CHINQUAPIN the Newsletter of the Southern Appalachian Botanical Society

Total Page:16

File Type:pdf, Size:1020Kb

CHINQUAPIN the Newsletter of the Southern Appalachian Botanical Society CHINQUAPIN The Newsletter of the Southern appalachian Botanical Society Volume 23 (4) Winter 2015 terfly to avoid egg Earl Core Student Report placement, or are there other benefits Passionflowers and a Clever Trick to possessing egg By Nichole Long-Aragon mimics? And, 4. How often have egg When most people observe butterflies in their garden, they mimics evolved in visualize a peaceful scene. Even when most botanists think of but- Passiflora? Have they terflies and their association with plants, they think of butterflies evolved in similar or sipping nectar and distributing pollen from one flower to another. different ways, and However, some of these beautiful butterflies do more than peaceful has their presence activities: they lay their eggs on plants. Once these eggs hatch, they influenced species diversification in develop into caterpillars which subsequently feed on the leaves. Authentic butterfly eggs of Heliconius hewitsoni on This causes defoliation, or sometimes even plant death. Several Passiflora pittieri. the groups that have them? species of a genus of plants well known to botanists of the eastern Thus far, my research has been able to address each of the pro- United States, the passionflowers (Passiflora), have developed a posed questions. Egg mimics may be located on the leaf, petiole, deceptive scheme to discourage this crime of passion. They trick stipule, or floral structures of the plant, and 25 species are known the butterflies with egg mimics. to have them. My study is ongoing, but they have evolved at least five times. Each mimic is unique with respect to shape, size, and location. Abundant druses are a common feature, but tissues differ in terms of cell shape, cell composition, and secretory function. Egg mimics display yellow or orange coloration. Interestingly, there seems to be a dual function associated with some egg mimics: not only do they prevent female butterflies from laying eggs, but they also secrete sugar to attract ants that then destroy butterfly eggs. Egg mimicry demonstrates how an intricate ecological associa- Egg mimics of Passiflora allantophylla. Left – color photograph showing bright tion can exist between several organisms and be mediated by under- yellow egg mimics. Right – scanning electron micrograph of abaxial leaf lying morphology and anatomy of structures. My research demon- surface. strates how understanding the structural details of the various types of egg mimics present in the passionflowers reveals connections Female butterflies of the genus Heliconius inspect exposed struc- necessary for understanding their diversification, development, and tures of passionflowers before committing to egg placement. Fe- evolution. males avoid a plant if it is already occupied by eggs and are believed to abstain from ovipositing on the plants because they do not want The Earl Core Student their offspring to compete with other caterpillars for a single food Award has allowed me source. Thus, some species of Passiflora have evolved egg mimics to to continue investigating deter gravid butterflies from laying their eggs on the leaves. While these interesting questions this is a famous example of co-evolution, relatively little is actually by enabling me to pur- known about the egg mimics themselves. chase additional anatomi- In my research I address four main questions: 1. Where are cal supplies. the mimics found on the plants? Are mimics in different places morphologically and anatomically similar? 2. What criteria need to Anna Nichole Long- be met in order to be considered an egg mimic? For example, does Aragon is a graduate the mimic need to be a specific color, such as yellow or orange, student at the University of Southern Mississippi. to successfully mislead the butterfly? 3. What is/are the primary Her research advisor is function(s) of the egg mimics? Do they only cause the female but- Passiflora poslae displaying the egg mimic Dr. Mac Alford. and nectaries. 26 Chinquapin 23 (4) The Newsletter of the Southern Appalachian Botanical Society SABS Officers and Executive Council From The Editor’s Desk: on edible plants. But from my perspective For full addresses, see http://sabs.appstate.edu/about/officers – “from the editor’s desk” – the best thing Joe Pollard, Newsletter Editor of all is that there must be millions of edible Kathy Gould Mathews wild plants in the world! This is definite- President (2014-2016) I have been serving as editor of this Western Carolina University newsletter for about three years now. I ly not going to be a short series. Lytton (828) 227-3659 volunteered for the job because I had always provides a preview of his new column in the [email protected] enjoyed reading Chinquapin, and because article on our back page. I thought Dan Pittillo had earned the right There is actually a point to this rambling Charles N. Horn to hand it over to someone else. So I came column, if you’re still reading. In addition to President-Elect (2015-2016) into the position with no real inclination the regular columnists I have named above, Newberry College I have tried and will continue to try to find (803) 321-5257, fax (803) 321-5636 to shake things up or make big changes. volunteers to contribute other interesting [email protected] Perhaps the scariest thing for me was wheth- er I could find authors to fill the pages; works to the pages of Chinquapin. I thank Charles N. Horn therefore, I made it a point to cultivate the all of my friends who have been willing to Treasurer (2014-2018) relationships with regular contributors that do that, and I especially applaud the efforts Newberry College had been established by the earlier editors. of our student members, such as the front- (803) 321-5257, fax (803) 321-5636 George Ellison’s “Botanical Excursions” page article in this issue. But there is always [email protected] column has appeared in Chinquapin since a need for new voices. If you are interested in writing something for your newsletter, Michael E. Held volume 1, issue 1, way back in 1993! The anything from a brief letter-to-the-editor Membership Secretary (2015-2018) “Taxonomic Advisory” series by Alan Weak- Saint Peter’s University ley and “Rare Plants” by Linda Chafin were to a scholarly article with references, please (201) 761-6432 established in 2008 during Scott Ranger’s don’t hesitate to contact me. If you want to [email protected] term as editor. I am indebted to all of them nominate someone else, send me a sugges- for continuing to submit articles. Their tion and I will try to coax them on board. If Susan Farmer three distinctive voices contribute greatly to you want to be a regular contributor, we can Recording Secretary (2013-2016) the entertaining but informative tone that I talk about that too. Just watch out for those Abraham Baldwin Agricultural College wanted Chinquapin to keep. infinite subjects! SABS Welcomes (229) 391-5126 [email protected] The other regular column that I inherit- Our New Members ed in 2013 was Lytton Musselman’s series Lisa Kelly on the fascinating lives of parasitic plants, Daniel Breen Member at Large (2014-2016) which I believe was inaugurated in 2011. In Memoriam . Robert Floyd University of North Carolina at Pembroke But I have to admit that this one worried George Pryor Johnson (910) 325-1470 Fredrick Rich me! Nothing personal about Lytton, I assure Dr. George Johnson, Professor [email protected] you. He has always submitted his pieces of Biology and Curator of the Jay Bolin well before the deadline with a minimum of Member at Large (2014-2016) editorial prompting. But the subject matter Herbarium at Arkansas Tech Catawba College seemed distressingly … well … finite. There University, passed away on (704) 637-4450 will always be taxonomic and nomenclatural [email protected] changes for Alan to inform us about. Rare December 16, 2015, at the age of plants are, paradoxically, becoming more 59. Dr. Johnson was a member Jennifer Boyd and more common, so Linda will never lack of the Southern Appalachian Member at Large (2015-2017) for material. And I am totally confident that University of Tennessee at Chattanooga Botanical Society and former editor (423) 425-5638 George has an unlimited trove of fascinating [email protected] natural history stories, all lovingly illustrated of Castanea. Our thoughts go out with Elizabeth’s watercolors. But parasitic to his family and friends. Christopher P. Randle plants? Surely they would run out too soon! Editor-in-Chief of Castanea (2014-2017) Well, it has happened. Lytton wrote me Sam Houston State University last June to say that he would exhaust his (936) 294-1401 list of parasites at the end of the year. Oh Reminders: [email protected] no! But in the next sentence he offered to • Dues notices have been mailed to all begin a new regular column on edible wild Joe Pollard members. Pay by mail or online at http:// plants. It was immediately obvious that this Editor of Chinquapin sabs.appstate.edu/membership. (2012-2015) was a brilliant idea. Of course everyone is interested in things they can (and cannot) Furman University • Abstracts for the 2016 annual meeting (864) 294-3244 eat, and Lytton is an acknowledged expert are due by February 7. For information go [email protected] in ethnobotany; he has even written a book to http://www.sebiologists.org/. On the web at sabs.appstate.edu Chinquapin 23 (4) 27 A Shrubby Sandbur, Krameria lanceolata (Spreading Ratanay) By Lytton John Musselman, Old Dominion University, Norfolk, VA In this series, I have considered Southeastern parasites in the families Cervantesiaceae (with Pyrularia pubera, formerly placed in Santalaceae), Convolvulaceae, Lauraceae, Olacaceae, Orobanchace- ae, Santalaceae, and Viscaceae.
Recommended publications
  • Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province
    Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province Including the states of: Maryland, Pennsylvania, Virginia, West Virginia And parts of: Georgia, Kentucky, and North Carolina, NAPPC South Carolina, Tennessee Table of CONTENTS Why Support Pollinators? 4 Getting Started 5 Central Appalachian Broadleaf Forest 6 Meet the Pollinators 8 Plant Traits 10 Developing Plantings 12 Far ms 13 Public Lands 14 Home Landscapes 15 Bloom Periods 16 Plants That Attract Pollinators 18 Habitat Hints 20 This is one of several guides for Check list 22 different regions in the United States. We welcome your feedback to assist us in making the future Resources and Feedback 23 guides useful. Please contact us at [email protected] Cover: silver spotted skipper courtesy www.dangphoto.net 2 Selecting Plants for Pollinators Selecting Plants for Pollinators A Regional Guide for Farmers, Land Managers, and Gardeners In the Ecological Region of the Central Appalachian Broadleaf Forest Coniferous Forest Meadow Province Including the states of: Maryland, Pennsylvania, Virginia, West Virginia And parts of: Georgia, Kentucky, North Carolina, South Carolina, Tennessee a nappc and Pollinator Partnership™ Publication This guide was funded by the National Fish and Wildlife Foundation, the C.S. Fund, the Plant Conservation Alliance, the U.S. Forest Service, and the Bureau of Land Management with oversight by the Pollinator Partnership™ (www.pollinator.org), in support of the North American Pollinator Protection Campaign (NAPPC–www.nappc.org). Central Appalachian Broadleaf Forest – Coniferous Forest – Meadow Province 3 Why support pollinators? In theIr 1996 book, the Forgotten PollInators, Buchmann and Nabhan estimated that animal pollinators are needed for the reproduction “ Farming feeds of 90% of flowering plants and one third of human food crops.
    [Show full text]
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2012
    Natural Heritage Program List of Rare Plant Species of North Carolina 2012 Edited by Laura E. Gadd, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program Office of Conservation, Planning, and Community Affairs N.C. Department of Environment and Natural Resources 1601 MSC, Raleigh, NC 27699-1601 Natural Heritage Program List of Rare Plant Species of North Carolina 2012 Edited by Laura E. Gadd, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program Office of Conservation, Planning, and Community Affairs N.C. Department of Environment and Natural Resources 1601 MSC, Raleigh, NC 27699-1601 www.ncnhp.org NATURAL HERITAGE PROGRAM LIST OF THE RARE PLANTS OF NORTH CAROLINA 2012 Edition Edited by Laura E. Gadd, Botanist and John Finnegan, Information Systems Manager North Carolina Natural Heritage Program, Office of Conservation, Planning, and Community Affairs Department of Environment and Natural Resources, 1601 MSC, Raleigh, NC 27699-1601 www.ncnhp.org Table of Contents LIST FORMAT ......................................................................................................................................................................... 3 NORTH CAROLINA RARE PLANT LIST ......................................................................................................................... 10 NORTH CAROLINA PLANT WATCH LIST ..................................................................................................................... 71 Watch Category
    [Show full text]
  • Guide to Plant Collection and Identification
    GUIDE TO PLANT COLLECTION AND IDENTIFICATION by Jane M. Bowles PhD Originally prepared for a workshop in Plant Identification for the Ministry of Natural Resources in 1982. Edited and revised for the UWO Herbarium Workshop in Plant Collection and Identification, 2004 © Jane M. Bowles, 2004 -0- CHAPTER 1 THE NAMES OF PLANTS The history of plant nomenclature: Humans have always had a need to classify objects in the world about them. It is the only means they have of acquiring and passing on knowledge. The need to recognize and describe plants has always been especially important because of their use for food and medicinal purposes. The commonest, showiest or most useful plants were given common names, but usually these names varied from country to country and often from district to district. Scholars and herbalists knew the plants by a long, descriptive, Latin sentence. For example Cladonia rangiferina, the common "Reindeer Moss", was described as Muscus coralloides perforatum (The perforated, coral-like moss). Not only was this system unwieldy, but it too varied from user to user and with the use of the plant. In the late 16th century, Casper Bauhin devised a system of using just two names for each plant, but it was not universally adopted until the Swedish naturalist, Carl Linnaeus (1707-1778) set about methodically classifying and naming the whole of the natural world. The names of plants: In 1753, Linnaeus published his "Species Plantarum". The modern names of nearly all plants date from this work or obey the conventions laid down in it. The scientific name for an organism consists of two words: i) the genus or generic name, ii) the specific epithet.
    [Show full text]
  • Contributions to the Solution of Phylogenetic Problem in Fabales
    Research Article Bartın University International Journal of Natural and Applied Sciences Araştırma Makalesi JONAS, 2(2): 195-206 e-ISSN: 2667-5048 31 Aralık/December, 2019 CONTRIBUTIONS TO THE SOLUTION OF PHYLOGENETIC PROBLEM IN FABALES Deniz Aygören Uluer1*, Rahma Alshamrani 2 1 Ahi Evran University, Cicekdagi Vocational College, Department of Plant and Animal Production, 40700 Cicekdagi, KIRŞEHIR 2 King Abdulaziz University, Department of Biological Sciences, 21589, JEDDAH Abstract Fabales is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae), Polygalaceae, Surianaceae and Quillajaceae. The monophyly of the order is supported strongly by several studies, although interfamilial relationships are still poorly resolved and vary between studies; a situation common in higher level phylogenetic studies of ancient, rapid radiations. In this study, we carried out simulation analyses with previously published matK and rbcL regions. The results of our simulation analyses have shown that Fabales phylogeny can be solved and the 5,000 bp fast-evolving data type may be sufficient to resolve the Fabales phylogeny question. In our simulation analyses, while support increased as the sequence length did (up until a certain point), resolution showed mixed results. Interestingly, the accuracy of the phylogenetic trees did not improve with the increase in sequence length. Therefore, this study sounds a note of caution, with respect to interpreting the results of the “more data” approach, because the results have shown that large datasets can easily support an arbitrary root of Fabales. Keywords: Data type, Fabales, phylogeny, sequence length, simulation. 1. Introduction Fabales Bromhead is a cosmopolitan angiosperm order which consists of four families, Leguminosae (Fabaceae) Juss., Polygalaceae Hoffmanns.
    [Show full text]
  • Lytton John Musselman Curriculum Vitae 1 January 2021
    Lytton John Musselman Curriculum Vitae 1 January 2021 Lytton John Musselman CURRICULUM VITAE 1 January 2021 1 Lytton John Musselman Curriculum Vitae 1 January 2021 CURRENT POSITION AND MAILING ADDRESS Lytton John Musselman Mary Payne Hogan Distinguished Professor of Botany Manager, Blackwater Ecologic Preserve Department of Biological Sciences 304 Mills Godwin Building Old Dominion University 5115 Hampton Boulevard Norfolk, Virginia 23529-0266 USA TELECOMMUNICATION Phone: 757-683-3597 (office), 757-771-6156 (cell) Fax: 757-683-5283 (department) Email: [email protected] Web sites: http://www.odu.edu/~lmusselm/ and http://ww2.odu.edu/~lmusselm/plant/index.php POSITIONS Visiting Eminent Professor, Institute of Biodiversity and Environmental Research, Universiti Brunei Darussalam, June 2014-2017 Visiting Professor, American University of Iraq-Sulaimani, May 2012, May 2013 Visiting Professor, University of Virginia Mountain Lake Biological Station, June-July 2012; Visiting Assistant Professor, summers 1975, 1977, 1979. Botanist, A Prairie Home Companion cruises. Alaska August 2016, Eastern Caribbean 14-21 March 2015, Baltic Capitals, 8-23 August 2014; Barcelona-Venice, 18-29 August 2013; Amsterdam-Barcelona, 8- 17 July 2011, Boston-Montreal August 2009. Visiting Professor, Cranberry Lake Biological Station, State University of New York, College of Environmental Science and Forestry, July 2915, July-August 2014, July-August 2013, July-August 2012, July-August 2011, August 2010; July-August 2009. Chair, Department of Biological Sciences. July 2002-July 2008. Visiting Professor of Biology, and Post Herbarium, American University of Beirut, Beirut, Lebanon February-June 2002. 2 Lytton John Musselman Curriculum Vitae 1 January 2021 Visiting Professor, Aleppo University, Aleppo, Syria. May-August 2000.
    [Show full text]
  • Quercus Laevis Walt. Turkey Oak Fagaceae Beech Family Richard F
    Quercus laevis Walt. Turkey Oak Fagaceae Beech family Richard F. Harlow Turkey oak (Quercus Zaeuis), also called Catesby Habitat oak or scrub oak, is a small, moderately fast to fast- growing tree found on dry sandy soils of ridges, Native Range pinelands, and dunes, often in pure stands. This oak is not commercially important because of its size, but Turkey oak (figs. 1, 2) is limited to the dry the hard, close-grained wood is an excellent fuel. The pinelands and sandy ridges of the southeastern Coas- acorns are an important food to wildlife. Turkey oak tal Plain from southeast Virginia to central Florida is so named for its 3-lobed leaves which resemble a and west to southeast Louisiana (14). It reaches its turkey’s foot. maximum development in a subtropical climate. This Figure l-The native range of turkey oak. The author is Research Wildlife Biologist (retired), Southeastern Forest Experiment Station, Asheville, NC. 672 Quercus laevis in organic matter, and are strongly acid. Depth to water table is more than 152 cm (60 in) (18,211. Associated Forest Cover Turkey oak is commonly associated with longleaf pine (Pinus palustris), bluejack oak (Quercus in- cana), and sand (dwarf) post oak (Q. stellata var. margaretta). Depending on location it can also be associated with sand pine (Pinus clausa), laurel oak (Quercus laurifolia), southern red oak (Q. falcata), live oak (Q. virginiana), blackjack oak (Q. marilan- dica), sand hickory (Carya pallida), mockernut hick- ory (C. tomentosa), and black cherry (Prunus serotina). Understory, depending on the part of the range con- sidered, can include sassafras (Sassafras albidum), persimmon (Diospyros virginiana), pawpaw (Asimina spp.), dwarf huckleberry, deerberry, and tree sparkle- berry (Vaccinium spp.), New Jersey tea (Ceanothus americanus), gopher-apple (Geobalanus oblongifolius), blackberry (Rubus spp.), crooked wood (Lyonia spp.), scrub hickory (Carya fZoridana), myrtle oak (Quercus myrtifolia), Chapman oak (Q.
    [Show full text]
  • June 2015 Hello Everyone. One Again We Had a Great Trip to Francis Marion National Forest
    June 2015 Hello everyone. One again we had a great trip to Francis Marion National Forest. Just like last year, we combined our trip with the annual Hell Hole reptile and amphibian survey. SCAN members that participated include Phil Harpootlian, Kitty Beverly, Bill Hamel, Marsha and Bob Hamlin, Greg Ross, Pat and Jerry Bright, Gene Ott, Mary Douglass, Tom Jones, Kim McManus, Paul Kalbach, and Gordon Murphy. We all gathered at the primitive campground on Hell Hole Road. Win Ott did a quick show-and-tell with some of the snakes that he and Gene had already caught and gave us the opportunity to hold and photograph them. After Kim’s introduction to the various options for the day, which included road cruising for herps and exploring a nearby isolated wetland system, we split up and headed off in different directions. I can’t speak to the success that the road-cruisers had, but Kitty, Bill, and I headed for the wetland system. The isolated wetland was only a couple of miles from the campsite, as the crow flies, but it was quite a drive to get to it. Along the way we found an eastern kingsnake on the shoulder of Yellow Jacket Road. Once at the wetland, which was dominated by cypress and tupelo, we saw a few birds including a great blue heron and an anhinga. We only had a short time at the wetland because we wanted to get back to the campsite around noon to see some snakes that Jeff Holmes and his research staff had caught earlier in the week.
    [Show full text]
  • Vascular Plant Inventory and Ecological Community Classification for Cumberland Gap National Historical Park
    VASCULAR PLANT INVENTORY AND ECOLOGICAL COMMUNITY CLASSIFICATION FOR CUMBERLAND GAP NATIONAL HISTORICAL PARK Report for the Vertebrate and Vascular Plant Inventories: Appalachian Highlands and Cumberland/Piedmont Networks Prepared by NatureServe for the National Park Service Southeast Regional Office March 2006 NatureServe is a non-profit organization providing the scientific knowledge that forms the basis for effective conservation action. Citation: Rickie D. White, Jr. 2006. Vascular Plant Inventory and Ecological Community Classification for Cumberland Gap National Historical Park. Durham, North Carolina: NatureServe. © 2006 NatureServe NatureServe 6114 Fayetteville Road, Suite 109 Durham, NC 27713 919-484-7857 International Headquarters 1101 Wilson Boulevard, 15th Floor Arlington, Virginia 22209 www.natureserve.org National Park Service Southeast Regional Office Atlanta Federal Center 1924 Building 100 Alabama Street, S.W. Atlanta, GA 30303 The view and conclusions contained in this document are those of the authors and should not be interpreted as representing the opinions or policies of the U.S. Government. Mention of trade names or commercial products does not constitute their endorsement by the U.S. Government. This report consists of the main report along with a series of appendices with information about the plants and plant (ecological) communities found at the site. Electronic files have been provided to the National Park Service in addition to hard copies. Current information on all communities described here can be found on NatureServe Explorer at www.natureserveexplorer.org. Cover photo: Red cedar snag above White Rocks at Cumberland Gap National Historical Park. Photo by Rickie White. ii Acknowledgments I wish to thank all park employees, co-workers, volunteers, and academics who helped with aspects of the preparation, field work, specimen identification, and report writing for this project.
    [Show full text]
  • An Updated Infrageneric Classification of the North American Oaks
    Article An Updated Infrageneric Classification of the North American Oaks (Quercus Subgenus Quercus): Review of the Contribution of Phylogenomic Data to Biogeography and Species Diversity Paul S. Manos 1,* and Andrew L. Hipp 2 1 Department of Biology, Duke University, 330 Bio Sci Bldg, Durham, NC 27708, USA 2 The Morton Arboretum, Center for Tree Science, 4100 Illinois 53, Lisle, IL 60532, USA; [email protected] * Correspondence: [email protected] Abstract: The oak flora of North America north of Mexico is both phylogenetically diverse and species-rich, including 92 species placed in five sections of subgenus Quercus, the oak clade centered on the Americas. Despite phylogenetic and taxonomic progress on the genus over the past 45 years, classification of species at the subsectional level remains unchanged since the early treatments by WL Trelease, AA Camus, and CH Muller. In recent work, we used a RAD-seq based phylogeny including 250 species sampled from throughout the Americas and Eurasia to reconstruct the timing and biogeography of the North American oak radiation. This work demonstrates that the North American oak flora comprises mostly regional species radiations with limited phylogenetic affinities to Mexican clades, and two sister group connections to Eurasia. Using this framework, we describe the regional patterns of oak diversity within North America and formally classify 62 species into nine major North American subsections within sections Lobatae (the red oaks) and Quercus (the Citation: Manos, P.S.; Hipp, A.L. An Quercus Updated Infrageneric Classification white oaks), the two largest sections of subgenus . We also distill emerging evolutionary and of the North American Oaks (Quercus biogeographic patterns based on the impact of phylogenomic data on the systematics of multiple Subgenus Quercus): Review of the species complexes and instances of hybridization.
    [Show full text]
  • Poindexter, D.B. 2013. Vascular Flora and Plant Communities of Alleghany
    Vascular FLOra AND Plant COmmunities OF Alleghany COunty, NOrtH CarOlina Derick B. Poindexter1 I.W. Carpenter, Jr. Herbarium (BOON) Appalachian State University, Biology Department Boone, North Carolina 28608-2027, U.S.A. [email protected] ABSTRACT An inventory of the vascular plant species of Alleghany County, North Carolina was conducted from spring 2008–summer 2012. Extensive fieldwork was augmented by a search of numerous herbaria, resulting in the documentation of 1508 taxa (1457 species) in 642 genera and 161 families. These taxa are represented by nine Lycopodiophyta, 39 Monilophyta, 23 Acrogymnospermae, and 1437 Angiospermae. Four hundred and thirty-five taxa, 28.8% of the total flora, are considered exotic. Sixty-five native taxa have state or global ranking due to rarity. Ten species are documented here as new to the flora of North Carolina, while 613 are new county distributional records. An additional 38 plausible sight records are included in the annotated checklist to bring attention to their uncertain attribution to the flora; however, these records are not treated in the taxonomic summary. A comparative assessment of all plant origin categories (i.e., native vs. multiple exotic categories) within the flora is included to accommodate the various perspectives of the botanical community. A companion website (www. vascularflora.appstate.edu) was created to provide a dynamic source of digital documentation for this study. RESUMEN Se realizó un inventario de las especies de plantas vasculares del condado de Alleghany, Carolina del Norte desde la primavera de 2008 hasta el verano de 2012. El extensivo trabajo de campo de Incrementó con la búsqueda en numerosos herbarios, dando como resultado la docu- mentación de 1508 taxa (1457 especies) en 642 géneros y 161 familias.
    [Show full text]
  • Age and Stand Structure of Old-Growth Oak in Florida High Pine
    AGE AND STAND STRUCTURE OF OLD-GROWTH OAK IN FLORIDA HIGH PINE Cathryn H. Greenberg u.s. Department of Agriculture, Forest Service, Bent Creek Research and Demonstration Forest, 1577 Brevard Road, Asheville, NC 28806 Robert W. Simons 1122 SW 11th Avenue, Gainesville, FL 32601 ABSTRACT We sampled stand and age structure of 4 high pine sites composed of old-growth sand post oak (Quercus margaretta) and turkey oak (Quercus laevis), and young longleaf pine (Pinus palustris), in north and central peninsular Florida. The oldest turkey oak sampled was 123 years old, and the oldest sand post oak was 230 years old. Turkey oak exhibited the greatest variation in diameter at breast height relative to age. The median age of rotten and/or hollow trees was 63 years for turkey oak and 105 years for sand post oak. Age reconstruction indicates that in 1900 minimum oak tree density ranged from 10-60 trees per hectare among sites. This study demonstrates that sandhill oak trees were historically an integral component of at least some phases of the high pine ecosystem. These data support the hypothesis that spatial patchiness and variability in fire frequency, season, and intensity historically permitted oaks to reach and maintain tree size in varying densities over time and across the high pine landscape. Citation: Greenberg, C.H., and R.W. Simons. 2000. Age and stand structure of old-growth oak in Florida high pine. Page 30 in W. Keith Moser and Cynthia R Moser (eds.). Fire and forest ecology: innovative silviculture and vegetation management. Tall Timbers Fire Ecology Conference Proceedings, No.
    [Show full text]