CONCENTRATED SULFURIC ACID PRODUCTION FROM NON-CONDENSABLE GASES AND ITS EFFECT ON ALKALI AND SULFUR BALANCES IN PULP MILLS Andrés Mahecha-Botero1, Isabel M. C. L. Sêco2, Igor Aksenov1, C. Guy Cooper1, Jon Foan1, Rohan Bandekar1, Kam Sirikan1, Jim Wearing1 1NORAM Engineering and Constructors Ltd., 200 Granville Street, Suite 1800, Vancouver, BC, V6C1S4, Canada, Phone: +1 604 681 2030,
[email protected] 2Now with Altri, SGPS, S.A. SUMMARY The pulp and paper industry often encounters challenges that require process improvements to remain competitive. These challenges may include the requirement to meet more stringent environmental regulations, stricter energy policies, or the need to improve product quality, increase production capacity and profitability. As a result, the pulp mills of today have to focus on becoming more efficient by possessing an effective chemical recovery system and reducing chemical losses. The high degree of closure is beneficial for environment, water consumption and mill economy but can upset the Na/S balance and increase the build-up of non-process elements in the system. Installing an acid plant to convert the sulfur containing Non Condensable Gases (NCG) into sulfuric acid will eliminate the NCG as a sulfur input to the recovery cycle, eliminate purchases of sulfuric acid, reduce caustic purchases, and produce additional steam that will positively impact the mill’s heat balance. This paper provides an overview of the technology required to produce sulfuric acid in a pulp mill from NCG, presents some of the unique challenges related to feed variability, and discusses some of the technical features of NORAM’s sulfuric acid process technology and equipment.