU treatment led to significant downregulation of gene sets associated with cell proliferation in PV HSCs/MPPs, but not in PV CMP/MEPs. To explore the mechanism underlying this finding, we assessed for expression of solute carrier membrane transporters, which mediate trans- membrane movement of drugs such as HU into target cells. The active HU uptake transporter OCTN1 was upregulated in HSC/MPPs compared with CMP/MEPs of untreated patients with PV, and the HU diffusion facilitator urea transporter B (UTB) was downregulated in HSC/MPPs compared withCM- P/MEPs in all patient and control groups tested. These findings indicate a higher accumulation ofHU within PV HSC/MPPs compared with PV CMP/MEPs and provide an explanation for the differential effects of HU in HSC/MPPs and CMP/MEPs of patients with PV.
    [Show full text]
  • Abrothrix Olivacea)
    Received: 13 June 2017 | Revised: 30 May 2018 | Accepted: 31 May 2018 DOI: 10.1111/mec.14778 ORIGINAL ARTICLE An association between differential expression and genetic divergence in the Patagonian olive mouse (Abrothrix olivacea) Facundo M. Giorello1,2 | Matias Feijoo1 | Guillermo D'Elía3 | Daniel E. Naya1 | Lourdes Valdez3 | Juan C. Opazo3 | Enrique P. Lessa1 1Departamento de Ecología y Evolución, Facultad de Ciencias, Universidad de la Abstract República, Montevideo, Uruguay Recent molecular studies have found striking differences between desert‐adapted 2Espacio de Biología Vegetal del Noreste, species and model mammals regarding water conservation. In particular, aquaporin Centro Universitario de Tacuarembó, Universidad de la República, Tacuarembó, 4, a classical gene involved in water regulation of model species, is absent or not Uruguay expressed in the kidneys of desert‐adapted species. To further understand the 3Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, molecular response to water availability, we studied the Patagonian olive mouse Valdivia, Chile Abrothrix olivacea, a species with an unusually broad ecological tolerance that exhi- Correspondence bits a great urine concentration capability. The species is able to occupy both the Facundo M. Giorello, Departamento de arid Patagonian steppe and the Valdivian and Magellanic forests. We sampled 95 Ecología y Evolución, Facultad de Ciencias, Universidad de la República, Iguá 4225, olive mouse specimens from four localities (two in the steppe and two in the for- Montevideo 11400, Uruguay. ests) and analysed both phenotypic variables and transcriptomic data to investigate Email: [email protected] the response of this species to the contrasting environmental conditions. The rela- Funding information tive size of the kidney and the ratio of urine to plasma concentrations were, as Fondo Nacional de Desarrollo Científico y Tecnológico, Grant/Award Number: expected, negatively correlated with annual rainfall.
    [Show full text]
  • Structure and Permeation Mechanism of a Mammalian Urea Transporter
    Structure and permeation mechanism of a mammalian urea transporter Elena J. Levina,1, Yu Caoa,1, Giray Enkavib, Matthias Quickc, Yaping Pana, Emad Tajkhorshidb,2, and Ming Zhoua,2 aDepartment of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032; bCenter for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; and cDepartment of Psychiatry and Center for Molecular Recognition, Columbia University, 650 West 168th Street, New York, NY 10032 Edited by Christopher Miller, HHMI, Brandeis University, Waltham, MA, and approved June 1, 2012 (received for review May 3, 2012) As an adaptation to infrequent access to water, terrestrial mam- homolog (21), dvUT, which forms a trimer with a continuous mals produce urine that is hyperosmotic to plasma. To prevent membrane-spanning pore at the center of each protomer. How- osmotic diuresis by the large quantity of urea generated by protein ever, it remained unclear how similar this structure was to that catabolism, the kidney epithelia contain facilitative urea transpor- of the mammalian UTs, and the details of the permeation me- ters (UTs) that allow rapid equilibration between the urinary space chanism were unknown. To answer these questions, we solved and the hyperosmotic interstitium. Here we report the first X-ray the structure of a mammalian UT-B and investigated the permea- crystal structure of a mammalian UT, UT-B, at a resolution of 2.36 Å. tion mechanism with molecular dynamics simulations and func- UT-B is a homotrimer and each protomer contains a urea con- tional studies of UT-B mutants.
    [Show full text]
  • H00008170-Q01 規格 : [ 10 Ug ] [ 25 Ug ] List All
    SLC14A2 (Human) Recombinant Protein (Q01) Catalog # : H00008170-Q01 規格 : [ 10 ug ] [ 25 ug ] List All Specification Application Image Product Human SLC14A2 partial ORF ( NP_009094, 40 a.a. - 128 a.a.) Enzyme-linked Immunoabsorbent Assay Description: recombinant protein with GST-tag at N-terminal. Western Blot (Recombinant Sequence: ALPLLEMPEEKDLRSSNEDSHIVKIEKLNERSKRKDDGVAHRDSAGQRCI protein) CLSKAVGYLTGDMKEYRIWLKDKHLALQFIDWVLRGTAQ Antibody Production Host: Wheat Germ (in vitro) Protein Array Theoretical MW 35.53 (kDa): Preparation in vitro wheat germ expression system Method: Purification: Glutathione Sepharose 4 Fast Flow Quality Control 12.5% SDS-PAGE Stained with Coomassie Blue. Testing: Storage Buffer: 50 mM Tris-HCI, 10 mM reduced Glutathione, pH=8.0 in the elution buffer. Storage Store at -80°C. Aliquot to avoid repeated freezing and thawing. Instruction: Note: Best use within three months from the date of receipt of this protein. MSDS: Download Datasheet: Download Applications Enzyme-linked Immunoabsorbent Assay Western Blot (Recombinant protein) Antibody Production Protein Array Page 1 of 2 2016/5/22 Gene Information Entrez GeneID: 8170 GeneBank NM_007163 Accession#: Protein NP_009094 Accession#: Gene Name: SLC14A2 Gene Alias: FLJ16167,HUT2,MGC119566,MGC119567,UT-A2,UT2,UTA,UTR,hUT- A6 Gene solute carrier family 14 (urea transporter), member 2 Description: Omim ID: 601611 Gene Ontology: Hyperlink Gene Summary: In mammalian cells, urea is the chief end-product of nitrogen catabolism and plays an important role in the urinary concentration
    [Show full text]
  • Computational Dissection of Human Episodic Memory Reveals Mental
    Computational dissection of human episodic memory PNAS PLUS reveals mental process-specific genetic profiles Gediminas Luksysa,1, Matthias Fastenratha, David Coynela, Virginie Freytagb, Leo Gschwindb, Angela Heckb, Frank Jessenc,d, Wolfgang Maierd,e, Annette Milnikb,f, Steffi G. Riedel-Hellerg, Martin Schererh, Klara Spaleka, Christian Voglerb,f, Michael Wagnerd,e, Steffen Wolfsgruberd,e, Andreas Papassotiropoulosb,f,i,j,1,2, and Dominique J.-F. de Quervaina,f,j,1,2 aDivision of Cognitive Neuroscience, Department of Psychology, University of Basel, CH-4055, Basel, Switzerland; bDivision of Molecular Neuroscience, Department of Psychology, University of Basel, CH-4055, Basel, Switzerland; cDepartment of Psychiatry, University of Cologne, D-50937, Cologne, Germany; dGerman Center for Neurodegenerative Diseases, D-53175, Bonn, Germany; eDepartment of Psychiatry, University of Bonn, D-53105, Bonn, Germany; fUniversity Psychiatric Clinics, University of Basel, CH-4012, Basel, Switzerland; gInstitute of Social Medicine, Occupational Health and Public Health, University of Leipzig, D-04103, Leipzig, Germany; hCenter for Psychosocial Medicine, Department of Primary Medical Care, University Medical Center Hamburg-Eppendorf, D-20246, Hamburg, Germany; iLife Sciences Training Facility, Biozentrum, University of Basel, CH-4056, Basel, Switzerland; and jTransfaculty Research Platform, University of Basel, CH-4055, Basel, Switzerland Edited by James L. McGaugh, University of California Irvine, CA, and approved July 9, 2015 (received for review January 18, 2015) Episodic memory performance is the result of distinct mental the model-based analysis approach has largely been missing from processes, such as learning, memory maintenance, and emotional studies of human episodic memory and genome-wide association modulation of memory strength. Such processes can be effectively studies (GWAS).
    [Show full text]
  • SPC-406 UT-A1 Polyclonal Antibody.Docx
    UT-A1 Antibody Rabbit Anti-Rat UT-A1 Antibody Polyclonal Discovery through partnership | Excellence through quality Catalog No. SPC-406 Overview Product Name Anti-UT-A1 Antibody Sizes Available 100 µg (Catalog No. SPC-406D) Species Reactivity Rat | Mouse Tested Applications WB | ICC/IF Antibody Dilution WB (1:1000); optimal dilutions for assays should be determined by the user. Produced against a synthetic peptide mapped to the C-terminal tail (amino acids 911-929) of rat UT-A1 Immunogen (antibody designation L194) Concentration 1 mg/ml Properties Storage Buffer PBS, 50% glycerol, 0.09% sodium azide Storage Conditions/ -20ºC; 1 year+ Avoid freeze/ thaw cycle. Shipping Temperature Blue Ice or 4ºC. Purification Affinity Purified Product Type Polyclonal Specificity Detects ~97 and 127kDa. 1 µg/ml of SPC-406 was sufficient for detection of UT-A1 in 20 µg of rat kidney tissue lysate by colorimetric Certificate of Analysis immunoblot analysis using Goat anti-rabbit IgG:HRP as the secondary antibody. Biological Description SLC14A2 Antibody, FLJ16167 Antibody, hUT-A6 Antibody, HUT2 Antibody, kidney Antibody, MGC119566 Antibody, MGC119567 Antibody, Slc14a2 Antibody, Solute carrier family 14 (urea transporter) Antibody, Alternative Name(s) member 2 Antibody, Solute carrier family 14 member 2 Antibody, Urea transporter 2 Antibody, Urea transporter Antibody, Urea transporter kidney Antibody, UT-A2 Antibody, UT2 Antibody, UT2_HUMAN Antibody, UTA Antibody, UTR Antibody, UT1 Antibody, UTA1 Antibody Research Area(s) Neuroscience | Pumps/Transporters | Urea Transporters Cellular Localization N/A Sequence References Gene ID: 54302; Accession Number: NP_062220; Swiss Prot: Q62668 Function UT-A1, a kidney-specific urea transporter is expressed in the renal collecting duct where it mediates trans-epithelial urea transport and is a target for regulation by vasopressin.
    [Show full text]
  • Structure and Permeation Mechanism of a Mammalian Urea Transporter
    Structure and permeation mechanism of a mammalian urea transporter Elena J. Levina,1, Yu Caoa,1, Giray Enkavib, Matthias Quickc, Yaping Pana, Emad Tajkhorshidb,2, and Ming Zhoua,2 aDepartment of Physiology and Cellular Biophysics, College of Physicians and Surgeons, Columbia University, 630 West 168th Street, New York, NY 10032; bCenter for Biophysics and Computational Biology, Department of Biochemistry, College of Medicine, and Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL 61801; and cDepartment of Psychiatry and Center for Molecular Recognition, Columbia University, 650 West 168th Street, New York, NY 10032 Edited by Christopher Miller, HHMI, Brandeis University, Waltham, MA, and approved June 1, 2012 (received for review May 3, 2012) As an adaptation to infrequent access to water, terrestrial mam- homolog (21), dvUT, which forms a trimer with a continuous mals produce urine that is hyperosmotic to plasma. To prevent membrane-spanning pore at the center of each protomer. How- osmotic diuresis by the large quantity of urea generated by protein ever, it remained unclear how similar this structure was to that catabolism, the kidney epithelia contain facilitative urea transpor- of the mammalian UTs, and the details of the permeation me- ters (UTs) that allow rapid equilibration between the urinary space chanism were unknown. To answer these questions, we solved and the hyperosmotic interstitium. Here we report the first X-ray the structure of a mammalian UT-B and investigated the permea- crystal structure of a mammalian UT, UT-B, at a resolution of 2.36 Å. tion mechanism with molecular dynamics simulations and func- UT-B is a homotrimer and each protomer contains a urea conduc- tional studies of UT-B mutants.
    [Show full text]
  • Baoxue Yang Jeff M. Sands Editors Urea Transporters Subcellular Biochemistry
    Subcellular Biochemistry 73 Baoxue Yang Jeff M. Sands Editors Urea Transporters Subcellular Biochemistry Volume 73 Series editor Robin Harris, Northumberland, UK More information about this series at http://www.springer.com/series/6515 Baoxue Yang · Jeff M. Sands Editors Urea Transporters 1 3 Editors Baoxue Yang Jeff M. Sands Department of Pharmacology Renal Division, Department of Medicine School of Basic Medical Sciences and Department of Physiology Peking University Emory University School of Medicine Beijing Atlanta, GA China USA ISSN 0306-0225 ISBN 978-94-017-9342-1 ISBN 978-94-017-9343-8 (eBook) DOI 10.1007/978-94-017-9343-8 Library of Congress Control Number: 2014949493 Springer Dordrecht Heidelberg New York London © Springer Science Business Media Dordrecht 2014 This work is subject+ to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • PHYSIOLOGICAL and TRANSCRIPTOMIC ASPECTS of ADAPTATION to EXTREME ENVIRONMENTS by COURTNEY NICOLE PASSOW B.S., Texas A&M Un
    PHYSIOLOGICAL AND TRANSCRIPTOMIC ASPECTS OF ADAPTATION TO EXTREME ENVIRONMENTS by COURTNEY NICOLE PASSOW B.S., Texas A&M University, 2011 AN ABSTRACT OF A DISSERTATION submitted in partial fulfillment of the requirements for the degree DOCTOR OF PHILOSOPHY Division of Biology College of Arts and Sciences KANSAS STATE UNIVERSITY Manhattan, Kansas 2016 Abstract Extremophiles are organisms with the ability to survive in environments characterized by strong physicochemical stressors lethal to most other organisms, providing excellent models to further our understanding of life’s capacities and limitations to deal with far-from-average conditions. I studied how physiological processes varied among fish residing in starkly different environmental conditions to understand how organisms cope with extreme environments and disentangle the roles of short-term plastic responses and evolved population differences in shaping physiological responses. I used the Poecilia mexicana model, a series of extremophile fish populations that has colonized toxic hydrogen sulfide (H2S) rich springs and caves, to address three major objectives: (1) I investigated the energetic consequences of life in extreme environments and tested whether predicted reductions in organismal energy demands evolved repeatedly along replicated environmental gradients. (2) I characterized variation in gene expression among populations and organs to test for interactive effects between different stressors and identify potential physiological mechanisms underlying adaptation to H2S and cave environments. (3) I conducted common garden and H2S-exposure experiments to test how evolutionary change and plasticity interact to shape variation in gene expression observed in nature. To address these objectives, I measured variation in metabolic physiology and quantified variation in physiological processes through genome-wide gene expression analyses.
    [Show full text]
  • Genómica De Los Procesos De Colonización En La Región Austral De Sudamérica
    TESIS DE DOCTORADO PEDECIBA BIOLOGÍA Genómica de los procesos de colonización en la región austral de Sudamérica Mag. Facundo Giorello Tutor: Dr. Enrique Lessa Tribunal: Susana González, Arley Camargo, María Inés Fariello Facultad de Ciencias, Universidad de la República Montevideo, Uruguay 2019 ÍNDICE RESUMEN.............................................................................................................................................................1 INTRODUCCIÓN..................................................................................................................................................3 Factores determinantes para la Biogeografía de América del Sur.................................................................3 Métodos y análisis filogeográficos...............................................................................................................6 RNA-seq y expresión diferencial................................................................................................................11 Antecedentes filogeográficos y ecológicos de Abrothrix olivacea..............................................................13 OBJETIVOS.........................................................................................................................................................15 CAPÍTULOS........................................................................................................................................................16 Capítulo 1...................................................................................................................................................16
    [Show full text]
  • Analysis of the Regulation of Drug Uptake and Detoxification Systems in the Blood- Cerebrospinal Fluid Barrier: the Role of Sex Hormones and Circadian Rhythm
    Analysis of the regulation of drug uptake and detoxification systems in the blood- cerebrospinal fluid barrier: the role of sex hormones and circadian rhythm (Versão final após defesa) Rafael Morais Mineiro Dissertação para obtenção do Grau de Mestre em Bioquímica (2º ciclo de estudos) Orientador: Profª. Doutora Telma Alexandra Quintela Paixão Co-orientador: Profª. Doutora Isabel Maria Theriaga Mendes Varanda Gonçalves Julho de 2020 ii Acknowledgments First of all, I would thank some people that anyway made this project possible, and to Universidade da Beira Interior for that five years journey. First, I would like to thank PhD professor Telma Quintela for the opportunity to develop a project in the neuroscience field, to work with circadian rhythms, and for the guidance and scientific knowledge provided during this year. I would like to thank PhD professor Isabel Gonçalves also for the opportunity to develop this work, and for always being available to help. I thank the remaining members of the complexus research group, especially to André and Catarina for all the help and support provided in the laboratory activities. Finally, I thank my friends and family, especially to my parents: João e Elsa for encourage-me and for the support and help provided during these five years. iii iv Resumo Alargado De forma a se adaptarem às alterações diurnas, os organismos vivos desenvolveram ritmos circadianos, que correspondem a alterações com uma ritmicidade de 24 horas nas funções biológicas. Os ritmos circadianos são conduzidos por relógios moleculares que, nos mamíferos, se encontram organizados de forma hierárquica. O núcleo supraquiasmático do hipotálamo opera como oscilador central, tendo a importante função de receber a informação luminosa e sincronizar os osciladores periféricos, de acordo com a hora do dia.
    [Show full text]
  • 1 Insights Into Transporter Classifications: an Outline Of
    1 1 Insights into Transporter Classifications: an Outline of Transporters as Drug Targets Michael Viereck,1 Anna Gaulton,2 and Daniela Digles1 1University of Vienna, Department of Pharmaceutical Chemistry, Althanstrasse 14, 1090 Vienna, Austria 2EMBL – European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, UK 1.1 Introduction Classifications are a useful tool to get an overview of a topic. They show instan- ces grouped together that share common properties according to the creator of the classification, and as in the case of hierarchical classifications, they allow to draw conclusions on the relation of different classes. In the case of the identifica- tion of drug targets (including transporters as the main drug target), several pub- lications show classifications as a helpful tool. Imming et al. [1] categorized drugs according to their targets, to get an esti- mate on the number of known drug targets, including channels and transporters. Drugs on the market were connected to a target only if it was described as the main target in the literature. For transport proteins (including uniporters, sym- porters, and antiporters), this identified six different types of transporter groups that are relevant as drug targets. These are the cation-chloride cotransporter + + + + (CCC) family (SLC 12), Na /H antiporters (SLC 9), proton pumps, Na /K ATPases, the eukaryotic (putative) sterol transporter (EST) family, and the neu- + rotransmitter/Na symporter (NSS) family (SLC 6). These families mainly belong to either ATPases or solute carriers (SLC). Whether the EST family is treated as transport protein or not depends on the classification used. Rask-Andersen et al.
    [Show full text]